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baggr-package baggr - a package for Bayesian meta-analysis

Description

This is baggr (pronounced as bagger or badger), a Bayesian meta-analysis package for R using
Stan. Baggr is intended to be user-friendly and transparent so that it’s easier to understand the
models you are building and criticise them.

Details

Baggr package provides a suite of models that work with both summary data and full data sets,
to synthesise evidence collected from different groups, contexts or time periods. The baggr com-
mand automatically detects the data type and, by default, fits a partial pooling model (which you
may know as random effects models) with weakly informative priors by calling Stan to carry out
Bayesian inference. Modelling of variances or quantiles, standardisation and transformation of data
is also possible.

Getting help

This is only a simple package help file. For documentation of the main function for conducting
analyses see baggr. For description of models, data types and priors available in the package, try
the built-in vignette (vignette("baggr")).

baggr Bayesian aggregate treatment effects model

Description

Bayesian inference on parameters of an average treatment effects model that’s appropriate to the
supplied individual- or group-level data, using Hamiltonian Monte Carlo in Stan. (For overall
package help file see baggr-package)

Usage

baggr(
data,
model = NULL,
pooling = "partial”,
effect = NULL,
covariates = c(),
prior_hypermean = NULL,
prior_hypersd = NULL,
prior_hypercor = NULL,
prior_beta = NULL,


https://mc-stan.org/
https://stats.stackexchange.com/questions/4700/what-is-the-difference-between-fixed-effect-random-effect-and-mixed-effect-mode
https://mc-stan.org/
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prior = NULL,

ppd = FALSE,

test_data = NULL,

quantiles = seq(0.05, 0.95, 0.1),

outcome = "outcome”,
group = "group”,
treatment = "treatment”,
silent = FALSE,
warn = TRUE,
)
Arguments
data data frame with summary or individual level data to meta-analyse
model if NULL, detected automatically from input data otherwise choose from "rubin”,
"mutau”, "individual”, "quantiles” (see Details).
pooling Type of pooling; choose from "none”, "partial” (default) and "full”. If you
are not familiar with the terms, consult the vignette; "partial" can be understood
as random effects and "full" as fixed effects
effect Label for effect. Will default to "mean" in most cases, "log OR" in logistic
model, quantiles in quantiles model etc. These labels are used in various print
and plot outputs. Comparable models (e.g. in baggr_compare) should have same
effect.
covariates Character vector with column names in data. The corresponding columns are

used as covariates (fixed effects) in the meta-regression model (in case of aggre-
gate data). In the case of individual level data the model does not differentiate
between group-level variables (same values of the covariate for all rows related
to a given group) and individual-level covariates.
prior_hypermean
prior distribution for hypermean; you can use "plain text" notation like prior_hypermean=normal (0, 100
oruniform(-10,10). See Details:Priors below for more possible specifications.
If unspecified, the priors will be derived automatically based on data (and printed
out in the console).

nas

prior_hypersd prior for hyper-standard deviation, used by Rubin and "mutau
ply as for _hypermean®;

models; same rules ap-

prior_hypercor prior for hypercorrelation matrix, used by the "mutau” model

prior_beta prior for regression coefficients if covariates are specified; will default to ex-
perimental normal(0, 10°2) distribution

prior alternative way to specify all priors as a named list with hypermean, hypersd,
hypercor, beta, analogous to prior_ arguments above, e.g. prior = list(hypermean
=normal(@,10),beta =uniform(-50,50))

ppd logical; use prior predictive distribution? (p.p.d.) Default is no. If ppd=TRUE,
Stan model will sample from the prior distributions and ignore data in inference.
However, data argument might still be used to infer the correct model and to set
the default priors.
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test_data data for cross-validation; NULL for no validation, otherwise a data frame with
the same columns as data argument

quantiles if model = "quantiles”, a vector indicating which quantiles of data to use (with
values between 0 and 1)

outcome character; column name in (individual-level) data with outcome variable values

group character; column name in data with grouping factor; it’s necessary for individual-
level data, for summarised data it will be used as labels for groups when display-
ing results

treatment character; column name in (individual-level) data with treatment factor;

silent Whether to silence messages about prior settings and about other automatic be-
haviour.

warn print an additional warning if Rhat exceeds 1.05

extra options passed to Stan function, e.g. control = list(adapt_delta =
0.99), number of iterations etc.

Details

Running baggr requires 1/ data preparation, 2/ choice of model, 3/ choice of priors. All three are
discussed in depth in the package vignette (vignette("baggr")).

Data. For aggregate data models you need a data frame with columns tau and se or tau, mu,
se.tau, se.mu. An additional column can be used to provide labels for each group (by default col-
umn group is used if available, but this can be customised — see the example below). For individual
level data three columns are needed: outcome, treatment, group. These are identified by using the
outcome, treatment and group arguments.

Many data preparation steps can be done through a helper function prepare_ma. It can convert
individual to summary-level data, calculate odds/risk ratios (with/without corrections) in binary
data, standardise variables and more. Using it will automatically format data inputs to work with
baggr().

Models. Available models are:

* for the continuous variable means: "rubin” model for average treatment effect, "mutau”
version which takes into account means of control groups, "full”, which works with individual-
level data

nee

« for continuous variable quantiles: ‘"quantiles"* model (see Meager, 2019 in references)

* for binary data: "logit"” model can be used on individual-level data; you can also analyse
continuous statistics such as log odds ratios and logs risk ratios using the models listed above;
see vignette("baggr_binary") for tutorial with examples

If no model is specified, the function tries to infer the appropriate model automatically. Additionally,
the user must specify type of pooling. The default is always partial pooling.

