Using asremlPlus, in conjunction with asreml, to do a linear mixed model analysis of a wheat experiment

Chris Brien

11 July, 2020

This vignette shows how to use asremlPlus (Brien, 2020), in conjunction with asreml (Butler et al., 2018), to employ hypothesis tests to select the terms to be included in a mixed model for an experiment that involves spatial variation. It also illustrates diagnostic checking and prediction production and presentation for this experiment. Here, asremlPlus and asreml are packages for the R Statistical Computing environment (R Core Team, 2020).

It is divided into the following main sections:

1. Set up the maximal model for this experiment
2. Perform a series of hypothesis tests to select a linear mixed model for the data
3. Diagnostic checking using residual plots and variofaces
4. Prediction production and presentation

1. Set up the maximal model for this experiment

```
library(knitr)
opts_chunk$set("tidy" = FALSE, comment = NA)
suppressMessages(library(asreml, quietly=TRUE))
packageVersion("asreml")
## [1] '4.1.0.130'
suppressMessages(library(asremlPlus))
packageVersion("asremlPlus")
## [1] '4.2.21'
suppressMessages(library(qqplotr, quietly=TRUE))
options(width = 100)
```


Get data available in asremlPlus

The data are from a 1976 spring wheat experiment and are taken from Gilmour et al. (1995). An analysis is presented in the asreml manual by Butler et al. (2018, Section 7.6), although they suggest that it is a barley experiment.
data(Wheat.dat)

Fit the maximal model

In the following a model is fitted that has the terms that would be included for a balanced lattice. In addition, a term WithinColPairs has been included to allow for extraneous variation arising between pairs of adjacent
lanes. Also, separable ar1 residual autocorrelation has been included. This model represents the maximal anticipated model,

```
current.asr <- asreml(yield ~ WithinColPairs + Variety,
    random = ~ Rep/(Row + Column) + units,
    residual = ~ ar1(Row):ar1(Column),
    data=Wheat.dat)
```

License check Sat Jul 11 10:19:47 2020
Model fitted using the gamma parameterization.
ASReml 4.1.0 Sat Jul 11 10:19:48 2020

	LogLik	Sigma2	DF	wall	cpu	

Warning in asreml(yield ~ WithinColPairs + Variety, random $=\sim$ Rep/ (Row + : Some components changed
by more than 1% on the last iteration.

The warning from asreml is probably due to a bound term.

Initialize a testing sequence by loading the current fit into an asrtests object

A label and the information criteria based on the full likelihood (Verbyla, 2019) are included in the test. summary stored in the asrtests object.

```
current.asrt <- as.asrtests(current.asr, NULL, NULL,
    label = "Maximal model", IClikelihood = "full")
```

Warning in infoCriteria.asreml(asreml.obj, IClikelihood = ic.lik, bound.exclusions = bound.exclusions):
Rep

```
Warning in asreml(fixed = yield ~ WithinColPairs + Variety, random = ~Rep/(Row + : Log-likelihood
not converged
Calculating denominator DF
```


Check for and remove any boundary terms

```
current.asrt <- rmboundary(current.asrt, IClikelihood = "full")
Warning in infoCriteria.asreml(asreml.obj, IClikelihood = ic.lik): The following bound terms were disco
    Rep
Model fitted using the gamma parameterization.
ASReml 4.1.0 Sat Jul 11 10:19:49 2020
            LogLik Sigma2 DF wall cpu
    1 -691.771 47071.42 124 10:19:49 0.0
Warning in asreml(fixed = yield ~ WithinColPairs + Variety, random = ~Rep/(Row + : Log-likelihood
not converged
```

summary (current.asrt\$asreml.obj) \$varcomp

	component	std.error	z.ratio	bound $\%$ ch	
Rep: Row	$4.293282 \mathrm{e}+03$	$3.199458 \mathrm{e}+03$	1.3418779	P	0.0
Rep:Column	$1.575689 \mathrm{e}+02$	$1.480357 \mathrm{e}+03$	0.1064398	P	0.7
units	$5.742689 \mathrm{e}+03$	$1.652457 \mathrm{e}+03$	3.4752438	P	0.0
Row: Column!R	$4.706787 \mathrm{e}+04$	$2.515832 \mathrm{e}+04$	1.8708669	P	0.0
Row: Column!Row!cor	$7.920301 \mathrm{e}-01$	$1.014691 \mathrm{e}-01$	7.8056280	U	0.0
Row:Column!Column!cor	$8.799559 \mathrm{e}-01$	$7.370402 \mathrm{e}-02$	11.9390486	U	0.0
print (current.asrt, which = "testsummary")					

