Employing asremlPlus, in conjunction with asreml, to calculate and use information criteria

Chris Brien

11 July, 2020

This vignette illustrates the facilities in asremlPlus (Brien, 2020), in conjunction with asreml (Butler et al., 2018), for calculating and using information. Here, asremlPlus and asreml are packages for the R Statistical Computing environment (R Core Team, 2020).
It is divided into the following main sections:

1. Set up the maximal model for this experiment
2. Obtaining information criteria for separate models
3. Obtaining information criteria for a prescribed sequence of model changes
4. Using information criteria to decide model changes

1. Set up the maximal model for this experiment

```
library(knitr)
opts_chunk$set("tidy" = FALSE, comment = NA)
suppressMessages(library(asreml, quietly=TRUE))
packageVersion("asreml")
## [1] '4.1.0.130'
suppressMessages(library(asremlPlus))
packageVersion("asremlPlus")
## [1] '4.2.21'
options(width = 100)
```


Get data available in asremlPlus

The data are from a 1976 spring wheat experiment and are taken from Gilmour et al. (1995). An analysis is presented in the asreml manual by Butler et al. (2018, Section 7.6), although they suggest that it is a barley experiment.

```
data(Wheat.dat)
```


Fit the maximal model

In the following a model is fitted that has the terms that would be included for a balanced lattice. In addition, a term WithinColPairs has been included to allow for extraneous variation arising between pairs of adjacent lanes. Also, separable ar1 residual autocorrelation has been included. This model represents the maximal anticipated model,

```
max.asr <- asreml(yield ~ WithinColPairs + Variety,
        random = ~ Rep/(Row + Column) + units,
        residual = ~ ar1(Row):ar1(Column),
        data=Wheat.dat)
```

License check Sat Jul 11 10:27:55 2020
Model fitted using the gamma parameterization.
ASReml 4.1.0 Sat Jul 11 10:27:55 2020
LogLik Sigma2 DF wall cpu

| 1 | -724.121 | 23034.14 | 124 | $10: 27: 55$ |
| :--- | :--- | :--- | :--- | :--- | 0.0

2	-717.415	9206.93	124	$10: 27: 55$	0.0	(2 restrained)
3	-694.875	26492.99	124	$10: 27: 55$	$0.0 \quad$ (2 restrained)	
4	-694.160	33101.80	124	$10: 27: 55$	0.0 (1 restrained)	
5	-692.002	36912.26	124	$10: 27: 55$	0.0	(1 restrained)
6	-691.789	46701.51	124	$10: 27: 55$	0.0 (2 restrained)	
7	-691.834	46208.51	124	$10: 27: 55$	0.0 (1 restrained)	
8	-691.775	47698.26	124	$10: 27: 55$	0.0	
9	-691.771	47041.85	124	$10: 27: 55$	0.0	

Warning in asreml(yield ~ WithinColPairs + Variety, random $=\sim$ Rep/(Row + : Some components changed
by more than 1% on the last iteration.

The warning from asreml is probably due to a bound term.

Initialize a testing sequence by loading the current fit into an asrtests object

```
max.asrt <- as.asrtests(max.asr, NULL, NULL)
Calculating denominator DF
```


Check for and remove any boundary terms

```
max.asrt <- rmboundary(max.asrt)
summary(max.asrt$asreml.obj)$varcomp
\begin{tabular}{lrrrrr} 
& component & std.error & z.ratio & bound \(\%\) ch \\
Rep: Row & \(4.293282 \mathrm{e}+03\) & \(3.199458 \mathrm{e}+03\) & 1.3418779 & P & 0.0 \\
Rep:Column & \(1.575689 \mathrm{e}+02\) & \(1.480357 \mathrm{e}+03\) & 0.1064398 & P & 0.7 \\
units & \(5.742689 \mathrm{e}+03\) & \(1.652457 \mathrm{e}+03\) & 3.4752438 & P & 0.0 \\
Row:Column!R & \(4.706787 \mathrm{e}+04\) & \(2.515832 \mathrm{e}+04\) & 1.8708669 & P & 0.0 \\
Row:Column!Row!cor & \(7.920301 \mathrm{e}-01\) & \(1.014691 \mathrm{e}-01\) & 7.8056280 & U & 0.0 \\
Row:Column!Column!cor & \(8.799559 \mathrm{e}-01\) & \(7.370402 \mathrm{e}-02\) & 11.9390486 & U & 0.0
\end{tabular}
print(max.asrt, which = "testsummary")
```