Covariates. Both aggregate and individual-level data can include extra columns, given by covariates
argument (specified as a character vector of column names) to be used in regression models. We
also refer to impact of these covariates as fixed effects.

Two types of covariates may be present in your data:
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e In "rubin” and "mutau” models, covariates that change according to group unit. In that
case, the model accounting for the group covariates is a meta-regression model. It can be
modelled on summary-level data.

* In "logit"” and "full” models, covariates that change according to individual unit. Then,
the model can be called a mixed model . It has to be fitted to individual-level data. Note that
the first case can also be accounted for by using a mixed model.

Priors. It is optional to specify priors yourself, as the package will try propose an appropriate prior
for the input data if you do not pass a prior argument. To set the priors yourself, use prior_
arguments. For specifying many priors at once (or re-using between models), a single prior =
list(...) argument can be used instead. Appropriate examples are given in vignette("baggr”).

Outputs. By default, some outputs are printed. There is also a plot method for baggr objects which
you can access via baggr_plot (or simply plot()). Other standard functions for working with baggr
object are

* treatment_effect for distribution of hyperparameters

* group_effects for distributions of group-specific parameters

* fixed_effects for coefficients in (meta-)regression

* effect_draw and effect_plot for posterior predictive distributions

* baggr_compare for comparing multiple baggr models

* loocv for cross-validation

* pp_check for posterior predictive checks

Value

baggr class structure: a list including Stan model fit alongside input data, pooling metrics, various
model properties. If test data is used, mean value of -2*1pd is reported as mean_1lpd

Author(s)
Witold Wiecek, Rachael Meager

Examples

df_pooled <- data.frame("tau” = c(1, -1, .5, -.5, .7, -.7, 1.3, -1.3),
"se" = rep(1, 8),
"state"” = datasets::state.name[1:8])

baggr(df_pooled) #baggr automatically detects the input data

# same model, but with correct labels,

# different pooling & passing some options to Stan

baggr(df_pooled, group = "state"”, pooling = "full”, iter = 500)

# model with different (very informative) priors

baggr (df_pooled, prior_hypersd = normal(@, 2))

# "mu & tau” model, using a built-in dataset

# prepare_ma() can summarise individual-level data

ms <- microcredit_simplified

ms$outcome <- microcredit_simplified$consumerdurables + 1


https://handbook-5-1.cochrane.org/chapter_9/9_6_4_meta_regression.htm
https://stats.stackexchange.com/questions/4700/what-is-the-difference-between-fixed-effect-random-effect-and-mixed-effect-mode/252888
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microcredit_summary_data <- prepare_ma(ms)
baggr(microcredit_summary_data, model = "mutau”,

pooling = "partial”, prior_hypercor = 1kj(1),

prior_hypersd = normal(@,10),

prior_hypermean = multinormal(c(@,0),matrix(c(10,3,3,10),2,2)))

baggr_compare (Run and) compare multiple baggr models

Description

Compare multiple baggr models by either providing multiple already existing models as (named)
arguments or passing parameters necessary to run a baggr model.

Usage
baggr_compare(..., what = "pooling”, compare = "groups”, transform = NULL)
Arguments
Either some (at least 1) objects of class baggr (you should name your objects,
see the example below) or the same arguments you’d pass to baggr. In the latter
case you must specify what to compare.
what One of "pooling"” (comparison between no, partial and full pooling) or "prior”
(comparison between prior and posterior predictive). If pre-existing baggr mod-
els are passed to . . ., this argument is ignored.
compare When plotting, choose between comparison of "groups” (default) or (hyper-)
"effects"”. The former is not available when what = "prior"”.
transform a function (e.g. exp(), log()) to apply to the values of group (and hyper, if hy-
per=TRUE) effects before plotting; when working with effects that are on log
scale, exponent transform is used automatically, you can plot on log scale by
setting transform = identity
Details

If you pass parameters to the function you must specify what kind of comparison you want, either
"pooling" which will run fully/partially/un-pooled models and compare them or "prior" which will
generate estimates without the data and compare them to the model with the full data. For more
details see baggr, specifically the PPD argument.

Value

an object of class baggr_compare
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Author(s)
Witold Wiecek, Brice Green

See Also

plot.baggr_compare and print.baggr_compare for working with results of this function

Examples

# Most basic comparison between no, partial and full pooling
# (This will run the models)

# run model with just prior and then full data for comparison
# with the same arguments that are passed to baggr
prior_comparison <-
baggr_compare(schools,
model = 'rubin',
prior_hypermean = normal(@, 3),
prior_hypersd = normal(@,?2),
prior_hypercor = 1kj(2),
what = "prior")

# print the aggregated treatment effects
prior_comparison

# plot the comparison of the two distributions
plot(prior_comparison)

# Now compare different types of pooling for the same model
pooling_comparison <-
baggr_compare(schools,

model = 'rubin',
prior_hypermean = normal(@, 3),
prior_hypersd = normal(@,?2),
prior_hypercor = 1kj(2),
what = "pooling")

# plot this comparison
plot(pooling_comparison)

# Compare existing models:

bgl <- baggr(schools, pooling = "partial”)

bg2 <- baggr(schools, pooling = "full")

baggr_compare("Partial pooling model” = bgl, "Full pooling” = bg2,
arrange = "grid")