\#\#\#\# Sequence of model investigations
(If a row has NA for p but not denDF, $D F$ and denDF relate to fixed and variance parameter numbers)

| | terms | DF | denDF | p | AIC | BIC |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | action

Rep has been removed because it has been constrained to zero. Following the recommendation of Littel et al. (2006, p. 150), the bound on all variance components is set to unconstrained (U) using setvariances.asreml so as to avoid bias in the estimate of the residual variance. Alternatively, one could move Rep to the fixed model.

Unbind Rep, Row and Column components and reload into an asrtests object

```
current.asr <- setvarianceterms(current.asr$call,
    terms = c("Rep", "Rep:Row", "Rep:Column"),
    bounds = "U")
```

Model fitted using the gamma parameterization.
ASReml 4.1.0 Sat Jul 11 10:19:49 2020

	LogLik	Sigma2	DF	wall	cpu	
1	-724.121	23034.14	124	$10: 19: 49$	0.0	
2	-717.415	9206.93	124	$10: 19: 49$	0.0	(2 restrained)
3	-694.875	26492.99	124	$10: 19: 49$	0.0	(2 restrained)
4	-693.974	33129.65	124	$10: 19: 49$	0.0 (1 restrained)	
5	-692.886	39662.12	124	$10: 19: 49$	0.0	
6	-691.428	53103.83	124	$10: 19: 49$	0.0	
7	-691.239	48092.17	124	$10: 19: 49$	0.0	
8	-691.181	47278.94	124	$10: 19: 49$	0.0	
9	-691.171	46850.98	124	$10: 19: 49$	0.0	
10	-691.170	46690.46	124	$10: 19: 49$	0.0	

Warning in asreml(fixed = yield ~ WithinColPairs + Variety, random $=\sim$ Rep/(Row + : Some components
changed by more than 1% on the last iteration.

```
current.asrt <- as.asrtests(current.asr, wald.tab = NULL, test.summary = current.asrt$test.summary,
    IClikelihood = "full", label = "Max model & Unbound components")
```

Calculating denominator DF

```
current.asrt <- rmboundary(current.asrt)
summary(current.asrt$asreml.obj)$varcomp
\begin{tabular}{lrrrrr} 
& component & std.error & z.ratio & bound \(\%\) ch \\
Rep & -2462.3785855 & \(1.191435 \mathrm{e}+03\) & -2.066734 & U & 0.2 \\
Rep:Row & 5012.4021413 & \(3.396848 \mathrm{e}+03\) & 1.475604 & U & 0.1 \\
Rep:Column & 920.5936388 & \(1.704008 \mathrm{e}+03\) & 0.540252 & U & 1.1 \\
units & 5964.9099374 & \(1.608792 \mathrm{e}+03\) & 3.707695 & P & 0.1 \\
Row:Column!R & 46690.4620355 & \(2.731906 \mathrm{e}+04\) & 1.709080 & P & 0.0 \\
Row:Column!Row!cor & 0.8152180 & \(9.988929 \mathrm{e}-02\) & 8.161216 & U & 0.1 \\
Row:Column!Column!cor & 0.8857252 & \(7.487875 \mathrm{e}-02\) & 11.828793 & U & 0.0
\end{tabular}
print(current.asrt, which = "testsummary")
```

\#\#\#\# Sequence of model investigations
(If a row has NA for p but not denDF, $D F$ and denDF relate to fixed and variance parameter numbers)
terms DF denDF p AIC BIC action
1 Maximal model $26 \quad 6$ NA 1646.129 1742.469 Starting model
2 Rep 1 NA NA 1646.129 1742.469 Boundary
3 Max model \& Unbound components $26 \quad 7$ NA 1647.200 1746.551 Starting model
print(current.asrt, which = "pseudoanova")
\#\#\#\# Pseudo-anova table for fixed terms
Wald tests for fixed effects.
Response: yield

	Df	denDF	F.inc	Pr
(Intercept)	1	1.7	153.400	0.0115
WithinColPairs	1	15.6	2.543	0.1308
Variety	24	76.1	10.110	0.0000

Now the Rep component estimate is negative.
The test.summary output has been extended, by supplying the previous test.summary to as.asrtests, to show that there is a new starting model. The pseudo-anova table shows that Varieties are highly significant ($p<0.001$)

2. Perform a series of hypothesis tests to select a linear mixed model for the data

The hypothesis tests in this section are Wald tests for fixed terms, with denominator degrees of freedom calculated using the Kenward-Rogers adjustment (Kenward and Rogers (1997), and Restricted Maximum Likelihood Ratio Tests (REMLRT) for random terms.

