
Package ‘baguette’
April 14, 2020

Title Efficient Model Functions for Bagging

Version 0.0.1

Description Tree- and rule-based models can be bagged using
this package and their predictions equations are stored
in an efficient format to reduce the model objects size
and speed.

License MIT + file LICENSE

Depends parsnip (>= 0.1.0)

Suggests testthat, AmesHousing, recipes, modeldata, covr, yardstick

Encoding UTF-8

LazyData true

Imports hardhat, butcher, rpart, C50, withr, rsample, dplyr, purrr,
furrr, tibble, tidyr, rlang, earth, magrittr, utils, generics,
dials

URL https://github.com/tidymodels/baguette

BugReports https://github.com/tidymodels/baguette/issues

RoxygenNote 7.1.0.9000

NeedsCompilation no

Author Max Kuhn [aut, cre] (<https://orcid.org/0000-0003-2402-136X>),
RStudio [cph]

Maintainer Max Kuhn <max@rstudio.com>

Repository CRAN

Date/Publication 2020-04-14 14:20:04 UTC

R topics documented:
bagger . 2
bag_mars . 5
bag_tree . 6
class_cost . 8

1

https://github.com/tidymodels/baguette
https://github.com/tidymodels/baguette/issues

2 bagger

control_bag . 9
predict.bagger . 10
var_imp.bagger . 11

Index 12

bagger Bagging functions

Description

General suite of bagging functions for several models.

Usage

bagger(x, ...)

Default S3 method:
bagger(x, ...)

S3 method for class 'data.frame'
bagger(
x,
y,
base_model = "CART",
times = 11L,
control = control_bag(),
cost = NULL,
...

)

S3 method for class 'matrix'
bagger(
x,
y,
base_model = "CART",
times = 11L,
control = control_bag(),
cost = NULL,
...

)

S3 method for class 'formula'
bagger(
formula,
data,
base_model = "CART",
times = 11L,

bagger 3

control = control_bag(),
cost = NULL,
...

)

S3 method for class 'recipe'
bagger(
x,
data,
base_model = "CART",
times = 11L,
control = control_bag(),
cost = NULL,
...

)

Arguments

x A data frame, matrix, or recipe (depending on the method being used).

... Optional arguments to pass to the base model function.

y A numeric or factor vector of outcomes. Categorical outcomes (i.e classes)
should be represented as factors, not integers.

base_model A single character value for the model being bagged. Possible values are "CART",
"MARS", and "C5.0" (classification only).

times A single integer greater than 1 for the maximum number of bootstrap sam-
ples/ensemble members (some model fits might fail).

control A list of options generated by control_bag().

cost A non-negative scale (for two class problems) or a cost matrix.

formula An object of class "formula" (or one that can be coerced to that class): a sym-
bolic description of the model to be fitted. Note that this package does not
support multivariate outcomes and that, if some predictors are factors, dummy
variables will not be created unless by the underyling model function.

data A data frame containing the variables used in the formula or recipe.

Details

bagger() fits separate models to bootstrap samples. The prediction function for each model object
is encoded in an R expression and the original model object is discarded. When making predictions,
each prediction formula is evaluated on the new data and aggregated using the mean.

Variable importance scores are calculated using implementations in each package. When requested,
the results are in a tibble with column names term (the predictor), value (the importance score),
and used (the percentage of times that the variable was in the prediction equation).

The models can be fit in parallel using the future package. The enable parallelism, use the future::plan()
function to declare how the computations should be distributed. Note that this will almost certainly
multiply the memory requirements required to fit the models.

4 bagger

Examples

library(recipes)
library(dplyr)

data(biomass, package = "modeldata")

biomass_tr <-
biomass %>%
dplyr::filter(dataset == "Training") %>%
dplyr::select(-dataset, -sample)

biomass_te <-
biomass %>%
dplyr::filter(dataset == "Testing") %>%
dplyr::select(-dataset, -sample)

--

ctrl <- control_bag(var_imp = TRUE)

--

`times` is low to make the examples run faster

set.seed(7687)
mars_bag <- bagger(x = biomass_tr[, -6], y = biomass_tr$HHV,

base_model = "MARS", times = 5, control = ctrl)
mars_bag
var_imp(mars_bag)

set.seed(7687)
cart_bag <- bagger(x = biomass_tr[, -6], y = biomass_tr$HHV,

base_model = "CART", times = 5, control = ctrl)
cart_bag

--
Other interfaces

Recipes can be used
biomass_rec <-

recipe(HHV ~ ., data = biomass_tr) %>%
step_pca(all_predictors())

set.seed(7687)
cart_pca_bag <- bagger(biomass_rec, data = biomass_tr, base_model = "CART",

times = 5, control = ctrl)

cart_pca_bag

Using formulas
mars_bag <- bagger(HHV ~ ., data = biomass_tr, base_model = "MARS", times = 5,

control = ctrl)

bag_mars 5

mars_bag

bag_mars General Interface for Bagged MARS Models

Description

bag_mars() is a way to generate a specification of a model before fitting and allows the model to
be created using different packages in R. The main arguments for the model are:

• num_terms: The number of features that will be retained in the final model.