#' ...or simply draw prior predictive dist (note ppd=T)
bg1 <- baggr(schools, ppd=T)
bg2 <- baggr(schools, prior_hypermean = normal(@, 5), ppd=T)
baggr_compare("Prior A, p.p.d."=bgl,
"Prior B p.p.d."=bg2,



baggr_plot

compare = "effects")

# Compare posterior effects as a function of priors (note ppd=F)

bg1 <- baggr(schools, prior_hypersd = uniform(@, 20))

bg2 <- baggr(schools, prior_hypersd = normal(@, 5))
baggr_compare("Uniform prior on SD"=bgl,

"Normal prior on SD"=bg2,

compare = "effects")

# You can also compare different subsets of input data

bgl_small <- baggr(schools[1:6,], pooling = "partial")
baggr_compare(”8 schools model” = bgl, "First 6 schools” = bgl_small)

baggr_plot

Plotting method in baggr package

Description

Extracts study effects from the baggr model and sends them to one of bayesplot package plotting

functions.

Usage

baggr_plot
bg,

(

hyper = FALSE,
"intervals”,
m = NULL,

style =
transfor

prob = @.

prob_out
vline =
order =

Arguments
bg
hyper
style

transform

prob

prob_outer

5,

er =
TRUE,
TRUE,

0.95,

object of class baggr
logical; show hypereffect as the last row of the plot?
one of areas, intervals

a function (e.g. exp(), log()) to apply to the values of group (and hyper, if
hyper=TRUE) effects before plotting; when working with effects that are on log
scale, exponent transform is used automatically, you can plot on log scale by
setting transform = identity

Probability mass for the inner interval in visualisation

Probability mass for the outer interval in visualisation
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vline logical; show vertical line through 0 in the plot?
order logical; sort groups by magnitude of treatment effect?

extra arguments to pass to the bayesplot functions

Value

ggplot2 object

Author(s)
Witold Wiecek, Rachael Meager

See Also
bayesplot::MCMC-intervals for more information about bayesplot functionality; forest_plot for a
typical meta-analysis alternative; effect_plot for plotting treatment effects for a new group
Examples

fit <- baggr(schools, pooling = "none")
plot(fit)
plot(fit, style = "areas”, order = FALSE)

baggr_theme_set Set, get, and replace themes for baggr plots

Description

These functions get, set, and modify the ggplot2 themes of the baggr plots. baggr_theme_get()
returns a ggplot2 theme function for adding themes to a plot. baggr_theme_set () assigns a new
theme for all plots of baggr objects. baggr_theme_update() edits a specific theme element for the
current theme while holding the theme’s other aspects constant. baggr_theme_replace() is used
for wholesale replacing aspects of a plot’s theme (see ggplot2: :theme_get()).

Usage

baggr_theme_set(new = bayesplot::theme_default())
baggr_theme_get()
baggr_theme_update(...)

baggr_theme_replace(...)

Arguments

new New theme to use for all baggr plots

A named list of theme settings
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Details

Under the hood, many of the visualizations rely on the bayesplot package, and thus these lever-
age the bayesplot: :bayesplot_theme_get () functions. By default, these match the bayesplot’s
package theme to make it easier to form cohesive graphs across this package and others. The trick-
iest of these to use is baggr_theme_replace; 9 times out of 10 you want baggr_theme_update.

Value

The get method returns the current theme, but all of the others invisibly return the old theme.

See Also

bayesplot::bayesplot_theme_get
Examples

# make plot look like default ggplots
library(ggplot2)

fit <- baggr(schools)
baggr_theme_set (theme_grey())
baggr_plot(fit)

# use baggr_theme_get to return theme elements for current theme
gplot(mtcars$mpg) + baggr_theme_get()

# update specific aspect of theme you are interested in
baggr_theme_update(text = element_text(family = "mono”))

# undo that silliness
baggr_theme_update(text = element_text(family = "serif"”))

# update and replace are similar, but replace overwrites the

# whole element, update just edits the aspect of the element

# that you give it

# this will error:

# baggr_theme_replace(text = element_text(family = "Times"))

# baggr_plot(fit)

# because it deleted everything else to do with text elements

convert_inputs Convert inputs for baggr models
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Description

Converts data to Stan inputs, checks integrity of data and suggests default model if needed. Typ-
ically all of this is done automatically by baggr, this function is only for debugging or running
models "by hand".

Usage

convert_inputs(
data,
model,
quantiles,
group = "group”,
outcome = "outcome”,
treatment = "treatment”,
covariates = c(),
test_data = NULL,
silent = FALSE

)
Arguments
data ‘data.frame* with desired modelling input
model valid model name used by baggr; see baggr for allowed models if model = NULL,
this function will try to find appropriate model automatically
quantiles vector of quantiles to use (only applicable if model = "quantiles”)
group name of the column with grouping variable
outcome name of column with outcome variable (designated as string)
treatment name of column with treatment variable
covariates Character vector with column names in data. The corresponding columns are
used as covariates (fixed effects) in the meta-regression model.
test_data same format as data argument, gets left aside for testing purposes (see baggr)
silent Whether to print messages when evaluated
Details

Typically this function is only called within baggr and you do not need to use it yourself. It can be
useful to understand inputs or to run models which you modified yourself.

Value
R structure that’s appropriate for use by baggr Stan models; group_label, model and n_groups
are included as attributes and are necessary for baggr to work correctly

Author(s)
Witold Wiecek



effect_draw 13

Examples

# simple meta-analysis example,
# this is the formatted input for Stan models in baggr():
convert_inputs(schools, "rubin")

effect_draw Make posterior draws for treatment effect

Description
This function takes the samples of hyperparameters of a baggr model (commonly hypermean tau

and hyper-SD sigma_tau) and simulates values of new realisations of tau (a mean effect in some
unobserved group).