Check the term for within Column pairs (a post hoc factor)

The information criteria based on the full likelihood (Verbyla, 2019) is also included in the test. summary stored in the asrtests object.

```
current.asrt <- testranfix(current.asrt, term = "WithinColPairs",
    drop.fix.ns=TRUE, IClikelihood = "full")
```

Calculating denominator DF
Warning in asreml(fixed = yield \sim Variety, random $=\sim$ Rep/(Row + Column) + : Some components changed by more than 1% on the last iteration.
Calculating denominator DF
Generally, to determine what has been tested between two fits using asreml involves comparing two asreml calls and deciding what is different. For example what is the difference between the asreml call to fit the initial model and the following call?

```
current.asr <- asreml(yield ~ Variety,
    `random = ~ Rep/(Row + Column) + units,
    residual = ~ ar1(Row):ar1(Column),
    data=Wheat.dat)
```

On the other hand, it is clear from the testranfix call that the term withinColPAirs is being tested.

Test the nugget term

The nugget term represents non-spatial variance, such as measurement error. It is fitted using the asreml reserved word units.

```
current.asrt <- testranfix(current.asrt, "units", positive=TRUE, IClikelihood = "full")
Warning in asreml(fixed = yield ~ Variety, random = ~Rep + Rep:Row + Rep:Column, : Some components
changed by more than 1% on the last iteration.
```


Test Row autocorrelation

We begin testing the autocorrelation by dropping the Row autocorrelation. Because of messages about the instability of the fit, iterate.asrtests is used to execute extra iterations of the fitting process.

```
current.asrt <- testresidual(current.asrt, "~ Row:ar1(Column)",
    label="Row autocorrelation",
    simpler=TRUE, IClikelihood = "full")
Warning in asreml(fixed = yield ~ Variety, random = ~Rep/(Row + Column) + : Log-likelihood not
converged
Warning in asreml(fixed = yield ~ Variety, random = ~Rep/(Row + Column) + : Some components changed
by more than 1% on the last iteration.
Warning in newfit.asreml(asreml.obj, residual. = term.form, trace = trace, :
current.asrt <- iterate(current.asrt)
Calculating denominator DF
```


Test Column autocorrelation (depends on whether Row autocorrelation retained)

The function getTestPvalue is used to get the p-value for the Row autocorrelation test. If it is significant then the Column autocorrelation is tested by by dropping the Column autocorrelation, while retaining the Row autocorrelation. Otherwise the model with just Row autocorrelation, whose fit is returned via current.asrt after the test, is compared to one with no autocorrelation.

```
(p <- getTestPvalue(current.asrt, label = "Row autocorrelation"))
[1] 4.654398e-06
{ if (p <= 0.05)
    current.asrt <- testresidual(current.asrt, "~ ar1(Row):Column",
                        label="Col autocorrelation",
                            simpler=TRUE, IClikelihood = "full")
    else
        current.asrt <- testresidual(current.asrt, "~ Row:Column",
                        label="Col autocorrelation",
                            simpler=TRUE, IClikelihood = "full")
}
```

Warning in DFdiff(bound.h1, bound.h0, DF = DF, bound.exclusions = bound.exclusions): There were a total The following bound terms occur in only one of the models compared and so were discounted: Row: Column!Row!cor

Output the results

```
print(current.asrt, which = "test")
```

\#\#\#\# Sequence of model investigations
(If a row has NA for p but not denDF, $D F$ and denDF relate to fixed and variance parameter numbers)

	terms	DF	denDF	p	AIC	BIC			action
1	Maximal model	26	6.0	NA	1646.129	1742.469			Starting model
2	Rep	1	NA	NA	1646.129	1742.469			Boundary
3 Max model	\& Unbound components	26	7.0	NA	1647.200	1746.551			Starting model
4	WithinColPairs	1	15.6	0.1308	1645.326	1741.666			Dropped
5	units	1	NA	0.0006	1645.326	1741.666			Retained
6	Row autocorrelation	1	NA	0.0000	1645.326	1741.666	Unswapped	- new	ew unconverged
7	Col autocorrelation	2	NA	0.0000	1645.318	1741.658			Unswapped

```
#### Formulae from asreml object
fixed: yield ~ Variety<environment: 0x0000000017281880>
random: ~ Rep/(Row + Column) + units<environment: 0x0000000017281880>
residual: ~ ar1(Row):ar1(Column)<environment: 0x0000000017281880>
summary(current.asrt$asreml.obj)$varcomp
```

