
Replicable Publication-Ready Model Output with R package

apsrtable

Implementation & Extension Guide

Michael Malecki∗

Saturday 20th March, 2010

1 Overview

Formatting fitted model objects is not trivial and should not be done at the last minute before submitting
a paper. It is too easy for modeling details to get lost, or simply for values to be omitted, transposed, or
otherwise misplaced. Thus automation is a boon, if not a requirement, for replicability.

Fitted model objects in R contain a lot of information, but often we want to look at several of them
side-by-side. It would be nice to name the models, and include some model-fit information, and to name the
covariates. Nested and non-nested models and naming become a problem for cbind and rbind, and last but
not least, we want this information in some legible format – either plain text or, prefereably, Latex. My R
package apsrtable, installable from CRAN, seeks to solve all of these problems, creating tables ready to be
published in the APSR. I might have named it after Political Analysis, but the latter often features other
innovative presentations of data and results, such that “a PA-style table” is less identifiable.

Like many graduate students – including probably most who read TPM – I have typeset a lot of fitted
models in the course of methods training, leaving aside the relatively few tables that make their way into final
seminar, conference, or journal papers. We were “strongly encouraged” to prepare homework assignments
using Latex and create “professional-looking” tables of model output, with the expectation that we would
get faster at it, while becoming attuned to the intricacies of Latex’s tabular and matrix environments. I
found this exercise as tedious as formatting a bibliography by hand. So, I set out to automate R’s output of
“professional-looking” tables. To complete the bibliography analogy, I also wanted to make the automated
solution more user-friendly than bibtex BSTs – though “an order of magnitude easier than BST” is still an
extremely low target.

∗PhD Candidate, Washington University in St. Louis

1

http://malecki.wustl.edu
http://cran.r-project.org/web/packages/apsrtable/index.html

2 Usage

To demonstrate apsrtable’s features, I’ll replicate some of the results from Persson and Tabellini’s (2003)
The Economic Effects of Constitutions1, in particular models 1–3 of Table 6.1 (p. 159) (Figure 1).

Figure 1. Persson and Tabellini (2003), p.159, detail.

> pt <- read.csv("pt.csv")

> library(apsrtable)

> controls <- "lyp + gastil + age + trade + prop65 + prop1564 + federal + oecd"

> regions <- "col_uka + col_espa + col_otha + africa + asiae + laam"

> model1 <- lm(as.formula(paste("cgexp ~", paste(c("pres + maj",

controls),collapse="+"))), data=pt)

> model2 <- lm(as.formula(paste("cgexp ~",paste(c("pres + maj",

controls,regions),collapse="+"))), data=pt)

> model3 <- lm(as.formula(paste("cgexp ~",paste(c("pro.pres + maj.parl + maj.pres",

controls,regions),collapse="+"))), data=pt)

The result of simply calling apsrtable(model1, model2, model3) shouldn’t be very far from usable
output. We get decimal-aligned columns that are also lined up in the Latex source, errors in parentheses,
and a single star indicating p < .. But, we want to include “robust” standard errors, omit a bunch of

1The data are available from the authors, though they may contain some coding errors in the institutional interaction
variables. A corrected replication dataset is available here.

2

http://www.igier.unibocconi.it/whos.php?vedi=1169&tbn=albero&id_folder=177
http://malecki.wustl.edu/pt.csv

controls, give the variables less cryptic names, and, to complete the exercise, add more stars. All of these are
extremely easy to do with apsrtable, but looking at the default output is a helpful baseline and a recommended
first step every time.

Alternate Standard Errors However you want to go about estimating alternative standard errors, simply
insert a vector or the full new variance-covariance matrix into the fitted model object and name it se2

To get the same standard errors that Persson and Tabellini report (also, I believe, the Stata default),
use the sandwich package:
model1$se <- vcovHC(model1,type="HC1") and so on for each model. By default, apsrtable will
include only the robust standard errors when present, but the argument se can either ignore them and
print the model’s original standard errors (“vcov”) or both (“both”).