Usage

effect_draw(x, n, transform = NULL)

Arguments
X A baggr class object.
n How many values to draw? The default is the same as number of samples in the
model (default is 2,000).
transform a transformation to apply to the result, should be an R function; (this is com-
monly used when calling group_effects from other plotting or printing func-
tions)
Value

A vector of possible values of the treatment effect.

effect_plot Plot posterior distribution for treatment effect

Description

This function plots the effect_draw for one or more baggr objects.

Usage

effect_plot(..., transform = NULL)
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Arguments

transform

Value

A ggplot.

See Also

fixed_effects

Object(s) of class baggr. If there is more than one, the names of objects will be
used as a plot legend (see example).

a transformation to apply to the result, should be an R function; (this is com-
monly used when calling group_effects from other plotting or printing func-
tions)

baggr_compare can be used as a shortcut for effect_plot with argument compare = "effects”

Examples

# A single effects plot
bg1 <- baggr(schools, prior_hypersd = uniform(@, 20))

effect_plot(bgl)

# Compare how posterior depends on the prior choice
bg2 <- baggr(schools, prior_hypersd = normal(@, 5))
effect_plot("Uniform prior on SD"=bgl,

"Normal prior on SD"=bg2)

# Compare the priors themselves (ppd=T)

bg1_ppd <- baggr(schools, prior_hypersd = uniform(@, 20), ppd=TRUE)
bg2_ppd <- baggr(schools, prior_hypersd = normal(@, 5), ppd=TRUE)
effect_plot("Uniform prior on SD"=bgl_ppd,

"Normal prior on SD"=bg2_ppd)

fixed_effects

Effects of covariates on outcome in baggr models

Description

Effects of covariates on outcome in baggr models

Usage

fixed_effects(bg, summary = FALSE, transform = NULL, interval = 0.95)
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Arguments
bg a baggr model
summary logical; if TRUE returns summary statistic instead of all MCMC samples
transform a transformation (R function) to apply to the result; (this is commonly used when
calling from other plotting or printing functions)
interval uncertainty interval width (numeric between 0 and 1), if summary=TRUE
Value

A list with 2 vectors (corresponding to MCMC samples) tau (mean effect) and sigma_tau (SD).
If summary=TRUE, both vectors are summarised as mean and lower/upper bounds according to
interval

See Also

treatment_effect for overall treatment effect across groups, group_effects for effects within each
group, effect_draw and effect_plot for predicted treatment effect in new group

forest_plot Draw a forest plot for a baggr model

Description

The forest plot functionality in baggr is a simple interface for calling the forestplot function. By
default the forest plot displays raw (unpooled) estimates for groups and the treatment effect estimate
underneath. This behaviour can be modified to display pooled group estimates.

Usage
forest_plot(
bg,
show = c("inputs”, "posterior”, "both", "covariates"),
print = show,
prob = 0.95,
digits = 3,
)
Arguments
bg a baggr class object
show if "inputs”, then plotted points and lines correspond to raw inputs for each
group; if "posterior” — to posterior distribution; you can also plot "both”
inputs and posteriors; if "covariates”, then fixed effect coefficients are plotted
print which values to print next to the plot: values of "inputs” or "posterior”

means? (if show="covariates”, it must be "posterior")
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prob width of the intervals (lines) for the plot
digits number of digits to display when printing out mean and SD in the plot

other arguments passed to forestplot

See Also

forestplot function and its associated vignette for examples; effect_plot and baggr_plot for non-
forest plots of baggr results

Examples

bg <- baggr(schools, iter = 500)
forest_plot(bg)
forest_plot(bg, show = "posterior”, print = "inputs”, digits = 2)

get_n_samples Extract number of samples from a baggr object

Description

Extract number of samples from a baggr object

Usage

get_n_samples(x)

Arguments

X baggr fit to get samples from

Details

Checks for number of iterations and number of Markov chains, returns maximum number of valid
samples
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group_effects Extract baggr study effects

Description

Given a baggr object, returns the raw MCMC draws of the posterior for each group’s effect, or a
summary of these draws. This is an internal function currently used as a helper for plotting and
printing of results.

Usage

group_effects(bg, summary = FALSE, transform = NULL, interval = 0.95)

Arguments
bg baggr object
summary logical; if TRUE returns summary statistics as explained below.
transform a transformation to apply to the result, should be an R function; (this is com-
monly used when calling group_effects from other plotting or printing func-
tions)
interval uncertainty interval width (numeric between 0 and 1), if summarising
Details

If summary = TRUE, the returned object contains, for each study or group, the following 5 values:
the posterior medians, the lower and upper bounds of the uncertainty intervals using the central
posterior credible interval of width specified in the argument interval, the posterior mean, and the
posterior standard deviation.

Value
Either a matrix with MCMC samples (if summary = FALSE) or a summary of these samples (if
summary = TRUE).

Examples

fitl <- baggr(schools)
group_effects(fit1, summary = TRUE, interval = 0.5)



18 loocv

is.baggr_cv Check if something is a baggr_cv object

Description

Check if something is a baggr_cv object

Usage
is.baggr_cv(x)

Arguments
X object to check
loocv Leave one group out cross-validation for baggr models
Description

Performs exact leave-one-group-out cross-validation on a baggr model.