	component	std.error	z.ratio	bound \%ch	
Rep	-2385.9128545	$1.211137 \mathrm{e}+03$	-1.9699784	U	0.0
Rep:Row	5027.7499257	$3.415346 \mathrm{e}+03$	1.4721055	U	0.0
Rep:Column	753.6322682	$1.609917 \mathrm{e}+03$	0.4681187	U	0.6
units	5920.4104825	$1.611261 \mathrm{e}+03$	3.6743960	P	0.0
Row:Column!R	45870.5610759	$2.623679 \mathrm{e}+04$	1.7483295	P	0.0
Row:Column!Row!cor	0.8098804	$1.001790 \mathrm{e}-01$	8.0843355	U 0.0	
Row:Column!Column!cor	0.8845772	$7.510551 \mathrm{e}-02$	11.7777939	U 0.0	

The test.summary shows is that the model with Row and without Column autocorrelation failed to converge. The asreml.obj in current.asrt contains the model selected by the selection process, which has been printed using printFormulae.asrtests. It is clear that no changes were made to the variance terms.

3. Diagnosing checking using residual plots and variofaces

Get current fitted asreml object and update to include standardized residuals

```
current.asr <- current.asrt$asreml.obj
current.asr <- update(current.asr, aom=TRUE)
Model fitted using the gamma parameterization.
ASReml 4.1.0 Sat Jul 11 10:19:53 2020
\begin{tabular}{lrrrrr} 
& LogLik & Sigma2 & DF & wall & cpu \\
1 & -694.615 & 45855.43 & 125 & \(10: 19: 53\) & 0.0 \\
2 & -694.615 & 45854.15 & 125 & \(10: 19: 53\) & 0.0 \\
3 & -694.615 & 45851.11 & 125 & \(10: 19: 53\) & 0.0
\end{tabular}
Wheat.dat$res <- residuals(current.asr, type = "stdCond")
Wheat.dat$fit <- fitted(current.asr)
```

Do diagnostic checking
Do residuals-versus-fitted values plot
with(Wheat.dat, plot(fit, res))

Plot variofaces
variofaces(current.asr, V=NULL, units="addtores", maxiter=50, update = FALSE)

Variogram face of Standardized conditional residuals for Row

The variofaces are the lag 1 plots of the sample semivariogram with simulated confidence envelopes (Stefanova et al., 2009).

Plot normal quantile plot

The plot is obtained using the ggplot function with extensions available from the qqplotr package (Cheng, 2018).

```
ggplot(data = Wheat.dat, mapping = aes(sample = res)) +
    stat_qq_band(bandType = "ts") + stat_qq_line() + stat_qq_point() +
    labs(x = "Theoretical Quantiles", y = "Sample Quantiles",
        title = "Normal probability plot") +
    theme(plot.title = element_text(size = 12, face = "bold")) + theme_bw()
```


4. Prediction production and presentation

Get Variety predictions and all pairwise prediction differences and p-values

```
Var.diffs <- predictPlus(classify = "Variety",
asreml.obj=current.asr,
error.intervals="halfLeast",
wald.tab=current.asrt$wald.tab,
sortFactor = "Variety",
tables = "predictions")
```

\#\#\#\# Predictions for yield from Variety

Notes:

- The predictions are obtained by averaging across the hypertable calculated from model terms constructed solely from factors in the averaging and classify sets.
- Use 'average' to move ignored factors into the averaging set.
- The ignored set: Rep,Row, Column, units
- Variety is included in this prediction
- (Intercept) is included in this prediction
- units is ignored in this prediction

