A very short inroduction into the aws package

Jorg Polzehl
July 20, 2020

This document illustrates the capabilities of the aws package. For a more

comprehensive overview and more realistic examples we refer to PoPaTal8 and
appendix A of MRBIbook2019.

The package contains functions for adaptive smoothing (filtering) in various

settings, including regular (and irregular) designs in 1D, 2D, 3D and SE(3), for
univariate and vector valued observations.

The code in this vignette is restricted to 1D and 2D examples due to limited

computation time.

1 Some artificial data

First, we generate some artificial examples:

vV VvV + Vv Vv

VVVVVVVVVYV

The first example employs a local constant univariate regression function

library(aws)

fofx1l <- c(rep(0,25),rep(-1,20),rep(1,20), rep(-2,10),rep(2,5),
rep(-1,25),rep(-.5,30),rep(0,35))

set.seed (1)

y1 <- rnorm(fofx1,fofx1,.3)

The second example uses a local constant image

ul <- matrix(0,64,64)

ind0 <- seq(0,1,length=64)

ind <- outer(ind0~2,ind0"2,"+")
ul[ind > .95] <- ul[ind >.95] + 2
ulflind < .6] <- ullind < .6] -2
ul[ind < .35] <- ul[ind < .35] +3
ul[ind < .15] <- ul[ind < .15] -2
ul[ind < .05] <- ul[ind < .05] +3
ul <- ul*(1-2*outer(ind0, ind0,">"))
z1 <- ul+rnorm(ul)

In the third example a smooth image is added leading to a locally smooth

image

>
>

u2 <- ul+5*ind
z2 <- u2+rnorm(ul)

2 Nonparametric smoothing

Nonparametric smoothing using FFT is implemented in function kernsm for 1D,
2D and 3D data.

> yhatO <- kernsm(yl, h=10)

3 Adaptive weights smoothing

Function aws implements the structural adaptive smoothing methods developed
in PoSp00 and PoSp05.

> yhatl <- aws(y1, hmax=100)

par (mfrow=c(1,3), mar=c(3,3,3,1), mgp=c(2,1,0))
plot(y1)

lines(yhatl@theta, col=2)
lines(fofx1, col=3)

title("AWS estimate")

plot(yhat1@ni)

title("Sum of weights")

plot(y1)

lines(kernsm(y1, .609)@yhat, col=2)
lines(fofx1, col=3)

title("MSE optimal kernel estimate')

VVVVVVVVVVYV

AWS estimate Sum of weights MSE optimal kerel estimate

a0 7Nl

P

94

The left Figure shows the the data, estimated regression function (red) in
comparison to the true function (green). The central panel provides, for each
design point, the sum of weights emploid in the last step of the AWS algorithm,
while the right panel illustrates the behaviour of a kernel estimate with MSE
optimal bandwidth.

For the 2D examples we employ both the functions aws and paws. The
latter function implements the patchwise adaptive weights algorithm described
in PoPaTal8.

> setCores(2)
> zhatla <- aws(zl, hmax=8)
> zhatlb <- paws(zl, hmax=10, patchsize=1)

> par(mfrow=c(2,3), mar=c(3,3,3,1), mgp=c(2,1,0))
> image(z1l, col=grey(0:255/255))

> title("Noisy original")

> image(zhatla@theta, col=grey(0:255/255))
> title("AWS reconstruction")

> image (zhatla@ni, col=grey(0:255/255))

> title("AWS sum of weights")

> image(ul, col=grey(0:255/255))

> title("True image")

> image(zhat1b@theta, col=grey(0:255/255))
> title("PAWS reconstruction")

> image (zhat1b@ni, col=grey(0:255/255))

> title("PAWS sum of weights')

Noisy original AWS sum of weights

The Figure illustrates the results obtained using both methods in comparison
with the noisy original and the true image.

