Package ‘apollo’

March 16, 2020

Type Package
Title Tools for Choice Model Estimation and Application
Version 0.1.0

Description The Choice Modelling Centre (CMC) at the University of Leeds
has developed flexible code for the estimation and application
of choice models in R. Users are able to write their own
model functions or use a mix of already available ones. Random heterogeneity,
both continuous and discrete and at the level of individuals and
choices, can be incorporated for all models. There is support for both standalone
models and hybrid model structures. Both classical
and Bayesian estimation is available, and multiple discrete
continuous models are covered in addition to discrete choice.
Multi-threading processing is supported for estimation and a large
number of pre and post-estimation routines, including for computing posterior
(individual-level) distributions are available.
For examples, a manual, and a support forum, visit
www.ApolloChoiceModelling.com. For more information on choice
models see Train, K. (2009) <isbn:978-0-521-74738-7> and Hess,
S. & Daly, A.J. (2014) <isbn:978-1-781-00314-5> for an overview
of the field.

License GPL-2
URL http://www.apolloChoiceModelling.com

BugReports https://groups.google.com/d/forum/apollo-choice-modelling
Encoding UTF-8

LazyData true

Depends R (>= 3.6.0), stats, utils

Imports Rcpp (>= 1.0.0), maxLik, mnormt, mvtnorm, graphics, coda,
sandwich, randtoolbox, numDeriv, RSGHB, parallel, Deriv

LinkingTo Rcpp, ReppArmadillo, ReppEigen
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr

http://www.apolloChoiceModelling.com
https://groups.google.com/d/forum/apollo-choice-modelling

RoxygenNote 7.1.0
NeedsCompilation yes

Author Stephane Hess [aut],
David Palma [aut, cre]

Maintainer David Palma <D.Palma@leeds. ac.uk>
Repository CRAN
Date/Publication 2020-03-16 12:10:09 UTC

R topics documented:

R topics documented:

OnAttach . . . L L e 3
apollo_addLog e 4
apollo_attach 5
apollo_avgInterDraws 6
apollo_avgIntraDraws L 7
apollo_bootstrap e e 8
apollo_choiceAnalysis L 9
apollo_cnl L 10
apollo_combineModels 13
apollo_combineResults 14
apollo_conditionals 14
apollo_deltaMethod 15
apollo_detach 16
apollo_dft 17
apollo_drugChoiceData L 19
apollo_el e e 20
apollo_estimate e 22
apollo_estimateHB 23
apollo_firstRow 25
apollo_fitsTest L 26
apollo_initialise L 27
apollo_insertRows L 28
apollo_keepRows L 28
apollo_lc L e 29
apollo_IcConditionals 30
apollo_lcUnconditionals 31
apollo_llCalc o e 32
apollo_loadModel 33
apollo_IrTest o e 33
apollo_makeCluster 34
apollo_makeDraws 35
apollo_makeloglike 36
apollo_mdecev 37
apollo_mdcevlnside 38
apollo_mdcevOutside 40

apollo_mdenev 42

.onAttach 3

apollo_mlhs e e 44
apollo_mnl 44
apollo_mnl_2 46
apollo_modeChoiceData 48
apollo_modelOutput 49
apollo_nl e e e 50
apollo_normalDensity 52
apollo_ol e 54
apollo_op L 55
apollo_outOfSample 57
apollo_panelProd 59
apollo_prediction 60
apollo_prepareProb 61
apollo_printLog 62
apollo_readBeta L 62
apollo_reportModelTypeLog e 63
apollo_saveOutput L e 64
apollo_searchStart. L 65
apollo_setROWS L 67
apollo_sharesTest e 68
apollo_speedTest e e e 69
apollo_splitDataDraws 70
apollo_swissRouteChoiceData 71
apollo_timeUseData e 72
apollo_unconditionals L 73
apollo_validateControl e 74
apollo_validateData 75
apollo_validateHBControl 75
apollo_validateInputs L 76
apollo_weighting 79
apollo_writeF12 e 80
apollo_writeTheta 80
Index 81
.onAttach Prints package startup message
Description

This function is only called by R when attaching the package.

Usage

.onAttach(libname, pkgname)

4 apollo_addLog

Arguments

libname Name of library.

pkgname Name of package.

Value

Nothing

apollo_addLog Writes an entry to apollolLog

Description

Writes an entry to the apolloLog, which lives inside apollo_inputs.