10	10	1168.989	standard.error up	1228.315
1	1	1242.750	119.8105	1302.076
9	9	1257.137	119.9708	1316.463
16	16	1285.718	119.9400	1345.045
14	14	1293.526	119.9227	1352.853
23	23	1313.653	120.2930	1372.979
11	11	1322.159	120.1964	1381.485
7	7	1374.447	120.2407	1433.773
3	3	1394.070	120.4032	1453.396
4	4	1410.980	120.1055	1470.306
12	12	1444.557	120.6034	1503.883
8	8	1453.396	120.5940	1512.723
15	15	1458.383	120.4346	1517.709
5	5	1473.782	120.4455	1533.108
17	17	1487.828	120.2896	1547.154
6	6	1498.294	120.1189	1557.620
21	21	1517.121	120.2262	1576.447
2	2	1520.466	119.6322	1579.792
24	24	1533.769	120.2995	1593.095
18	18	1541.148	120.3664	1600.474
25	25	1575.795	120.5142	1635.121
22	22	1610.482	120.3281	1669.808
13	13	1610.762	120.4575	1670.088
20	20	1627.971	120.2328	1687.297
19	19	1652.992	120.3435	1712.318
lower.halfLeastSignificant.limit est.status				
10		1109.663 Estimable		
1		1183.424 Estimable		
9		1197.811 Estimable		
16		1226.392 Estimable		
14		1234.200 Estimable		
23		1254.327 Estimable		
11		1262.832 Estimable		
7		1315.120 Estimable		
3		1334.743 Estimable		
4		1351.653 Estimable		
12		1385.231 Estimable		
8		1394.070 Estimable		
15		1399.057 Estimable		
5		1414.456 Estimable		
17		1428.501 Estimable		
6		1438.968 Estimable		
21		1457.795 Estimable		
2		1461.140 Estimable		
24		1474.443 Estimable		
18		1481.821 Estimable		
25		1516.468 Estimable		
22		1551.156 Estimable		
13		1551.436 Estimable		
20		1568.645 Estimable		
19		1593.666 Estimable		

```
minimum LSD = 114.0128
mean LSD = 118.6523
maximum LSD = 123.3578
(sed range / mean sed = 0.0788)
```

We have set error.intervals to halfLeast so that the limits for $\pm o .5 L S D$ are calculated. When these are plotted overlapping error bars indicate predictions that are not significant, while those that do not overlap are significantly different (Snee, 1981).
Also set was sortFactor, so that the results would be ordered for the values of the predictions for Variety. The function predictPlus returns an alldiffs object, a list consisting of the following components:

- predictions: the predictions, their standard errors and error intervals;
- vcov: the variance matrix of the predictions;
- differences: all pairwise differences between the predictions,
- p.differences: p-values for all pairwise differences between the predictions;
- sed: the standard errors of all pairwise differences between the predictions;
- LSD: the mean, minimum and maximum LSDs.

Plot the Variety predictions, with halfLSD intervals, and the p-values

```
plotPredictions(Var.diffs$predictions,
    classify = "Variety", y = "predicted.value",
    error.intervals = "half")
```


plotPvalues(Var.diffs)

References

Almeida, A., Loy, A. and Heike Hofmann, H. (2017) qqplotr: Quantile-Quantile plot extensions for 'ggplot2', Version 0.0.3. http://cran.r-project.org/package=qqplotr/ or https://github.com/aloy/qqplotr.
Brien, C. J. (2020) asremlPlus: Augments ASReml-R in fitting mixed models and packages generally in exploring prediction differences. Version 4.2-15. http://cran.r-project.org/package=asremlPlus/ or http://chris.brien.name/rpackages/.
Butler, D. G., Cullis, B. R., Gilmour, A. R., Gogel, B. J. and Thompson, R. (2018). ASReml-R Reference Manual Version 4. VSN International Ltd, http://asreml.org.

Gilmour, A. R., Thompson, R., \& Cullis, B. R. (1995). Average Information REML: An Efficient Algorithm for Variance Parameter Estimation in Linear Mixed Models. Biometrics, 51, 1440-1450.
Kenward, M. G., \& Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53, 983-997.
Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., \& Schabenberger, O. (2006). SAS for Mixed Models (2nd ed.). Cary, N.C.: SAS Press.
R Core Team (2020) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.r-project.org.
Snee, R. D. (1981). Graphical Display and Assessment of Means. Biometrics, 37, 835-836.
Stefanova, K. T., Smith, A. B. \& Cullis, B. R. (2009) Enhanced diagnostics for the spatial analysis of field trials. Journal of Agricultural, Biological, and Environmental Statistics, 14, 392-410.

Verbyla, A. P. (2019). A note on model selection using information criteria for general linear models estimated using REML. Australian \mathcal{E} New Zealand Journal of Statistics, 61, 39-50.https://doi.org/10.1111/anzs.12254.