\#\#\#\# Sequence of model investigations
(If a row has $N A$ for p but not denDF, $D F$ and denDF relate to fixed and variance parameter numbers)

```
    terms DF denDF p AIC BIC action
1 Rep 1 NA NA NA NA Boundary
```

Rep has been removed because it has been constrained to zero. Following the recommendation of Littel et al. (2006, p. 150), the bound on all variance components is set to unconstrained (U) using
setvariances.asreml so as to avoid bias in the estimate of the residual variance. Alternatively, one could move Rep to the fixed model.

Unbind Rep, Row and Column components and reload into an asrtests object

```
max.asr <- setvarianceterms(max.asr$call,
    terms = c("Rep", "Rep:Row", "Rep:Column"),
    bounds = "U")
```

Model fitted using the gamma parameterization.
ASReml 4.1.0 Sat Jul 11 10:27:56 2020

	LogLik	Sigma2	DF	wall	cpu
1	-724.121	23034.14	124	10:27:56	0.0
2	-717.415	9206.93	124	10:27:56	0.0 (2 restrained)
3	-694.875	26492.99	124	10:27:56	0.0 (2 restrained)
4	-693.974	33129.65	124	10:27:56	0.0 (1 restrained)
5	-692.886	39662.12	124	10:27:56	0.0
6	-691.428	53103.83	124	10:27:56	0.0
7	-691.239	48092.17	124	10:27:56	0.0
8	-691.181	47278.94	124	10:27:56	0.0
9	-691.171	46850.98	124	10:27:56	0.0
10	-691.170	46690.46	124	10:27:56	0.0

Warning in asreml(fixed = yield ~ WithinColPairs + Variety, random = ~Rep/(Row + : Some components
changed by more than 1% on the last iteration.
max.asrt <- as.asrtests(max.asr, NULL, NULL)
Calculating denominator DF
max.asrt <- rmboundary (max.asrt)
summary (max.asrt\$asreml.obj) \$varcomp

	component	std.error	z.ratio	bound $\%$ ch	
Rep	-2462.3785855	$1.191435 \mathrm{e}+03$	-2.066734	U	0.2
Rep:Row	5012.4021413	$3.396848 \mathrm{e}+03$	1.475604	U	0.1
Rep:Column	920.5936388	$1.704008 \mathrm{e}+03$	0.540252	U	1.1
units	5964.9099374	$1.608792 \mathrm{e}+03$	3.707695	P	0.1
Row:Column!R	46690.4620355	$2.731906 \mathrm{e}+04$	1.709080	P	0.0
Row:Column!Row!cor	0.8152180	$9.988929 \mathrm{e}-02$	8.161216	U	0.1
Row:Column!Column!cor	0.8857252	$7.487875 \mathrm{e}-02$	11.828793	U	0.0
print (max.asrt, which = "testsummary")					

\#\#\#\# Sequence of model investigations
(If a row has $N A$ for p but not denDF, $D F$ and denDF relate to fixed and variance parameter numbers)
[1] terms DF denDF p AIC BIC action
<0 rows> (or 0-length row.names)
Now the Rep component estimate is negative.
The test.summary output shows that no changes have been made to the model loaded using as.asrtests. The pseudo-anova table shows that Varieties are highly significant ($p<0.001$)

2. Obtaining information criteria for separate models

The method infoCriteria has two methods for calculating information criteria. One, infoCriteria.asreml, is a method for asreml objects and the other, infoCriteria.list, if for 'listobjects, the components of thelistbeingasreml objects.

Single models

Firstly, infoCriteria is called with the default IClikelihood, which is REML. Then it is called with IClikelihood set to full (Verbyla, 2019).

```
infoCriteria(max.asr)
    fixedDF varDF NBound AIC BIC loglik
1 
infoCriteria(max.asr, IClikelihood = "full")
Model fitted using the gamma parameterization.
ASReml 4.1.0 Sat Jul 11 10:27:57 2020
    MrrogLik 
Warning in asreml(fixed = yield ~ WithinColPairs + Variety, random = ~Rep/(Row + : Log-likelihood
not converged
\begin{tabular}{rrrrrrr} 
& fixedDF & varDF & NBound & AIC & BIC & loglik \\
1 & 26 & 7 & 0 & 1647.193 & 1746.544 & -790.5967
\end{tabular}
```


A list of models

Now, a second model, from which the withinColPairs term has been omitted, is fitted; to be consistent, the variance components are unconstrained using setvariances.asreml. Then the asreml objects for this model and the maximal model are combined into a list and a data.frame produced that includes their information criteria.

```
m1.asr <- asreml(yield ~ Variety,
    random = ~ Rep/(Row + Column) + units,
    residual = ~ ar1(Row):ar1(Column),
    data=Wheat.dat)
```

Model fitted using the gamma parameterization.