Usage
apollo_addLog(title = "", content = "", apolloLog, book = 1)
Arguments
title Character. Title of the log entry.
content Content of the log entry. Can be a single element or a list. Each element will
be converted to character using print, and concatenated with a line feed in
between.
apollolog Environment. It contains the character vectors of titles and content.
book Positive scalar integer. Book number inside the log (default is 1).
Details

The variable apolloLog is an environment created inside apollo_inputs by apollo_validateInputs,
but re-set by apollo_estimate. As an environment, it can be modified in place, i.e. all changes done
within this function are recorded in apolloLog, even if it belongs to another environment.

Value

TRUE if writing was succesful, FALSE if not.

apollo_attach 5

apollo_attach Attaches predefined variables.

Description

Attaches parameters and data to allow users to refer to individual variables by name without refer-
ence to the object they are contained in.

Usage

apollo_attach(apollo_beta, apollo_inputs)

Arguments

apollo_beta Named numeric vector. Names and values for parameters.

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

Details

This function should be called at the beginning of apollo_probabilities to make writing the log-
likelihood more user-friendly. If used, then apollo_detach should be called at the end apollo_probabilities,
or more conveniently, using on.exit. apollo_attach attaches apollo_beta, database, draws, and

the output of apollo_randCoeff and apollo_lcPars, if they are defined by the user.

Value

Nothing.

Examples

apollo_beta <- c(b1=0.3, b2=-0.5)

apollo_fixed <- c()

apollo_control <- list(indivID="id"”, mixing = FALSE, panelData = FALSE)
database <- data.frame(id=1:100, xl1=stats::runif(100), x2=stats::runif(100))
apollo_inputs <- apollo_validatelInputs()

apollo_attach(apollo_beta, apollo_inputs)

V = bl*x1 + b2*x2

apollo_detach(apollo_beta, apollo_inputs)

6 apollo_avgInterDraws

apollo_avgInterDraws Averages inter-individual draws

Description

Averages individual-specific likelihood across inter-individual draws.

Usage

apollo_avgInterDraws(P, apollo_inputs, functionality)

Arguments

P List of vectors, matrices or 3-dim arrays. Likelihood of the model components.
apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

functionality Character. Description of the desired output from apollo_probabilities. Can

non non non

take the values: "estimate", "prediction", "validate", "zero_LL", "conditionals",

"output", "raw".

Value

Likelihood averaged over inter-individual draws (shape depends on argument functionality).
* "estimate”: Returns the likelihood of the model averaged across inter-individual draws.
Drops all components but "model”.

e "prediction”: Returns the likelihood of all alternatives and all model components averaged
across inter-individual draws.

* "validate”: Same as "estimate”.
e "zero_LL": Returns P without changes.
* "conditionals": Returns P without averaging draws. Drops all components but "model”.

* "output”: Returns the likelihood of all model components averaged across inter-individual
draws.

* "raw”: Returns P without changes.

apollo_avgIntraDraws 7

apollo_avgIntraDraws Averages intra-individual draws

Description

Averages observation-specific likelihood across intra-individual draws.

Usage

apollo_avgIntraDraws(P, apollo_inputs, functionality)

Arguments

P List of vectors, matrices or 3-dim arrays. Likelihood of the model components.
apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

functionality Character. Description of the desired output from apollo_probabilities. Can

non non

take the values: "estimate", "prediction", "validate", "zero_LL", "conditionals",

"output", "raw".

Value

Likelihood averaged over intra-individual draws (shape depends on argument functionality).
* "estimate”: Returns the likelihood of the model averaged across intra-individual draws.
Drops all components but "model”.

e "prediction”: Returns the likelihood of all alternatives and all model components averaged
across intra-individual draws.

e "validate": Same as "estimate”.
e "zero_LL": Returns P without changes.
e "conditionals"”: Same as "estimate”.

* "output”: Returns the likelihood of all model components averaged across intra-individual
draws.

* "raw”: Returns P without changes.

8 apollo_bootstrap

apollo_bootstrap Bootstrap a model

Description

Samples individuals with replacement from the database, and estimates the model in each sample.