Usage
loocv(data, return_models = FALSE, ...)
Arguments
data Input data frame - same as for baggr function.

return_models logical; if FALSE, summary statistics will be returned and the models discarded;
if TRUE, a list of models will be returned alongside summaries

Additional arguments passed to baggr.

Details

The values returned by loocv() can be used to understand how any one group affects the overall
result, as well as how well the model predicts the omitted group.

This function automatically runs K baggr models, leaving out one group at a time, and then cal-
culates expected log predictive density (ELPD) for that group (see Gelman et al 2013). The main
output is the cross-validation information criterion, or -2 times the ELPD averaged over ’K’ models.
This is related to, and often approximated by, the Watanabe-Akaike Information Criterion. A value
closer to zero (i.e. a smaller number in magnitude) means a better fit. For more information on
cross-validation see this overview article

For running more computation-intensive models, consider setting the mc. cores option before run-

ning loocy, e.g. options(mc.cores = 4) (by default baggr runs 4 MCMC chains in parallel). As a
default, rstan runs "silently” (refresh=0). To see sampling progress, please sete.g. loocv(data,refresh
= 500).


http://www.stat.columbia.edu/~gelman/research/published/waic_understand3.pdf
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Value
log predictive density value, an object of class baggr_cv; full model, prior values and Ipd of each
model are also returned. These can be examined by using attributes() function.

Author(s)
Witold Wiecek

References

Gelman, Andrew, Jessica Hwang, and Aki Vehtari. “Understanding Predictive Information Cri-
teria for Bayesian Models.” Statistics and Computing 24, no. 6 (November 2014): 997-1016.
https://doi.org/10.1007/s11222-013-9416-2.

Examples

# even simple examples may take a while

cv <- loocv(schools, pooling = "partial”)

print(cv) # returns the lpd value

attributes(cv) # more information is included in the object

loo_compare Compare fitted models on loo

Description

Compare fitted models on loo

Usage
loo_compare(x, ...)
Arguments
X An object of class baggr_cv or a list of such objects.
Additional objects of class "baggr_cv"
Examples

# 2 models with more/less informative priors

cv_1 <- loocv(schools, model = "rubin”, pooling = "partial”)

cv_2 <- loocv(schools, model = "rubin"”, pooling = "partial”,
prior_hypermean = normal(@, 5), prior_hypersd = cauchy(0,4))

loo_compare(cv_1, cv_2)
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microcredit 7 studies on effect of microcredit supply

Description

This dataframe contains the data used in Meager (2019) to estimate hierarchical models on the data
from 7 randomized controlled trials of expanding access to microcredit.

Usage

microcredit

Format

A data frame with 40267 rows, 7 study identifiers and 7 outcomes

Details

The columns include the group indicator which gives the name of the lead author on each of the re-
spective studies, the value of the 6 outcome variables of most interest (consumer durables spending,
business expenditures, business profit, business revenues, temptation goods spending and consump-
tion spending) all of which are standardised to USD PPP in 2009 dollars per two weeks (these are
flow variables), and finally a treatment assignment status indicator.

The dataset has not otherwise been cleaned and therefore includes NAs and other issues common
to real-world datasets.

For more information on how and why these variables were chosen and standardised, see Meager
(2019) or consult the associated code repository which includes the standardisation scripts: link

References

Meager, Rachael (2019) Understanding the average impact of microcredit expansions: A Bayesian
hierarchical analysis of seven randomized experiments. American Economic Journal: Applied Eco-
nomics, 11(1), 57-91.

microcredit_simplified
Simplified version of the microcredit dataset.

Description
This dataframe contains the data used in Meager (2019) to estimate hierarchical models on the data
from 7 randomized controlled trials of expanding access to microcredit.

Usage

microcredit_simplified


https://bitbucket.org/rmeager/aggregate-average-impacts-microcredit/src/master/
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Format

A data frame with 14224 rows, 7 study identifiers and 1 outcome

Details

The columns include the group indicator which gives the name of the lead author on each of the
respective studies, the value of the household consumer durables spending standardised to USD
PPP in 2009 dollars per two weeks (these are flow variables), and finally a treatment assignment
status indicator.

The dataset has not otherwise been cleaned and therefore includes NAs and other issues common
to real data.

For more information on how and why these variables were chosen and standardised, see Meager
(2019) or consult the associated code repository: link

This dataset includes only complete cases and only the consumer durables outcome variable.

References

Meager, Rachael (2019) Understanding the average impact of microcredit expansions: A Bayesian
hierarchical analysis of seven randomized experiments. American Economic Journal: Applied Eco-
nomics, 11(1), 57-91.

mint "Mean and interval” function, including other summaries, calculated
for matrix (by column) or vector

Description

This function is just a convenient shorthand for getting typical summary statistics.

Usage

mint(y, int = ©0.95, digits = NULL, median = FALSE, sd = FALSE)

Arguments
y matrix or a vector; for matrices, mint is done by-column
int probability interval (default is 95 percent) to calculate
digits number of significant digits to round values by.
median return median value?
sd return SD?

Examples

mint(rnorm(100, 12, 5))


https://bitbucket.org/rmeager/aggregate-average-impacts-microcredit/src/master/
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plot.baggr Generic plot for baggr package

Description

Using generic plot() on baggr output invokes baggr_plot visual. See therein for customisation
options. Note that plot output is ggplot2 object.’

