Classification Based on Association Rules

The R package arulesCBA (Hahsler et al, 2020) is an extension of the package arules to perform association rule-based classification. The package implements the following algorithms:
- CBA (Liu et al, 1998)
- bCBA, wCBA (Ian Johnson, unpublished)
- CMAR via LUCS-KDD Software Library (Li, Han and Pei, 2001)
- CPAR via LUCS-KDD Software Library (Yin and Han, 2003)
- C4.5 via J48 in R/Weka (Quinlan, 1993)
- FOIL (Yin and Han, 2003)
- PART via R/Weka (Frank and Witten, 1998)
- PRM via LUCS-KDD Software Library (Yin and Han, 2003)
- RCAR (Azmi et al, 2019)
- RIPPER via R/Weka (Cohen, 1995)
The package also provides the infrastructure for associative classification (supervised discetization, mining class association rules (CARs)), and implements various association rule-based classification strategies (first match, majority voting, weighted voting, etc.).
Installation
Stable CRAN version: install from within R with
install.packages("arulesCBA")
Current development version:
library("devtools")
install_github("ianjjohnson/arulesCBA")
Usage
library("arulesCBA")
data("iris")
# learn a classifier
classifier <- CBA(Species ~ ., data = iris)
classifier
CBA Classifier Object
Class: Species=setosa, Species=versicolor, Species=virginica
Default Class: Species=versicolor
Number of rules: 6
Classification method: first
Description: CBA algorithm (Liu et al., 1998)
# inspect the rulebase
inspect(rules(classifier), linebreak = TRUE)
lhs rhs support conf lift count
[1] {Petal.Length=[-Inf,2.45)} => {Species=setosa} 0.33 1.00 3.0 50
[2] {Sepal.Length=[6.15, Inf],
Petal.Width=[1.75, Inf]} => {Species=virginica} 0.25 1.00 3.0 37
[3] {Sepal.Length=[5.55,6.15),
Petal.Length=[2.45,4.75)} => {Species=versicolor} 0.14 1.00 3.0 21
[4] {Sepal.Width=[-Inf,2.95),
Petal.Width=[1.75, Inf]} => {Species=virginica} 0.11 1.00 3.0 17
[5] {Petal.Width=[1.75, Inf]} => {Species=virginica} 0.30 0.98 2.9 45
[6] {} => {Species=versicolor} 0.33 0.33 1.0 150
# make predictions for the first few instances of iris
predict(classifier, head(iris))
[1] setosa setosa setosa setosa setosa setosa
Levels: setosa versicolor virginica
References
- M. Hahsler, I. Johnson, T. Kliegr and J. Kuchar (2019). Associative Classification in R: arc, arulesCBA, and rCBA. The R Journal 11(2), pp. 254-267.
- M. Azmi, G.C. Runger, and A. Berrado (2019). Interpretable regularized class association rules algorithm for classification in a categorical data space. Information Sciences, Volume 483, May 2019, pp. 313-331.
- W. W. Cohen (1995). Fast effective rule induction. In A. Prieditis and S. Russell (eds.), Proceedings of the 12th International Conference on Machine Learning, pp. 115-123. Morgan Kaufmann. ISBN 1-55860-377-8.
- E. Frank and I. H. Witten (1998). Generating accurate rule sets without global optimization. In J. Shavlik (ed.), Machine Learning: Proceedings of the Fifteenth International Conference, Morgan Kaufmann Publishers: San Francisco, CA.
- W. Li, J. Han and J. Pei (2001). CMAR: accurate and efficient classification based on multiple class-association rules, Proceedings 2001 IEEE International Conference on Data Mining, San Jose, CA, USA, pp. 369-376.
- B. Liu, W. Hsu and Y. Ma (1998). Integrating Classification and Association Rule Mining. KDD’98 Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, New York, AAAI, pp. 80-86.
- R. Quinlan (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo, CA.
- X. Yin and J. Han (2003). CPAR: Classification based on Predictive Association Rules, Proceedings of the 2003 SIAM International Conference on Data Minin, pp. 331-235.