Usage

apollo_bootstrap(
apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
estimate_settings = list(estimationRoutine = "bfgs"”, maxIterations = 200, writelter =
FALSE, hessianRoutine = "none"”, printlLevel = 2L, silent = FALSE),
bootstrap_settings = list(nRep = 30, samples = NA, seed = 24)
)

Arguments

apollo_beta Named numeric vector. Names and values for parameters.
apollo_fixed Character vector. Names (as defined in apollo_beta) of parameters whose
value should not change during estimation.
apollo_probabilities
Function. Returns probabilities of the model to be estimated. Must receive three
arguments:
¢ apollo_beta: Named numeric vector. Names and values of model parame-
ters.
* apollo_inputs: List containing options of the model. See apollo_validateInputs.
* functionality: Character. Can be either "estimate" (default), "prediction",

"non

"validate", "conditionals", "zero_LL", or "raw".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
estimate_settings
List. Options controlling the estimation process. See apollo_estimate. hessianRoutine="none'
by default.
bootstrap_settings
List. Options defining the sampling procedure. The following are valid options.

* nRep: Numeric scalar. Number of times the model must be estimated with
different samples. Default is 30.

e samples: Numeric matrix or data.frame. Optional argument. Must have
as many rows as observations in the database, and as many columns as
number of repetitions wanted. Each column represents a re-sample, and
each element the number of times that observation must be included in the
sample. If this argument is provided, then nRep is ignored. Note that this

apollo_choiceAnalysis 9

allows sampling at the observation rather than the individual level, which is
not recommended for panel data.

* seed: Numeric scalar (integer). Random number generator seed to generate
the bootstrap samples. Only used if samples is NA. Default is 24.

Details

This function implements a basic block bootstrap. It estimates the model parameters on nRep num-
ber of different samples. Each new sample is constructed by sampling with replacement from the
original full sample. Each new sample has as many individuals as the original sample, though some
of them may be repeated. Sampling is done at the individual level, therefore if different individuals
have different number of observations, each re-sample could have different number of observations.

If the sampling wants to be done at the individual level (not recommended on panel data), then the
optional bootstrap_settings$samples argument should be provided.

For each sample, only the parameters and loglikelihood are estimated. Standard errors are not
calculated (they may be in future versions). The composition of each re-sample is stored on a file,
though it should be consistent across runs.

This function writes three different files to the working directory:
* modelName_bootstrap_params.csv: Records the estimated parameters, final loglikelihood,
and number of observations on each re-sample
* modelName_bootstrap_samples.csv: Records the composition of each re-sample.
* modelName_bootstrap_vcov.csv: Variance-covariance matrix of the estimated parameters
across re-samples.
The first two files are updated throughout the run of this function, while the last one is only written
once the function finishes.

When run, this function will look for the first two files above in the working directory. If they are
found, the function will attempt to pick up re-sampling from where those files left off. This is useful
in cases where the original bootstrapping was interrupted, or when additional re-sampling wants to
be performed.

Value

Covariance matrix of the nRep sets of estimated parameters. Also written to file.

apollo_choiceAnalysis Reports market share for subsamples

Description

Compares market shares across subsamples in dataset, and writes results to a file.

Usage

apollo_choiceAnalysis(choiceAnalysis_settings, apollo_control, database)

10

Arguments

apollo_cnl

choiceAnalysis_settings
List containing settings for this function. The settings must be:

alternatives: Named numeric vector. Names of alternatives and their cor-
responding value in choiceVar.

avail: Named list of numeric vectors or scalars. Availabilities of alterna-
tives, one element per alternative. Names of elements must match those in
alternatives. Values canbe O or 1.

choiceVar: Numeric vector. Contains choices for all observations. It will
usually be a column from the database. Values are defined in alternatives.

explanators: data.frame. Variables determining subsamples of the database.
Values in each column must describe a group or groups of individuals (e.g.
socio-demographics). Most usually a subset of columns from database.

rows: Boolean vector. Consideration of rows to include, FALSE to ex-
clude. Length equal to the number of observations (nObs). Default is
"all”, equivalent to rep(TRUE, nObs).

apollo_control List. Options controlling the running of the code. See apollo_validateInputs.

database data.frame. Data used by model.

Details

Saves the output to a csv file in the working directory.

Value

Silently returns a matrix containg the mean ehen chosen and un chose for each explanator, as well
as the t-test comparing those means (HO: equivalence). The table is also writen to a file called
modelName_choiceAnalysis.csv.

apollo_cnl

Calculates probabilities of a cross nested logit

Description

Calculates probabilities of a cross nested logit model.