Usage
## S3 method for class 'baggr'
plot(x, ...)
Arguments
X object of class baggr
optional arguments, see baggr_plot
Value

ggplot2 object from baggr_plot

Author(s)
Witold Wiecek

plot.baggr_compare Plot method for baggr_compare models

Description

Allows plots that compare multiple baggr models that were passed for comparison purposes to
baggr compare or run automatically by baggr_compare

Usage
## S3 method for class 'baggr_compare'
plot(
X,
style = "areas”,
arrange = "single",
interval = 0.95,
hyper = T,
transform = NULL,
order = F,
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Arguments
X baggr_compare model to plot
style What kind of plot to display (if arrange = "grid"), passed to the style argu-
ment in baggr_plot.
arrange If "single” (default), generate a single comparison plot; if "grid"”, display
multiple plots side-by-side.
interval probability level used for display of posterior interval
hyper Whether to plot pooled treatment effect in addition to group treatment effects
transform a function (e.g. exp(), log()) to apply to the values of group (and hyper, if hy-
per=TRUE) effects before plotting; when working with effects that are on log
scale, exponent transform is used automatically, you can plot on log scale by
setting transform = identity
order Whether to order by median treatment effect by group. If not, this sorts group
alphabetically. The pooled estimate is always listed first, when applicable.
ignored for now, may be used in the future
pooling Pooling metrics for baggr
Description

Compute statistics relating to heterogeneity (whole model) and pooling (for each group) given
a baggr meta-analysis model. The statistics are the pooling metric by Gelman & Pardoe (2006) or
its complement, the /-squared statistic.

Usage

pooling(bg, type = c("groups”, "total"), summary = TRUE)

heterogeneity(bg, summary = TRUE)

Arguments

bg
type

summary

output of a baggr() function

In pooling calculation is done for each of the "groups” (default) or for "total”
hypereffect(s). See Details section for how calculation is done.

logical; if FALSE a whole vector of pooling values is returned, otherwise only
the means and intervals
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Details

Pooling statistic describes the extent to which group-level estimates of treatment effect are "pooled”
(or pulled!) toward average treatment effect in the meta-analysis model. If pooling = "none" or
"full" in baggr, then the returned values are always 0 or 1, respectively. If pooling = "partial”,
the value is somewhere between 0 and 1.

Formulae for the calculations below are provided in main package vignette. See vignette("baggr").

# Estimate of pooling in a group: this is the calculation done by pooling() if type = "groups”
(default).

In a partial pooling model (see baggr), group k (e.g. study) has a treatment effect estimate, with
some SE around the real treatment effect (TE). Each TE itself is distributed with mean and variance.

The quantity of interest is ratio of variability in 7 to total variability. By convention, we subtract it
from 1, to obtain a pooling metric p.

p=1-(o(r)*/(o(T)* + s€}))

 If p < 0.5, that means the variation across studies is higher than variation within studies.
* Values close to 1 indicate nearly full pooling. Variation across studies dominates.
* Values close to 0 — no pooling. Variation within studies dominates.
Note that, since o2 is a Bayesian parameter (rather than a single fixed value) p is also a parameter.

It is typical for p to have very high dispersion, as in many cases we cannot precisely estimate 0.
To obtain the whole distribution of_p_ (rather than summarised values), set summary=FALSE.

Overall pooling (in the model)

Typically it is a single measure of heterogeneity that is of interest to researchers. This is calculated
by setting type = "total” or simply writing heterogeneity(mymodel)

In many contexts, i.e. medical statistics, it is typical to report I-P, called IZ (see Higgins et al, 2003).
Higher values of I-squared indicate higher heterogeneity. Von Hippel (2015) provides useful details
for I-squared calculations.

Same as for group-specific estimates, P is a Bayesian parameter and its dispersion can be high.
Relationship to R-squared statistic

See Gelman & Pardoe (2006) Section 1.1 for a short explanation of how R? statistic relates to the
pooling metric.

Value
Matrix with mean and intervals for chosen pooling metric, each row corresponding to one meta-
analysis group.

References

Gelman, Andrew, and Iain Pardoe. "Bayesian Measures of Explained Variance and Pooling in
Multilevel (Hierarchical) Models." Technometrics 48, no. 2 (May 2006): 241-51. https://doi.
org/10.1198/004017005000000517.


https://doi.org/10.1198/004017005000000517
https://doi.org/10.1198/004017005000000517
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Higgins, Julian P T, Simon G Thompson, Jonathan J Deeks, and Douglas G Altman. "Measuring
Inconsistency in Meta-Analyses." British Medical Journal 327, no. 7414 (September 6, 2003):
557-60.

Hippel, Paul T von. "The Heterogeneity Statistic I2 Can Be Biased in Small Meta-Analyses." BMC
Medical Research Methodology 15 (April 14, 2015). https://doi.org/10.1186/s12874-015-0024-z.

pp_check.baggr Posterior predictive checks for baggr model

Description

Performs posterior predictive checks with the bayesplot package.