Warning in asreml(yield ~ Variety, random $=\sim$ Rep/(Row + Column) + units, : Some components changed by more than 1% on the last iteration.
m1.asr <- setvarianceterms(m1.asr\$call,
terms = c("Rep", "Rep:Row", "Rep:Column"),
bounds = "U")

Model fitted using the gamma parameterization.

ASReml	4.1.0 Sat Jul	11	$10: 27: 57$	2020			
	LogLik	Sigma2	DF	wall	cpu		
1	-727.774	22898.99	125	$10: 27: 57$	0.0		
2	-721.097	9190.30	125	$10: 27: 57$	0.0	(2 restrained)	
3	-698.313	26671.76	125	$10: 27: 57$	0.0	(2 restrained)	
4	-697.333	32689.33	125	$10: 27: 57$	0.0 (1 restrained)		
5	-697.016	39975.97	125	$10: 27: 57$	0.0		
6	-695.070	54825.30	125	$10: 27: 57$	0.0		
7	-694.757	47637.20	125	$10: 27: 57$	0.0		
8	-694.644	46775.41	125	$10: 27: 57$	0.0		
9	-694.618	46175.06	125	$10: 27: 57$	0.0		
10	-694.615	45940.69	125	$10: 27: 57$	0.0		

Warning in asreml(fixed = yield \sim Variety, random $=\sim$ Rep/(Row + Column) + : Some components changed by more than 1% on the last iteration.

```
mods <- list(max = max.asr, m1 = m1.asr)
ic <- infoCriteria(mods, IClikelihood = "full")
print(ic)
```

	fixedDF	varDF	NBound	AIC	BIC	loglik
max	26	7	0	1647.193	1746.544	-790.5967
m1	25	7	0	1645.326	1741.666	-790.6629

3. Obtaining information criteria for a prescribed sequence of model changes

The use of changeTerms.asrtests is demonstrated for a sequence of models, starting with the maximal model.

Drop the term for within Column pairs (a post hoc factor)

```
current.asrt <- as.asrtests(max.asrt$asreml.obj, NULL, NULL,
    label = "Maximal model", IClikelihood = "full")
Warning in asreml(fixed = yield ~ WithinColPairs + Variety, random = ~Rep/(Row + : Log-likelihood
not converged
Calculating denominator DF
current.asrt <- changeTerms(current.asrt, dropFixed = "WithinColPairs",
    label = "Drop withinColPairs", IClikelihood = "full")
Warning in asreml(fixed = yield ~ Variety, random = ~Rep + units + Rep:Row + : Some components
changed by more than 1% on the last iteration.
Calculating denominator DF
Calculating denominator DF
print(current.asrt, which = "testsummary", omit.columns = "p")
```

\#\#\#\# Sequence of model investigations
(If a row has $N A$ for p but not denDF, $D F$ and denDF relate to fixed and variance parameter numbers)

| | terms DF denDF | AIC | BIC | action | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | Maximal model 26 | 7 | 1647.193 | 1746.544 | Starting model |
| 2 Drop withinColPairs 25 | 7 | 1645.326 | 1741.666 | Changed fixed | |

So the same values of the information criteria have been obtained as when infoCriteria.list was used on a list containing the asreml objects for the two models. The differences is that here there is ultimately only one fitted model, the model stored in the asreml object in the asrtests object named current.asrt: this is the model with withinColPairs omitted.

Note this use of the omit.columns argument from print.test.summary to omit the irrelevant column p from the test. summary.

