Package 'aziztest'

April 1, 2020

Type Package

Title Novel Statistical Test for Aberration Enrichment
Version 0.1.0
Author Aziz M. Mezlini [aut,cre,cph]
Maintainer Aziz M. Mezlini <mmezlini@mgh.harvard.edu></mmezlini@mgh.harvard.edu>
Description Testing for heterogeneous effects in a case-control setting. The aim here to discover an association that is beyond a mean difference between all cases and all controls. Instead, the signal of interest here is present in only a proportion of the cases. This test should be more powerful than a t-test or Wilcoxon test in this heterogeneous setting. Please cite the corresponding paper: Mezlini et al. (2020) <doi:10.1101 2020.03.23.002972="">.</doi:10.1101>
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
<pre>URL https://www.biorxiv.org/content/10.1101/2020.03.23.002972v2</pre>
Imports stats
NeedsCompilation no
Repository CRAN
Date/Publication 2020-04-01 09:40:02 UTC
R topics documented:
aziz.test
aziztest
calibrate_test
print_details
print_summary
reformat_results
which_aberrant

aziz.test

Index 9

aziz.test Statistical test for heterogeneous effects

Description

Main function running the statistical test looking for heterogeneous effects/ aberration enrichment. Takes a vector of case/control labels (y) and a vector of numeric measurements (x) to be tested for association with case/control status. For example, in a clinical trial setting y can indicate individuals on a drug vs placebo and x can be a change in disease severity measurement from baseline. This test will return a pvalue indicating drug efficacy and is more powerful than other test in a heterogeneous effects setting. Another usage example is in -omics data where y would indicate disease vs healthy control and x could be a gene's expression vector accross samples.

Usage

```
aziz.test(
   y,
   x,
   w = NULL,
   rep = 1e+05,
   doall = FALSE,
   eps = 1e-09,
   unidirectional = 0,
   flatten = 0.5,
   ignoremax = 0
)
```

Arguments

У	A binary vector of sample labels (cases=1, controls=0).
X	A numerical vector. Variable tested for association. Preferably continuous
W	Default = NULL. Optional numerical vector of weights. 1 means all weights are equal to 1 and only the ordering is considered. If NULL (default), a standardisation of x is used to calculate the weights giving larger weights to aberrations of larger magnitude.
rep	Default=100000. Number of permutations to be used to calculate p-values.
doall	Default=FALSE. Logical. If TRUE all rep permutations are performed. If FALSE only enough permutations are performed to get accurate pvalues. Variable that are clearly not associated need only a 100 permutations.
eps	Default = 0.000000001 . Small numeric value. Standard deviation of the gaussian node added to x before ordering samples. In the case of equalities, this ensures the ordering is not biased. Adjust lower if x has low variability.
unidirectional	Default = 0 . Can be 0 , 1 or -1 . 0 is for testing both directions of effect. 1 is for

testing cases<controls and -1 is for testing cases>controls.

aziz.test 3

flatten Default = 0.5. Numeric value recommended between 0 and 1. If weights are not

given, we take the max of flatten and the absolute value of the Z-score of x as

the weights (Default behavior).

ignoremax Default=0. Optional value indicating if we should ignore the first few values

when selecting the maximal enrichment score.

Value

A result object with the following fields: (for clarity use print_summary)

es Max enrichment score.

pval Permutation pvalue, if permutations were performed.

oddcas Proportion of cases in the aberrant interval driving the max enrichment score. This is described as the proportion r in the main paper.

direction direction of the effect. 1: cases<controls, 2: cases>controls.

oddratio Odds ratio of being in the aberrant interval for cases/controls. Equal to oddcas divided by the same calculation on controls.

Other info fields (Can be useful):

esm Max enrichment score in both directions.

esind Index of the Max enrichment score in both directions. can also be interpreted the number of samples in the aberrant interval.

ncas Number of cases in the aberrant interval.

escurve A vector of the computed standardized enrichment scores at all positions.

perm A vector of all max enrichment scores obtained in permutations.

Examples

```
y = c(rep(1,200),rep(0,200))
x = rnorm(400)

res = aziz.test(y,x,rep=100) #run 100 permutations to calculate pvalue
print_summary(res)

#Inducing an aberration enrichment signal by perturbing some of the cases
x[1:20]=x[1:20]-3;
res2 = aziz.test(y,x,rep=100)
print_summary(res2)
```

4 calibrate_test

aziztest: A package for finding associations in heterogeneous setting (aberration enrichment)

Description

This package contains the statistical test presented in Mezlini et al. (2020) "Finding associations in a heterogeneous setting: Statistical test for aberration enrichment" https://www.biorxiv.org/content/10.1101/2020.03.23.0029
It is used to detect associations that are beyond the broad pattern of comparing averages between all cases and all controls. Instead it looks for a heterogeneous association where only some of the cases present the signal of interest while the majority are indistinguishable from controls. For example, in a clinical trial setting our test can be used to assess treatment efficacy in a context of heterogeneous treatment effect, where the drug works well on only some of the patients. Another usage example is in -omics data where a relevant gene's dysregulation is present in only some of the disease cases.