Usage

## S3 method for class 'baggr'
pp_check(x, type = "dens_overlay”, nsamples = 40)

Arguments
X Model to check
type type of pp_check. For a list see here.
nsamples number of samples to compare
Details

For a detailed explanation of each of the ppc functions, see the PPC documentation of the bayesplot
package.

predict.baggr Predict method for baggr objects

Description

Predict method for baggr objects

Usage

## S3 method for class 'baggr'
predict(object, nsamples, newdata = NULL, allow_new_levels =T, ...)


https://doi.org/10.1186/s12874-015-0024-z
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Arguments
object model to predict from
nsamples Number of samples to draw from the posterior. Cannot exceed the number of
samples in the fitted model.
newdata optional, new data to predict observations from

allow_new_levels
whether to allow the model to make predictions about unobserved groups. With-
out additional group-level information the model will use the unconditional,
pooled estimate.

other arguments to pass to predict function (currently not used)

predict_mutau Predict function for the mu & tau model

Description

Predict function for the mu & tau model

Usage

predict_mutau(x, nsamples, newdata = NULL, allow_new_levels = T)

Arguments
X model to predict from
nsamples number of samples to predict
newdata new data to predict, defaults to NULL

allow_new_levels
allow the predictive of new, unobserved groups

predict_quantiles Predict function for the quantiles model

Description

Predict function for the quantiles model

Usage

predict_quantiles(x, nsamples, newdata = NULL, allow_new_levels = T)
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Arguments
X model to predict from
nsamples number of samples to predict
newdata new data to predict, defaults to NULL

allow_new_levels
allow the predictive of new, unobserved groups

predict_rubin Predict function for the rubin model

Description

Predict function for the rubin model

Usage

predict_rubin(x, nsamples, newdata = NULL, allow_new_levels = T)

Arguments
X model to predict from
nsamples number of samples to predict
newdata new data to predict, defaults to NULL

allow_new_levels
allow the predictive of new, unobserved groups

predict_unknown Predict method for model that is unknown or not implemented

Description

Predict method for model that is unknown or not implemented

Usage

predict_unknown(x)

Arguments

X baggr model to generate predictions from
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prepare_ma

prepare_ma

Convert from individual to summary data in meta-analyses

Description

Allows one-way conversion from full to summary data. Input must be pre-formatted appropriately.

Usage

prepare_ma
data,

(

effect = c("mean”, "logOR", "logRR"),
rare_event_correction = 0.25,

log = FALSE,
cfb = FALSE,
summarise = TRUE,
treatment = "treatment”,
baseline = NULL,
group = "group”,
outcome = "outcome”
)
Arguments
data data.frame of individual-level observations with columns for outcome (numeric),
treatment (values O and 1) and group (numeric, character or factor); column
names can be user-defined (see below)
effect what effect to calculate? a mean (and SE) of outcome in groups or (for binary

data) 1ogOR (odds ratio), 1ogRR (risk ratio);

rare_event_correction

log
cfb

summarise

treatment
baseline
group

outcome

If effect is 1ogOR or 1ogRR, this correction is used when working with binary
data only. The value of correction is added to all arms in trials where some arms
had 0 events. Using corrections may bias results but is the only alternative to
avoid infinite values.

logical; log-transform the outcome variable?

logical; calculate change from baseline? If yes, the outcome variable is taken as
a difference between values in outcome and baseline columns

logical; TRUE by default, but you can disable it to obtain converted (e.g. logged)
data with columns renamed

name of column with treatment variable
name of column with baseline variable
name of the column with grouping variable

name of column with outcome variable
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Details

The conversions done by this function are not typically needed and may happen automatically when
data is fed to baggr. However, this function can be used to explicitly convert from full to reduced
(summarised) data without analysing it in any model. It can be useful for examining your data.

If multiple operations are performed, they are taken in this order:

1. conversion to log scale,
2. calculating change from baseline,

3. summarising data (using appropriate effect)

Value
¢ If you summarise data.frame with columns for group tau and se. tau (for effect = "mean”,
also baseline means, for "1ogRR" or "1logOR" also a, b, ¢, d, which correspond to typical
contingency table notation).
* If you do not summarise data, individual level data will be returned, but some columns may
be renamed or transformed (see above).
Author(s)
Witold Wiecek
See Also

convert_inputs for how any type of data is (internally) converted into Stan inputs;

prepare_prior Prepare prior values for Stan models in baggr

Description

This is an internal function called by baggr. You can use it for debugging or to run modified models.
It extracts and prepares priors passed by the user. Then, if any necessary priors are missing, it sets
them automatically and notifies user about these automatic choices.

Usage

prepare_prior(
prior,
data,
stan_data,
model,
pooling,
covariates,
quantiles = c(),
silent = FALSE
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Arguments
prior
data

stan_data

model
pooling
covariates
quantiles

silent

Value

print.baggr

prior argument passed from baggr call
data another argument in baggr

list of inputs that will be used by sampler this is already pre-obtained through
convert_inputs

same as in baggr
same as in baggr
same as in baggr
same as in baggr

same as in baggr

A named list with prior values that can be appended to stan_data and passed to a Stan model.

print.baggr

S3 print method for objects of class baggr (model fits)

Description

This print method for a very concise summary of main model features. More info is included in
the summary of the model and its attributes.

Usage
## S3 method for class 'baggr'
print(x, exponent = FALSE, digits = 2, group, fixed = TRUE, ...)
Arguments
X object of class baggr
exponent if TRUE, results (for means) are converted to exp scale
digits Number of significant digits to print.
group logical; print group effects? If unspecified, they are printed only if less than 20
groups are present
fixed logical: print fixed effects?

currently unused by this package: further arguments passed to or from other
methods (print requirement)
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print.baggr_compare Print method for baggr_compare models

Description

Print method for baggr_compare models

Usage
## S3 method for class 'baggr_compare'
print(x, digits, ...)
Arguments
X baggr compare model
digits number of significant digits for effect estimates

other parameters passed to print

print.baggr_cv Print baggr cv objects nicely

Description

Print baggr cv objects nicely

Usage
## S3 method for class 'baggr_cv'
print(x, digits =3, ...)
Arguments
X baggr_cv object to print
digits number of digits to print

additional arguments for s3 consistency
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print.plot_list

print.compare_baggr_cv
Print baggr_cv comparisons

Description

Print baggr_cv comparisons

Usage
## S3 method for class 'compare_baggr_cv'
print(x, digits =3, ...)