Drop nugget term

```
current.asrt <- changeTerms(current.asrt, dropRandom = "units",
    label = "Drop units", IClikelihood = "full")
Warning in asreml(fixed = yield ~ Variety, random = ~Rep + Rep:Row + Rep:Column, : Some components
changed by more than 1% on the last iteration.
Calculating denominator DF
Calculating denominator DF
```


Check Row autocorrelation

```
current.asrt <- changeTerms(current.asrt, newResidual = "Row:ar1(Column)",
    label="Row autocorrelation", IClikelihood = "full")
Calculating denominator DF
Calculating denominator DF
print(current.asrt, which = "testsummary", omit.columns = "p")
```

\#\#\#\# Sequence of model investigations
(If a row has $N A$ for p but not denDF, $D F$ and denDF relate to fixed and variance parameter numbers)
terms DF denDF AIC BIC action
$1 \quad$ Maximal model $26 \quad 71647.193$ 1746.544 Starting model
2 Drop withinColPairs $25 \quad 71645.3261741 .666 \quad$ Changed fixed
$3 \quad$ Drop units $25 \quad 61650.126$ 1743.456 Changed random
4 Row autocorrelation $25 \quad 51660.882$ 1751.201 Changed residual

4. Using information criteria to decide model changes

This sections illustrates the use of changeModelOnIC.asrtests to decide between consecutive models in a sequence of models. The default information criterion to use for this is the AIC. However, which. IC can be used to specify the use of the BIC or both. Here we use the AIC and the full likelihood.

Check the term for within Column pairs (a post hoc factor)

As before, we start with the maximal model, in which the variance components have been unconstrained and look to decide whether of not to drop the withinColPairs term.

```
current.asrt <- as.asrtests(max.asrt$asreml.obj, NULL, NULL,
    label = "Maximal model", IClikelihood = "full")
Warning in asreml(fixed = yield ~ WithinColPairs + Variety, random = ~Rep/(Row + : Log-likelihood
not converged
Calculating denominator DF
current.asrt <- iterate(current.asrt)
Calculating denominator DF
current.asrt <- changeModelOnIC(current.asrt, dropFixed = "WithinColPairs",
    label = "withinColPairs",
    IClikelihood = "full", which.IC = "AIC",
    allow.unconverged = FALSE)
Warning in asreml(fixed = yield ~ Variety, random = ~Rep + units + Rep:Row + : Some components
changed by more than 1% on the last iteration.
Calculating denominator DF
Calculating denominator DF
print(current.asrt, which = "testsummary", omit.columns = "p")
```

\#\#\#\# Sequence of model investigations
(If a row has NA for p but not denDF, $D F$ and denDF relate to fixed and variance parameter numbers)

| | | terms | DF | denDF | AIC |
| ---: | ---: | ---: | ---: | ---: | ---: |\quad BIC \quad action

Given the warning about a lack of convergence, we use iterate. asrtests to perform additional iterations of the fitting process. It seems that it was successful.

It can be seen from the test. summary that the term has been swapped out and this has the effect of reducing the number of fixed parameters by one and makes no change to the variance parameters.

Check the nugget term

```
current.asrt <- changeModelOnIC(current.asrt, dropRandom = "units",
    label = "units", IClikelihood = "full",
    allow.unconverged = FALSE)
Warning in asreml(fixed = yield ~ Variety, random = ~Rep + Rep:Row + Rep:Column, : Some components
changed by more than 1% on the last iteration.
Calculating denominator DF
Calculating denominator DF
```


Check Row autocorrelation

```
current.asrt <- changeModelOnIC(current.asrt, newResidual = "Row:ar1(Column)",
    label="Row autocorrelation", IClikelihood = "full",
    allow.unconverged = FALSE)
```

```
Warning in asreml(fixed = yield ~ Variety, random = ~Rep + units + Rep:Row + : Log-likelihood not
converged
Warning in asreml(fixed = yield ~ Variety, random = ~Rep + units + Rep:Row + : Some components
changed by more than 1% on the last iteration.
Warning in newfit.asreml(asreml.obj, fixed. = fix.form, random. = ran.form, :
Calculating denominator DF
Warning in asreml(fixed = yield ~ Variety, random = ~Rep + units + Rep:Row + : Some components
changed by more than 1% on the last iteration.
Calculating denominator DF
Warning in asreml(fixed = yield ~ Variety, random = ~Rep + units + Rep:Row + : Some components
changed by more than 1% on the last iteration.
```