Usage

apollo_cnl(cnl_settings, functionality)

apollo_cnl

Arguments

11

cnl_settings List of inputs of the CNL model. It should contain the following.

alternatives: Named numeric vector. Names of alternatives and their cor-
responding value in choiceVar.

avail: Named list of numeric vectors or scalars. Availabilities of alterna-
tives, one element per alternative. Names of elements must match those in
alternatives. Values can be O or 1.

choiceVar: Numeric vector. Contains choices for all observations. It will
usually be a column from the database. Values are defined in alternatives.

V: Named list of deterministic utilities . Utilities of the alternatives. Names
of elements must match those in alternatives.

cnlNests: List of numeric scalars or vectors. Lambda parameters for each
nest. Elements must be named according to nests. The lambda at the root
is fixed to 1, and therefore does not need to be defined.

cnlStructure: Numeric matrix. One row per nest and one column per al-
ternative. Each element of the matrix is the alpha parameter of that (nest,
alternative) pair.

rows: Boolean vector. Consideration of rows in the likelihood calculation,
FALSE to exclude. Length equal to the number of observations (nObs).
Default is "all”, equivalent to rep (TRUE, nObs).

componentName: Character. Name given to model component.

functionality Character. Can take different values depending on desired output.

Details

"estimate": Used for model estimation.

"prediction": Used for model predictions.

"validate": Used for validating input.

"zero_LL": Used for calculating null likelihood.
"conditionals": Used for calculating conditionals.

"output": Used for preparing output after model estimation.

"raw": Used for debugging.

For the model to be consistent with utility maximisation, the estimated value of the lambda param-
eter of all nests should be between 0 and 1. Lambda parameters are inversely proportional to the
correlation between the error terms of alternatives in a nest. If lambda=1, there is no relevant cor-
relation between the unobserved utility of alternatives in that nest. The tree must contain an upper
nest called "root"”. The lambda parameter of the root is automatically set to 1 if not specified in
nlNests. And while setting it to another value is possible, it is not recommended. Alpha parameters
inside cnlStructure should be between 0 and 1. Using a transformation to ensure this constraint
is satisfied is recommended (e.g. logistic transformation).

Value

The returned object depends on the value of argument functionality as follows.

12

apollo_cnl

* "estimate”: vector/matrix/array. Returns the probabilities for the chosen alternative for each

observation.

* "prediction”: List of vectors/matrices/arrays. Returns a list with the probabilities for all
alternatives, with an extra element for the chosen alternative probability.

e "validate": Same as "estimate”

e "zero_LL": vector/matrix/array. Returns the probability of the chosen alternative when all
parameters are zero.

e "conditionals"”: Same as "estimate”

* "output”: Same as "estimate” but also writes summary of input data to internal Apollo log.

e "raw": Same as "prediction”

Examples

Load data

data(apollo_modeChoiceData)
database <- apollo_modeChoiceData
rm(apollo_modeChoiceData)

Parameters

b = list(asc_1=0, asc_2=0, asc_3=0, asc_4=0, tt=0, tc=0, acc=0,
lambda_fastPT=0.5, lambda_groundPT=0.5, alpha_rail_fastPT=0.5)

List of utilities

Vv = list()

V[['car' 1] = b$asc_1 + b$ttxdatabase$time_car
VI['bus']1 = b$asc_2 + b$ttxdatabase$time_bus

+

b$tc*database$cost_car
b$tcrdatabase$cost_bus +

+

b$accxdatabase$access_bus

VL['air' 1] = b$asc_3 + b$ttxdatabase$time_air

+

b$tc*database$cost_air +

b$accxdatabase$access_air
V[['rail']] = b$asc_4 + b$ttxdatabase$time_rail + b$tcxdatabase$cost_rail +
b$accxdatabase$access_rail

cnlStructure

cnlStructure[1,]
cnlStructurel[2,]
cnlStructure[3,]

CNL settings

matrix(@, nrow=3, ncol=4)

c(0, 0, 1, b$alpha_rail_fastPT) # fastPT
c(@, 1, @, 1-b%$alpha_rail_fastPT) # groundPT
c(1, 0o, 0,0) # car

cnl_settings <- list(

alternatives
avail

choiceVar

'

cnlNests
cnlStructure

)

c(car=1, bus=2, air=3, rail=4),

list(car=database$av_car, bus=database$av_bus,
air=database$av_air, rail=database$av_rail),

database$choice,

v,

list(fastPT=b$lambda_fastPT, groundPT=b$lambda_groundPT, car=1),

cnlStructure

#i## Compute choice probabilities using CNL model
apollo_cnl(cnl_settings, functionality="estimate")

apollo_combineModels 13

apollo_combineModels Combines separate model components.