Order of Covariates Including nested and non-nested models side-by-side, lining up the covariates that
are included and leaving blank those that are not, is the main feature of the package. For this replication
(and most of the time) the default “lr” left-to-right incorporation of terms is correct. For special cases,
two other options, “rl” and “longest” are provided and discussed briefly under implementation details.
For typical use, it is best to nail down the desired order in which the models are passed to the function,
and then the value of order.

Omitting controls Variables can be omitted from the display either by name or index. It is easiest in
this case to supply the argument omit=c(1,4:17). However, the order of coefficients can change, so
a list of quoted character names of coefficients to omit may be safer, and certainly makes your code
more transparent and thus easier to maintain and replicate. As of version 0.8, you can also provide an
expression, such as a regular expression. In this case, the argument should take the form:
expression(grep(pattern,coefnames))

The internal object coefnames is the ordered union of all terms in all models.

To include multiple regular expressions, or a mix of expressions with other types, you may supply a
list, but you must ensure that the result is a valid subscript list: all character, all numeric, or all
logical. For example, if you refer to a specific coefficient by its character name, include the argument
value=TRUE in any grep expressions in the list.

Names of Models and Covariates Models by default are named “Model 1”, “Model 2”, etc., but num-
bering can be changed arbitrarily (via argument model.counter), or a vector of meaningful names can
be supplied as model.names (if it comes up short, numbering accounts for the named ones).

Covariate name replacement takes place after the list of included coefficients from all the models has
been generated. Therefore, again it is a good idea to look at the default, settle on the values of order
and omitcoef, and only then supply a vector of coefficient display names as the argument coef.names.

2Most model objects are simply lists rather than formal classes (that is, they use the S3 class system). Models fit with lmer

are formally mer class objects but changes in how lme4 methods display and summary work has prevented incorporation of
that class of models so far.

3

Stars The default behavior is to indicate coefficient significance at the level p < . with a single superscript
asterisk. Two arguments allow you to increase the sparkle of almost any table. To set a different level
for a single star, supply it to lev. To include a dagger for .10, a star for .05, two stars for .01, and
three stars (!) for .001, supply the argument stars="default". I admit the name is confusing, but
“default” here indicates the R default rather than the APSR and apsrtable default.

Other arguments The other arguments are documented in the package, but two are worth mention here.
The handling of notes about standard errors and significance indicators is discussed below. Also,
Sweave=TRUE should be used whenever you include a call to apsrtable from within a Sweave document.
Otherwise output will include the table environment code and empty caption and label, which should
be included in the Sweave document itself if emacs reftex is to keep track of tables. An internal test
for Sweave might appear in future versions, but the default output is meant for cutting and pasting
from an R session into a Latex document, which seems to be fairly common workflow.

3 Some Implementation Details

Three features of apsrtable bear mention for how I implemented them: covariate aggregation across models,
table notes, and model summaries, which provides a flexible extension framework.

3.1 Covariate Order

Authors have immense control over the order in which covariate rows are presented in the final table. Through
a combination of the order of terms in the model objects, and the choice of order in the call to apsrtable,
one should be able to create tables that never need “rearrangement” of rows between output and publication.
First, it builds a list of all variable names, and then notes the position of the variables in each model with
respect to this final order. Next, the omitcoef list is marked, and finally, the names of remaining terms are
replaced with the optional list of coef.names, which, of course, may contain Latex markup. The column of
variable names is set in text mode, so any math should be delimited by $, and because it’s R, backslashes
have to be doubled. A label “β Intercept” would be supplied as "$\\beta_0$ Intercept".

The default left-to-right order starts with the first model; any terms included in the second not in the first
are appended to the order, and so on. Right-to-left (order="rl") takes the initial order from the rightmost
model; and order="longest" starts with the order of terms in the model with the most terms, wherever it
is in the list of models, then appends any others always left-to-right.