• prod_degree: The highest possible degree of interaction between features. A value of 1
indicates and additive model while a value of 2 allows, but does not guarantee, two-way
interactions between features.

• prune_method: The type of pruning. Possible values are listed in ?earth.

These arguments are converted to their specific names at the time that the model is fit. Other options
and argument can be set using set_engine(). If left to their defaults here (NULL), the values are
taken from the underlying model functions. If parameters need to be modified, update() can be
used in lieu of recreating the object from scratch.

Usage

bag_mars(
mode = "unknown",
num_terms = NULL,
prod_degree = NULL,
prune_method = NULL

)

S3 method for class 'bag_mars'
update(
object,
parameters = NULL,
num_terms = NULL,
prod_degree = NULL,
prune_method = NULL,
fresh = FALSE,
...

)

Arguments

mode A single character string for the type of model. Possible values for this model
are "unknown", "regression", or "classification".

num_terms The number of features that will be retained in the final model, including the
intercept.

6 bag_tree

prod_degree The highest possible interaction degree.

prune_method The pruning method.

object A bagged MARS model specification.

parameters A 1-row tibble or named list with main parameters to update. If the individual
arguments are used, these will supersede the values in parameters. Also, using
engine arguments in this object will result in an error.

fresh A logical for whether the arguments should be modified in-place of or replaced
wholesale.

... Not used for update().

Details

The model can be created using the fit() function using the following engines:

• R: "earth" (the default)

Examples

library(parsnip)

set.seed(7396)
bag_mars(num_terms = 7) %>%

set_mode("regression") %>%
set_engine("earth", times = 3) %>%
fit(mpg ~ ., data = mtcars)

model <- bag_mars(num_terms = 10, prune_method = "none")
model
update(model, num_terms = 2)
update(model, num_terms = 2, fresh = TRUE)

bag_tree General Interface for Bagged Decision Tree Models

Description

bag_tree() is a way to generate a specification of a model before fitting and allows the model to
be created using different packages in R. The main arguments for the model are:

• cost_complexity: The cost/complexity parameter (a.k.a. Cp) used by CART models (rpart
only).

• tree_depth: The maximum depth of a tree (rpart).

• min_n: The minimum number of data points in a node that are required for the node to be split
further.

• class_cost: A cost value to asign to the class corresponding to the first factor level (for
2-class models, rpart and C5.0 only).

bag_tree 7

These arguments are converted to their specific names at the time that the model is fit. Other options
and argument can be set using set_engine(). If left to their defaults here (NULL), the values are
taken from the underlying model functions. If parameters need to be modified, update() can be
used in lieu of recreating the object from scratch.

Usage

bag_tree(
mode = "unknown",
cost_complexity = 0,
tree_depth = NULL,
min_n = 2,
class_cost = NULL

)

S3 method for class 'bag_tree'
update(
object,
parameters = NULL,
cost_complexity = NULL,
tree_depth = NULL,
min_n = NULL,
class_cost = NULL,
fresh = FALSE,
...

)

Arguments

mode A single character string for the type of model. Possible values for this model
are "unknown", "regression", or "classification".

cost_complexity

A positive number for the the cost/complexity parameter (a.k.a. Cp) used by
CART models (rpart only).

tree_depth An integer for maximum depth of the tree.
min_n An integer for the minimum number of data points in a node that are required

for the node to be split further.
class_cost A non-negative scalar for a class cost (where a cost of 1 means no extra cost).

This is useful for when the first level of the outcome factor is the minority class.
If this is not the case, values between zero and one can be used to bias to the
second level of the factor.

object A bagged tree model specification.
parameters A 1-row tibble or named list with main parameters to update. If the individual

arguments are used, these will supersede the values in parameters. Also, using
engine arguments in this object will result in an error.

fresh A logical for whether the arguments should be modified in-place of or replaced
wholesale.

... Not used for update().

8 class_cost

Details

The model can be created using the fit() function using the following engines:

• R: "rpart" (the default) or "C5.0" (classification only)

Note that, for rpart models, but cost_complexity and tree_depth can be both be specified but
the package will give precedence to cost_complexity. Also, tree_depth values greater than 30
rpart will give nonsense results on 32-bit machines.

Examples

library(parsnip)

set.seed(9952)
bag_tree(tree_depth = 5) %>%

set_mode("classification") %>%
set_engine("rpart", times = 3) %>%
fit(Species ~ ., data = iris)

model <- bag_tree(cost_complexity = 10, min_n = 3)
model
update(model, cost_complexity = 1)
update(model, cost_complexity = 1, fresh = TRUE)

class_cost Cost parameter for minority class

Description

Used in bag_treer().