To illustrate the dependence of the obtained reconstruction quality we use
the second, locally smooth, 2D example.

v

zhat2a <- aws(z2, hmax=8)
zhat2b <- paws(z2, hmax=10)

v

par (mfrow=c(2,3), mar=c(3,3,3,1), mgp=c(2,1,0))
image(z2, col=grey(0:255/255))

title("Noisy original")

image (zhat2a@theta, col=grey(0:255/255))
title("AWS reconstruction")

image (zhat2a@ni, col=grey(0:255/255))

title ("AWS sum of weights")

VVVVVVyV

image (u2, col=grey(0:255/255))
title("True image")

image (zhat2b@theta, col=grey(0:255/255))
title("PAWS reconstruction")

image (zhat2b@ni, col=grey(0:255/255))
title("PAWS sum of weights")

V V.V VvV yVv

Noisy original AWS reconstruction AWS sum of weights
.

-yt

PAWS reconstruction PAWS sum of weights

' i |
o 0z 04 10

00 02 04 06 08 10 00 02 04 06 08 10 o 05 08

02

Note that AWS enforces the structural assumption of a local constant image if
large maximal bandwidths are used. This drawback is overcome in PAWS which
allows for smooth image gradients and prefers smooth discontinuities.

Both functions handle 1D, 2D and 3D images.

4 Intersection of confidence intervals

The package also containes functions implementing the Intersection of confi-
dence intervals approach from katkov06. The approach is based on adaptation
techniques that combine results obtained by kernel smoothing for a sequence of
bandwidths and for orientation (sector) dependent support of the kernel.

> zhatlc <- kernsm(zl,.9)@yhat

> zhatld <- ICIsmooth(zl, hmax=8, thresh=.8, presmooth=TRUE)@yhat
> zhatle <- ICIcombined(zl1, hmax=8, nsector=8, thresh=.8,

+ presmooth=TRUE) @yhat

We here apply sets of parameters choosen to provide good MSE for reconstruc-
tion results.

> par(mfrow=c(1,4), mar=c(3,3,3,1), mgp=c(2,1,0))
> image(z1l, col=grey(0:255/255))

title("Noisy original")

image (zhatlc, col=grey(0:255/255))
title("optimal kernel estimate")

image (zhatld, col=grey(0:255/255))
title("adaptation over h")

image (zhatle, col=grey(0:255/255))
title("adaptation over h and sectorial")

vV VVVVVYyV

NL-Means estimate Optimal TV reconstruction Optimal TGV reconstruction
-

5 Non-local means filter

For comparisons the NL Means algorithm (Coupe08), (Coupel2) in 1D, 2D and
3D is provided with function nlmeans.

> zhat1f <- nlmeans(z1, .85, 1, searchhw=6)$theta

6 Total variation methods

Additionally functions TV_denoising and TGV_denoising implement total vari-
ation (rudinl1992nonlinear) and total generalized variation (TGV) methods for
image denoising in 2D.

> zhatlf <- TV_denoising(z1l, .93)

238 Chambolle-Pock iterations completed
> zhatlg <- TGV_denoising(z1l, .92, 4)
1000 Chambolle-Pock iterations completed

> par(mfrow=c(1,4), mar=c(3,3,3,1), mgp=c(2,1,0))
> image(zl1, col=grey(0:255/255))

> title("Noisy original")

> image (zhatle, col=grey(0:255/255))

> title("NL-Means estimate")

> image(zhatlf, col=grey(0:255/255))

> title("Optimal TV reconstruction")

> image(zhatlg, col=grey(0:255/255))

> title("Optimal TGV reconstruction")

Optimal TGV reconstructior

The figure prov1des reconstructions for the first (local constant) 2D example
using NL Means, TV and TGV denoising. For all three methods parameters
are optimized for the data at hand.

7 Other content

The package aws also contains functions for locally adaptive variance estimation,
versions of AWS and PAWS for vector valued data (used e.g. in package gMRI)
and AWS methods for data in SE(3) (these methods are used for smoothing of
diffusion weighted data in package dti). Most of the computationally intensive
code is parallelized using openMP.