3.2 Table Notes

Some kinds of notes pertaining to the table depend on values used to generate it. In particular, informing
readers of “robust” standard errors, and the indicators and “level” of statistical significance lies in the gap

4

between content and presentation. Authors also commonly indicate the source of data in a note beneath a
table (technically a multicolumn span within the tabular environment).

The notes argument allows you to specify a list of functions or character strings. R’s “lazy evaluation”
means that these functions are evaluated only when eval is called explicitly inside apsrtable. R’s variable
scoping meant that the variables in the apsrtable() call reside 3 levels up the call stack, so custom functions
in the notes list can only access them by specifying the environment at sys.frame(-3). Of course, simple
character strings are valid in the notes list and will be typset along with the results of the dynamic functions.

3.3 Extending apsrtable with modelInfo

Besides the coefficients, standard errors, and statistical significance star(s), model summaries and some
indication of goodness-of-fit should be included with each model, which I call modelInfo. But, different
researchers prefer to include different statistics describing models as a whole. Therefore, apsrtable comes with
some reasonable defaults and a simple mechanism to change them. The same mechanism makes extending
the package to other types of models relatively easy.

ModelInfo methods are called on the list of model summaries (that is, the result of summary(model)).
At a minimum, one can select from the information contained therein to generate a list of named character
strings that comprise the modelInfo that will be included in the final output. The formatter doesn’t care
what you include here – it simply matches the names (always left-to-right) across models and prints it all.
If the summary object does not contain some data that you need for a model summary statistic, see Section
3.4 for creating special apsrtableSummary methods that return the information you want.

So, what does a modelInfo method look like? It is a formal S4 method that takes a model summary
object as its argument. Therefore to change the list of model information, just change what the modelInfo
function returns for a given model class. Future versions will probably include a selection of presets, but
changing by a quick call to setMethod is straightforward and my aim here is to make clear how to get the
modelInfo you want. For lm objects, the default prints the N, R, adjusted R, and residual sd. The example
in ?modelInfo shows you how to print only the N and residual sd; the easiest way to find the default is via
getMethod("modelInfo","summary.lm"). The defaults for lm and glm are also included as named private
functions, to make reversion easier (see the modelInfo example).

To return to the Persson and Tabellini example, they summarize the controls used (but not displayed)
in the modelInfo section. It is simple to write a function for summary.lm that tests for the presence of a
particular name among coefficients. Besides this, they report the N as “Number of Observations” (so we
want to change the name of that element in the list), and the adjusted R. So, we just create a custom
modelInfo method that returns these items.

> ## Add robust se to the models

> library(sandwich)

> model1$se <- vcovHC(model1,type="HC1")

> model2$se <- vcovHC(model2,type="HC1")

5

> model3$se <- vcovHC(model3,type="HC1")

> ## Create and register custom modelInfo for lm

>

> setMethod("modelInfo", "summary.lm", function(x) {

env <- parent.frame()

digits <- evalq(digits,env)

model.info <- list(

"Continents"= (

ifelse(!is.na(charmatch("laam",rownames(coef(x)))),

"\\multicolumn{1}{c}{Yes}", "\\multicolumn{1}{c}{No}")),

"Colonies" = (

ifelse(!is.na(charmatch("col",rownames(coef(x)))),

"\\multicolumn{1}{c}{Yes}", "\\multicolumn{1}{c}{No}")),

"Number of\\tabularnewline Observations"= (formatC(sum(x$df[1:2]),format="d")),

"adj. R^2" = (formatC(x$adj.r.squared,format="f",digits=digits)))

class(model.info) <- "model.info"

return(model.info)

})

With the new modelInfo method registered, the final call to apsrtable() is shown below, and the results
typeset as Table 1. Note that the omitcoef list contains a character element and then two expressions that
evaluate to character vectors.