Description

Combines model components to create probability for overall model.

Usage

apollo_combineModels(P, apollo_inputs, functionality)

Arguments

P List of vectors, matrices or 3-dim arrays. Likelihood of the model components.
apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
functionality Character. Can take different values depending on desired output.

e "estimate"”: For model estimation, returns likelihood of model.

e "prediction”: For model predictions, returns probabilities of all alterna-

tives.

* "validate": Validates input.

e "zero_LL": Return probabilities with all parameters at zero.

e "conditionals”: For conditionals, returns likelihood of model.

e "output”: Checks that the model is well defined.

* "raw": For debugging, returns probabilities of all alternatives.

Details
This function should be called inside apollo_probabilities after all model components have been
produced.

It should be called before apollo_avglnterDraws, apollo_avgIntraDraws, apollo_panelProd and
apollo_prepareProb, whichever apply.

Value

Argument P with an extra element called "model", which is the product of all the other elements.
Shape depends on argument functionality.

* "estimate”: Returns argument P with an extra component called "model”, which is the
product of all other elements of P.

* "prediction”: Returns argument P without any change.

* "validate"”: Same as "estimate”.

e "zero_LL": Same as "estimate”.

e "conditionals"”: Same as "estimate”.

e "output”: Same as "estimate”.

* "raw": Returns argument P without any change.

14

apollo_conditionals

apollo_combineResults Write model results to file

Description

Writes results from various models to a single CSV file.

Usage

apollo_combineResults(combineResults_settings = NULL)

Arguments

combineResults_settings
List of options. It can include the following.

Value

modelNames: Character vector. List of names of models to combine. Use
an empty vector to combine results from all models in the directory.
printClassical: Boolean. TRUE for printing classical standard errors. TRUE
by default.

printPVal: Boolean. TRUE for printing p-values. FALSE by default.
printT1: Boolean. If TRUE, t-test for HO: apollo_beta=1 are printed.
FALSE by default.

estimateDigits: Numeric scalar. Number of decimal places to print for esti-
mates. Default is 4.

tDigits: Numeric scalar. Number of decimal places to print for t-ratios
values. Default is 2.

pDigits: Numeric scalar. Number of decimal places to print for p-values.
Default is 2.

sortByDate: Boolean. If TRUE, models are ordered by date.

Nothing, but writes a file called *'model_comparisonl|_[date].csv’ in the working directory.

apollo_conditionals

Calculates conditionals

Description

Calculates posterior expected values (conditionals) of random coefficients, as well as their standard

deviations.

Usage

apollo_conditionals(model, apollo_probabilities, apollo_inputs)

apollo_deltaMethod 15

Arguments

model Model object. Estimated model object as returned by function apollo_estimate.
apollo_probabilities
Function. Returns probabilities of the model to be estimated. Must receive three
arguments:
¢ apollo_beta: Named numeric vector. Names and values of model parame-
ters.
* apollo_inputs: List containing options of the model. See apollo_validateInputs.
* functionality: Character. Can be either "estimate" (default), "prediction”,

"non

"validate", "conditionals", "zero_LL", or "raw".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

Details

This functions is only meant for use with continuous distributions

Value

List of matrices. Each matrix has dimensions nIndiv x 3. One matrix per random component. Each
row of each matrix contains the indivID of an individual, and the posterior mean and s.d. of this
random component for this individual

apollo_deltaMethod Delta method

Description

Applies the delta method to calculate the standard errors of transformations of parameters. If the
bootstrap covariance matrix is available, it is used. If not, the robust covariance matrix is used.

Usage
apollo_deltaMethod(model, deltaMethod_settings)

Arguments

model Model object. Estimated model object as returned by function apollo_estimate.
deltaMethod_settings
List of arguments. It must contain the following.
 operation: Character. Function to calculate the delta method for. See de-
tails.
» parNamel: Character. Name of the first parameter.
* parName2: Character. Name of the second parameter. Optional depending
on operation.
e multParl: Numeric scalar. A value to scale parName1.
e multPar2: Numeric scalar. A value to scale parName2.