Check Column autocorrelation (depends on whether Row autocorrelation retained)

```
\{
    last.action <- current.asrt$test.summary$action[current.asrt$test.summary$terms ==
                            "Row autocorrelation"]
    if (grepl("Unswapped", last.action, fixed = TRUE) |
        grepl("Unchanged", last.action, fixed = TRUE))
        current.asrt <- changeModelOnIC(current.asrt, newResidual = "ar1(Row):Column",
                                    label="Col autocorrelation", IClikelihood = "full",
                                    allow.unconverged = FALSE)
    else
        current.asrt <- testresidual(current.asrt, newResidual = "Row:Column",
                                    label="Col autocorrelation", IClikelihood = "full",
                            allow.unconverged = FALSE)
}
Calculating denominator DF
Warning in infoCriteria.asreml(asreml.obj, IClikelihood = ic.lik, bound.exclusions = bound.exclusions):
    Row:Column!Row!cor
Calculating denominator DF
Warning in infoCriteria.asreml(new.asrtests.obj$asreml.obj, IClikelihood = ic.lik, : The following boun
    Row:Column!Row!cor
```


Output the results

```
print(current.asrt, which = "test", omit.columns = "p")
```

\#\#\#\# Sequence of model investigations
(If a row has NA for p but not denDF, $D F$ and denDF relate to fixed and variance parameter numbers)
terms DF denDF AIC BIC action

1	Maximal model 26	7	1647.193455	1746.544420	Starting model
2	withinColPairs -1	0	-1.867556	-4.878191	Swapped

3	units	0	-1	4.801145	1.790510	Unswapped
4 Row autocorrelation	0	-1	17.819174	14.808538	Unchanged - new unconverged	
5 Col autocorrelation	0	-2	19.479776	13.458506	Unswapped	

	component	std.error	z.ratio bound \%ch		
Rep	-2391.9489939	$1.194581 \mathrm{e}+03$	-2.0023338	U 0.4	
Rep: Row	5035.5311054	$3.406006 \mathrm{e}+03$	1.4784269	U 0.3	
Rep:Column	761.9535622	$1.612103 \mathrm{e}+03$	0.4726458	U	1.2
units	5933.2133794	$1.610805 \mathrm{e}+03$	3.6833848	P	0.1
Row:Column!R	45970.8383027	$2.635124 \mathrm{e}+04$	1.7445415	P 0.0	
Row:Column!Row!cor	0.8101615	$9.995498 \mathrm{e}-02$	8.1052641	U 0.1	
Row:Column!Column!cor	0.8846970	$7.503039 \mathrm{e}-02$	11.7911827	U 0.0	

The test. summary shows us that the model without the autocorrelation failed to converge and so no change was made to the model. It, and the messages from checking the Column autocorrelation, also show us that the omission of the Column autocorrelation resulted in the Row autocorrelation becoming bound. That is, dropping the Column autocorrelation resulted in the dropping of two variance parameters

The function printFormulae. asreml is used to display the fitted model.

```
printFormulae(current.asrt$asreml.obj)
```

```
#### Formulae from asreml object
fixed: yield ~ Variety<environment: 0x000000001a2aca48>
random: ~ Rep + units + Rep:Row + Rep:Column<environment: 0x000000001a2aca48>
residual: ~ ar1(Row):ar1(Column)<environment: 0x000000001a2aca48>
```


References

Brien, C. J. (2020) asremlPlus: Augments ASReml-R in fitting mixed models and packages generally in exploring prediction differences. Version 4.2-15. http://cran.r-project.org/package=asremlPlus/ or http://chris.brien.name/rpackages/.

Butler, D. G., Cullis, B. R., Gilmour, A. R., Gogel, B. J. and Thompson, R. (2018). ASReml-R Reference Manual Version 4. VSN International Ltd, http://asreml.org.

Gilmour, A. R., Thompson, R., \& Cullis, B. R. (1995). Average Information REML: An Efficient Algorithm for Variance Parameter Estimation in Linear Mixed Models. Biometrics, 51, 1440-1450.
Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., \& Schabenberger, O. (2006). SAS for Mixed Models (2nd ed.). Cary, N.C.: SAS Press.

R Core Team (2020) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.r-project.org.

Verbyla, A. P. (2019). A note on model selection using information criteria for general linear models estimated using REML. Australian \mathcal{E} New Zealand Journal of Statistics, 61, 39-50. https://doi.org/10.1111/anzs.12254.