Details

The main function is the aziz.test() function used to test for heteregeneous associations/ aberration enrichment.

aziztest extra functions

If you are testing multiple variables at once (such as all genes in a gene expression dataset), you can store the results in a list and the reformat it into an easy to use data.frame using the function reformat_results().

In the context of a large number of variables, calibration can be used to speed up p-value calculation with functions calibrate_test() and get_calibrated_pvalues().

calibrate_test

Calibration of pvalues in a slow multi-hypothesis setting

Description

Compute the null distribution of test statistics on one gaussian variable. Useful if testing a large number of variables at once since it allows running permutations only once behorehand rather than for every variable. Used in conjunction with "get_calibrated_pvalues"

Usage

```
calibrate_test(
   y,
   w = NULL,
   rep = 1e+07,
   doall = TRUE,
   unidirectional = 0,
```

get_calibrated_pvalues

```
flatten = 0.5,
ignoremax = 0
)
```

Arguments

y A binary vector of sample labels (cases=1, controls=0).

w Default = NULL. Optional numerical vector of weights. 1 means all weights are

equal to 1 and only the ordering is considered. If NULL (default), a standardisation of x is used to calculate the weights giving larger weights to aberrations

of larger magnitude.

rep Default=100000. Number of permutations to be used to calculate p-values.

doall Default=TRUE. All permutations are performed

unidirectional Default = 0. Can be 0, 1 or -1. 0 is for testing both directions of effect. 1 is for

testing cases<controls and -1 is for testing cases>controls.

flatten Default = 0.5. Numeric value recommended between 0 and 1. If weights are not

given, we take the max of flatten and the absolute value of the Z-score of x as

the weights (Default behavior).

ignoremax Default=0. Optional value indicating if we should ignore the first few values

when selecting the maximal enrichment score.

Value

A vector that can be used in get_calibrated_pvalues()

See Also

```
get_calibrated_pvalues, aziz.test
```

Examples

```
y = c(rep(1,200),rep(0,200))
x = rnorm(400)
calibration = calibrate_test(y,rep=100)
es = aziz.test(y,x,rep=0)$es #No need for permutations, pvalues computed from calibration
get_calibrated_pvalues(calibration,es)
```

```
get_calibrated_pvalues
```

Use the calibration of pvalues in a slow multi-hypothesis setting

Description

Compute the pvalues from a single set of permutations obtained from calibrate_test. Useful if testing a large number of variables at once since it allows running permutations only once behorehand rather than for every variable. Used in conjunction with "calibrate_test"

6 print_details

Usage

```
get_calibrated_pvalues(calibration, es1)
```

Arguments

calibration Output of function calibrate_test()

es1 Max Enrichment score given by function aziz.test() \$es. A vector containing

the max enrichment scores from many variables is acceptable

Value

calibrated pvalue(s) corresponding to the max enrichment score(s) given

See Also

```
calibrate_test, aziz.test
```

Examples

```
y = c(rep(1,200), rep(0,200))

x = rnorm(400)

calibration = calibrate_test(y,rep=100)

es = aziz.test(y,x,rep=0)$es #No need for permutations, pvalues computed from calibration

get_calibrated_pvalues(calibration,es)
```

print_details

Print a formatted version of the result details

Description

Print a formatted version of the result details

Usage

```
print_details(x)
```

Arguments

x output of the aziz.test() function

See Also

```
print_summary
```

print_summary 7

print_summary

Print a formatted version of the results

Description

Print a formatted version of the results for clarity

Usage

```
print_summary(x)
```

Arguments

Χ

output of the aziz.test() function

See Also

print_details for more info

reformat_results

Reformats multiple results into one table

Description

If running multiple variables (and storing in a list), this transform the list of results to one coherent data.frame

Usage

```
reformat_results(res_esa)
```

Arguments

res_esa

listed outputs of multiple calls to aziz.test() on multiple variables

Value

A data frame containing all results in an accessible presentation

8 which_aberrant

Description

Returns index of samples that are in the aberrant interval defined by test.aziz() Can take the same samples or a new set of previously unseen samples

Usage

```
which_aberrant(xi, x, res)
```

Arguments

xi	Numerical vector. Can be the same as the tested variable x or it can be a new set of unseen samples.
x	Numerical vector of the variable tested by test.aziz()
res	Result of running test.aziz()

Value

indexes of samples in xi that are within the aberrant interval

Examples

```
y = c(rep(1,200), rep(0,200)) \\ x = rnorm(400) \\ \#Inducing an aberration enrichment signal by perturbing some of the cases \\ x[1:20]=x[1:20]-3; \\ res2 = aziz.test(y,x,rep=100) \\ print_summary(res2) \\ which_aberrant(x,x,res2) \\ which_aberrant(c(-5,1.5,-2.5,-0.5,2),x,res2) \#testing if new values are within the aberrant interval
```

Index

```
aziz.test, 2, 5, 6
aziztest, 4

calibrate_test, 4, 6

get_calibrated_pvalues, 5, 5

print_details, 6, 7
print_summary, 3, 6, 7

reformat_results, 7

which_aberrant, 8
```