16 apollo_detach

Details

apollo_deltaMethod supports the following five operations.

sum Calculates the s.e. of parName1 + parName2

diff Calculates the s.e. of parName1 - parName2 and parName2 - parName1
ratio Calculates the s.e. of parName1/parName2 and parName2/parName1
exp Calculates the s.e. of exp(parName1)

logistic If only parName1 is provided, it calculates the s.e. of exp(parName1)/(1+exp(parNamel))
and 1/ (1+exp(parName1)). If parName1 and parName?2 are provided, it calculates exp(par_i)/(1+exp(parNamel)+e
fori=1, 2, and 3 (par_3 =1).

lognormal Calculates the mean and s.d. of a lognormal distribution based on the mean (parName1)
and s.d. (parName2) of the underlying normal.

Value

Matrix contating calue, s.e. and t-ratio resulting from the operation. This is also printed to screen.

apollo_detach Detaches parameters and the database.

Description

Detaches variables attached by apollo_attach.

Usage

apollo_detach(apollo_beta = NA, apollo_inputs = NA)

Arguments

apollo_beta Named numeric vector. Names and values for parameters.

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

Details

This function detaches the variables attached by apollo_attach. It should be called at the end of
apollo_probabilities, only if apollo_attach was called and the beginning. This can be achieved
by adding the line on.exit(apollo_detach(apollo_beta,apollo_inputs)) right after calling
apollo_attach. This function can also be called without any arguments, i.e. apollo_detach().

Value

Nothing.

apollo_dft

Examples

17

apollo_beta <- c(b1=0.3, b2=-0.5)

apollo_fixed <- c()

apollo_control <- list(indivID="id"”, mixing = FALSE, panelData = FALSE)
database <- data.frame(id=1:100, xl1=stats::runif(100), x2=stats::runif(100))
apollo_inputs <- apollo_validatelInputs()

apollo_attach(apollo_beta, apollo_inputs)

V = bl*x1 + b2*x2

apollo_detach(apollo_beta, apollo_inputs)

apollo_dft

Calculate DFT probabilities

Description

Calculate probabilities of a Decision Field Theory (DFT) with external thresholds.

Usage

apollo_dft(dft_settings, functionality)

Arguments

dft_settings List of settings for the DFT model. It should contain the following elements.

alternatives: Named numeric vector. Names of alternatives and their cor-
responding value in choiceVar.

avail: Named list of numeric vectors or scalars. Availabilities of alterna-
tives, one element per alternative. Names of elements must match those in
alternatives. Values canbe O or 1.

choiceVar: Numeric vector. Contains choices for all observations. It will
usually be a column from the database. Values are defined in alternatives.

attrValues: A named list with as many elements as alternatives. Each el-
ement is itself a named list of vectors of the alternative attributes for each
observation (usually a column from the database). All alternatives must
have the same attributes (can be set to zero if not relevant).

altStart: A named list with as many elements as alternatives. Each elment
can be a scalar or vector containing the starting preference value for the
alternative.

attrWeights: A named list with as many elements as attributes, or fewer.
Each element is the weight of the attribute, and can be a scalar, a vector with
as many elements as observations, or a matrix/array if random. They should
add up to one for each observation and draw (if present), and will be re-
scaled if they do not. attrWeights and attrScalings are incompatible,
and they should not be both defined for an attribute. Default is 1 for all
attributes.

18 apollo_dft

* attrScalings: A named list with as many elements as attributes, or fewer.
Each element is a factor that scale the attribute, and can be a scalar, a vector
or a matrix/array. They do not need to add up to one for each observation.
attrWeights and attrScalings are incompatible, and they should not be
both defined for an attribute. Default is 1 for all attributes.

 procPars: A list containing the four DFT ’process parameters’

error_sd: Numeric scalar or vector. The standard deviation of the the
error term in each timestep.

timesteps: Numeric scalar or vector. Number of timesteps to consider.
Should be an integer bigger than 0.

— phil: Numeric scalar or vector. Sensitivity.
— phi2: Numeric scalar or vector. Process parameter.

¢ rows: Boolean vector. Consideration of rows in the likelihood calculation,
FALSE to exclude. Length equal to the number of observations (nObs).
Default is "all”, equivalent to rep (TRUE, nObs).

e componentName: Character. Name given to model component.
functionality Character. Can take different values depending on desired output.

* "estimate”: Used for model estimation.

e "prediction”: Used for model predictions.

e "validate"”: Used for validating input.

e "zero_LL": Used for calculating null likelihood.

* "conditionals”: Used for calculating conditionals.

* "output”: Used for preparing output after model estimation.
* "raw": Used for debugging.