Usage

class_cost(range = c(0, 5), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

This parameter reflects the cost of a mis-classified sample relative to a baseline cost of 1.0. For
example, if the first level of an outcome factor occurred rarely, it might help if this parameter were
set to values greater than 1.0. If the second level of the outcome factor is in the minority, values less
than 1.0 would cause the model to emphasize the minority class more than the majority class.

control_bag 9

Examples

class_cost()

control_bag Controlling the bagging process

Description

control_bag() can set options for ancillary aspects of the bagging process.

Usage

control_bag(
var_imp = TRUE,
allow_parallel = TRUE,
sampling = "none",
reduce = TRUE,
extract = NULL

)

Arguments

var_imp A single logical: should variable importance scores be calculated?

allow_parallel A single logical: should the model fits be done in parallel (even if a parallel
plan() has been created)?

sampling Either "none" or "down". For classification only. The training data, after boot-
strapping, will be sampled down within each class (with replacement) to the size
of the smallest class.

reduce Should models be modified to reduce their size on disk?

extract A function (or NULL) that can extract model-related aspects of each ensemble
member. See Details and example below.

Details

Any arbitrary item can be saved from the model object (including the model object itself) using the
extract argument, which should be a function with arguments x (for the model object), and
The results of this function are saved into a list column called extras (see the example below).

Value

A list.

10 predict.bagger

Examples

Extracting model components

num_term_nodes <- function(x, ...) {
tibble::tibble(num_nodes = sum(x$frame$var == "<leaf>"))

}

set.seed(7687)
with_extras <- bagger(mpg ~ ., data = mtcars,

base_model = "CART", times = 5,
control = control_bag(extract = num_term_nodes))

dplyr::bind_rows(with_extras$model_df$extras)

predict.bagger Predictions from a bagged model

Description

The predict() function computes predictions from each of the models in the ensembles and returns
a single aggregated value for each sample in new_data.

Usage

S3 method for class 'bagger'
predict(object, new_data, type = NULL, ...)

Arguments

object An object generated by bagger().

new_data A data frame of predictors. If a recipe or formula were originally used, the
original data should be passed here instead of a preprocessed version.

type A single character value for the type of predictions. For regression models,
type = 'numeric' is valid and 'class' and 'prob' are valid for classification
models.

... Not currently used.

Examples

data(airquality)

set.seed(7687)
mars_bag <- bagger(Ozone ~ ., data = airquality, base_model = "MARS", times = 5)
predict(mars_bag, new_data = airquality[, -1])

var_imp.bagger 11

var_imp.bagger Obtain variable importance scores

Description

Obtain variable importance scores

Usage

S3 method for class 'bagger'
var_imp(object, ...)

Arguments

object An object.
... Not currently used.

Details

baguette can compute different variable importance scores for each model in the ensemble. The
var_imp() function returns the average importance score for each model. Additionally, the function
returns the number of times that each predictor is included in the final prediction equation.

Specific methods used by the models are:

CART: The model accumulates the improvement of the model that occurs when a predictor is used
in a split. These values are taken form the rpart object. See rpart::rpart.object().

MARS: MARS models include a backwards elimination feature selection routine that looks at re-
ductions in the generalized cross-validation (GCV) estimate of error. The earth() function tracks
the changes in model statistics, such as the GCV, for each predictor and accumulates the reduc-
tion in the statistic when each predictor’s feature is added to the model. This total reduction is
used as the variable importance measure. If a predictor was never used in any of the MARS basis
functions in the final model (after pruning), it has an importance value of zero. baguette wraps
earth::evimp().

C5.0: C5.0 measures predictor importance by determining the percentage of training set samples
that fall into all the terminal nodes after the split. For example, the predictor in the first split
automatically has an importance measurement of 100 percent since all samples are affected by this
split. Other predictors may be used frequently in splits, but if the terminal nodes cover only a
handful of training set samples, the importance scores may be close to zero.

Note that the value column that is the average of the importance scores form each model. The
divisor of this average (and the corresponding standard error) is the number of models (as opposed
to the number of models that used the predictor). This means that the importance scores for a
predictor that was not used in the model has an implicit zero importance.

Value

A tibble with columns for term (the predictor), value (the mean importance score), std.error
(the standard error), and used (the occurrences of the predictors).

Index

bag_mars, 5
bag_tree, 6
bagger, 2

class_cost, 8
control_bag, 9

predict.bagger, 10

update.bag_mars (bag_mars), 5
update.bag_tree (bag_tree), 6

var_imp.bagger, 11

12

	bagger
	bag_mars
	bag_tree
	class_cost
	control_bag
	predict.bagger
	var_imp.bagger
	Index