> apsrtable(model1,model2,model3,

omitcoef=list("(Intercept)", expression(strsplit(controls," \\+ ")), expression(strsplit(regions," \\+ "))),

coef.names=c("Presidential","Majoritatian",

"Proportional Presidential", "Majoritarian Parliamentary", "Majoritarian Presidential"),

align="left",stars="default",

notes=list(se.note(), stars.note())

)

The example above shows how the modelInfo methods can be used to change the display for linear model
summary objects. In theory, any model object for which coef, vcov, and summary methods should work
with apsrtable. Extending means mainly creating modelInfo methods for other classes of model summaries.

3.4 Adding model classes with apsrtableSummary

Sometimes, the summary method for a given object either does not exist, or does not produce output that
apsrtable knows what to do with. In this case, users have two options: write a replacement summary
method and submitting it to package maintainers, or create a summary method that only apsrtable will use.
Presumably, the latter may be a stopgap on the way to the former.

6

Table 1. Replication of Models 1–3 from Persson and Tabellini (2003), p. 149: “Size of government and constitutions: Simple
regression estimates.”

Model 1 Model 2 Model 3
Presidential −.∗∗ −.∗∗

(.) (.)
Majoritatian −.† −.∗∗

(.) (.)
Proportional Presidential −.∗

(.)
Majoritarian Parliamentary −.∗

(.)
Majoritarian Presidential −.∗∗∗

(.)
Continents No Yes Yes
Colonies No Yes Yes
Number of
Observations
adj. R . . .
Robust standard errors in parentheses
† significant at p < .; ∗p < .; ∗∗p < .; ∗∗∗p < .

One user requested support for the gee package, specifically gee.robust objects. A summary of them
suitable for apsrtable would have to place the robust standard errors into the $se position of the summary
object, as well as turn the summary.gee’s columns of z-scores into Pr(z) for the bedazzler apsrstars.3 The
solution is to write a replacement apsrtableSummary which is always tried first, with the model-object’s
default summary called otherwise.

The example manipulates the output of summary.gee into a matrix (and $se vector) suitable for seamless
use with apsrtable.

> "apsrtableSummary.gee" <- function(x) {

s <- summary(x)

newCoef <- coef(s)

which columns have z scores? (two of them in robust case)

zcols <- grep("z",colnames(newCoef))

newCoef[,zcols] <- pnorm(abs(newCoef[,zcols]), lower.tail=FALSE)

colnames(newCoef)[zcols] <- "Pr(z)"

s$coefficients <- newCoef

put the robust se in $se so that notefunction works automatically

the se checker will overwrite [,4] with pt, but this doesn't matter

because the last column Pr(z) is used by apsrstars() anyway

3Relatedly, an apsrtableSummary may be needed just to rename columns in some summary coefficient matricies. The
function apsrstars, derived from stats:::printCoefmat, checks for column names starting with Pr(.

7

and the se are pulled from $se.

if(class(x)[1] == "gee.robust") {

s$se <- coef(s)[,4]

}

return(s)

}

4 Conclusion

I saw a striking need to produce publication-ready output as a part of the modeling process, especially as
complexity grew. Not surprisingly, I learned after publishing the package on CRAN and announcing it to
PolMeth, that I was not alone. Martin Elff has a similar function (mtable) in his memisc package, which
can also produce non-Latex output. Some of the details of his implementation caused me to refactor parts
of my own. My current workflow relies heavily on Sweave to ensure that the code I run is actually connected
to both the theoretical arguments I make and the results I present. I rely on apsrtable to produce reliable,
replicable, relatively painless tables of results. I hope that TPM readers can save themselves (and their
graduate students!) some typesetting frustration by using apsrtable, and I look forward to extensions and
improvements that users may provide.

8

	Overview
	Usage
	Some Implementation Details
	Covariate Order
	Table Notes
	Extending apsrtable with modelInfo
	Adding model classes with apsrtableSummary

	Conclusion