Arguments
X baggr_cv comparison to print
digits number of digits to print

additional arguments for s3 consistency

print.plot_list Print list of baggr plots

Description

Print list of baggr plots

Usage
## S3 method for class 'plot_list'
print(x)

Arguments

X list of plots to print

Details

prints plots in a loop, internal use only
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priors Prior distributions in baggr

Description

This page provides a list of all available distributions that can be used to specify priors in baggr().
These convenience functions are designed to allow the user to write the priors in the most "natural”
way when implementing them in baggr. Apart from passing on the arguments, their only other role
is to perform a rudimentary check if the distribution is specified correctly.

Usage
multinormal (location, Sigma)
1lkj(shape, order = NULL)
normal (location, scale)
cauchy(location, scale)

uniform(lower, upper)

Arguments
location Mean for normal and multivariate normal (in which case location is a vector),
and median for Cauchy distributions
Sigma Variance-covariance matrix for multivariate normal.
shape Shape parameter for LKJ
order Order of LKJ matrix (typically it does not need to be specified, as it is inferred
directly in the model)
scale SD for Normal, scale for Cauchy
lower Lower bound for Uniform
upper Upper bound for Uniform
Details

The prior choice in baggr is always done via 3 distinct arguments: prior_hypermean, prior_hypersd,
and prior_hypercor.

These respectively refer to the priors on the average of the effects across the groups (hypermean), the
standard deviation of the effects across the groups (hypersd), and the correlation in the distribution
of parameters across groups when the model allows multivariate shrinkage (say on control group
means and effects).

Notation for priors is "plain-text", in that you can write the distributions as normal(5,10), uniform(@,100)
etc. As with any other argument one has the option to simply input the prior directly, e.g. prior_hypermean
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=normal(@,1) , or by creating a named list of custom priors and then inputting the list to the argu-
ment priors. See the examples below for more.

Different parameters admit different priors:
e prior_hypermean will take "normal”, "uniform” and "cauchy” input for a scalar mean.
For a vector mean, it will take any of these arguments and apply them independently to each

component of the vector, or it can also take a "multinormal” argument (see the example
below).

e prior_hypersd will take "normal” and "uniform”

* prior_hypercor allows "1kj" input

Author(s)
Witold Wiecek, Rachael Meager

References

Lewandowski, Daniel, Dorota Kurowicka, and Harry Joe. "Generating Random Correlation Ma-
trices Based on Vines and Extended Onion Method." Journal of Multivariate Analysis 100, no. 9
(October 1, 2009): 1989-2001. https://doi.org/10.1016/j.jmva.2009.04.008.

Examples

# change the priors for 8 schools:

baggr(schools, model = "rubin”, pooling = "partial”,
prior_hypermean = normal(5,5),
prior_hypersd = normal(0,20))

# passing priors as a list
custom_priors <- list(hypercor = 1lkj(1), hypersd = normal(0,10),
hypermean = multinormal(c(@,0),matrix(c(190,3,3,10),2,2)))

baggr(microcredit_summary_data, model = "mutau”,
pooling = "partial”, prior = custom_priors)
rubin_data Make model matrix for the rubin data
Description

Make model matrix for the rubin data

Usage

rubin_data(x, newdata = NULL, allow_new_levels = T)
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Arguments
X model to get data from
newdata new data to use with model

allow_new_levels
whether to allow for unobserved groups

schools 8 schools example

Description

A classic example of aggregate level continuous data in Bayesian hierarchical modelling. This
dataframe contains a column of estimated treatment effects of an SAT prep program implemented
in 8 different schools in the US, and a column of estimated standard errors.

Usage

schools

Format

An object of class data. frame with 8 rows and 3 columns.

Details

See Gelman et al (1995), Chapter 5, for context and applied example.

References

Gelman, Andrew, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data Analysis.
Taylor & Francis, 1995.

set_prior_val Add prior values to Stan input for baggr

Description

Add prior values to Stan input for baggr

Usage

set_prior_val(target, name, prior, p = 1)
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Arguments
target list object (Stan input) to which prior will be added
name prior name, like hypermean, hypersd, hypercor
prior one of prior distributions allowed by baggr like normal
p number of repeats of the prior, i.e. when P i.i.d. priors are set for P dimensional
parameter as in "mu & tau" type of model
show_model Show Stan code for baggr models or objects
Description

Show Stan code for baggr models or objects

Usage

show_model (model)

Arguments

n on n o on:

model either a baggr object (fitted model) or one of "rubin”, "mutau”, "individual”

Value

Nothing is returned in R. Stan code will be opened externally (e.g. via notepad).

stop_not_implemented  Stop with informative error

Description

Stop with informative error

Usage

stop_not_implemented()
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treatment_effect Average treatment effect in a baggr model

Description

Average treatment effect in a baggr model

Usage
treatment_effect(bg, summary = FALSE, transform = NULL, interval = 0.95)

Arguments
bg a baggr model
summary logical; if TRUE returns summary statistics as explained below.
transform a transformation to apply to the result, should be an R function; (this is com-
monly used when calling treatment_effect from other plotting or printing
functions)
interval uncertainty interval width (numeric between 0 and 1), if summarising
Value

A list with 2 vectors (corresponding to MCMC samples) tau (mean effect) and sigma_tau (SD).
If summary=TRUE, both vectors are summarised as mean and lower/upper bounds according to
interval
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