Value

The returned object depends on the value of argument functionality as follows.
» "estimate”: vector/matrix/array. Returns the probabilities for the chosen alternative for each
observation.

* "prediction”: List of vectors/matrices/arrays. Returns a list with the probabilities for all
alternatives, with an extra element for the chosen alternative probability.

e "validate”: Same as "estimate”

e "zero_LL": vector/matrix/array. Returns the probability of the chosen alternative when all
parameters are zero.

e "conditionals": Same as "estimate”
* "output”: Same as "estimate” but also writes summary of input data to internal Apollo log.

e "raw”: Same as "prediction”

References

Hancock, T.; Hess, S. and Choudhury, C. (2018) Decision field theory: Improvements to current
methodology and comparisons with standard choice modelling techniques. Transportation Research

apollo_drugChoiceData 19

107B, 18 - 40. Hancock, T.; Hess, S. and Choudhury, C. (Submitted) An accumulation of prefer-
ence: two alternative dynamic models for understanding transport choices. Roe, R.; Busemeyer, J.
and Townsend, J. (2001) Multialternative decision field theory: A dynamic connectionist model of
decision making. Psychological Review 108, 370

apollo_drugChoiceData Simulated dataset of medication choice.

Description

A simulated dataset containing 10,000 stated medication choices among four alternatives.

Usage

apollo_drugChoiceData

Format
A data frame with 10000 rows and 33 variables:

ID Numeric. Identification number of the individual.
task Numeric. 1 if the row corresponds to a revealed preference (RP) observation. 0 otherwise.
best Numeric. Consecutive ID of RP observation.

second_pref Numeric. 1 if the row corresponds to a stated preference (SP) observation. 0 other-
wise.

third_pref Numeric. Consecutive ID of SP choice task.

worst Numeric. Access time (in minutes) of mode air.

brand_1 Character. Name of alternative’s brand.

country_1 Character. Name of alternative’s country of origin.

char_1 Character. Characteristics of the alternative (standard, fast acting, or double strength).
side_effects_1 Numeric. Chance of suffering negative side effects if this alternative is consumed.
price_1 Numeric. Cost of this alternative in Pounds sterling (GBP).

brand_2 Character. Name of alternative’s brand.

country_2 Character. Name of alternative’s country of origin.

char_2 Character. Characteristics of the alternative (standard, fast acting, or double strength).
side_effects_2 Numeric. Chance of suffering negative side effects if this alternative is consumed.
price_2 Numeric. Cost of this alternative in Pounds sterling (GBP).

brand_3 Character. Name of alternative’s brand.

country_3 Character. Name of alternative’s country of origin.

char_3 Character. Characteristics of the alternative (standard, fast acting, or double strength).

side_effects_3 Numeric. Chance of suffering negative side effects if this alternative is consumed.

20

apollo_el

price_3 Numeric. Cost of this alternative in Pounds sterling (GBP).

brand_4 Character. Name of alternative’s brand.

country_4 Character. Name of alternative’s country of origin.

char_4 Character. Characteristics of the alternative (standard, fast acting, or double strength).
side_effects_4 Numeric. Chance of suffering negative side effects if this alternative is consumed.
price_4 Numeric. Cost of this alternative in Pounds sterling (GBP).

regular_user Numeric. 1 if the respondent is a regular user of headache medicine, 0 otherwise.
university_educated Numeric. 1 if the respondent holds a university degree, O otherwise.
over_50 Numeric. 1 if the respondent is 50 years old or older, O otherwise.

attitude_quality Numeric. Level of agreement from 1 (strongly disagree) to 5 (strongly agree)
with the phrase I am concerned about the quality of drugs developed by unknown companies’.

attitude_ingredients Numeric. Level of agreement from 1 (strongly disagree) to 5 (strongly agree)
with the phrase I believe that ingredients are the same no matter what brand’.

attitude_patent Numeric. Level of agreement from 1 (strongly disagree) to 5 (strongly agree) with
the phrase ’The original patent holders have valuable experience with their medicines’.

attitude_dominance Numeric. Level of agreement from 1 (strongly disagree) to 5 (strongly agree)
with the phrase ’I believe the dominance of big pharmaceutical companies is unhelpful’.

Details

This dataset is to be used for discrete choice modelling. Data comes from 1,000 individuals,
each with ten stated preferences (SP) observations among headache medication. There are 10,000
choices in total. Data is simulated. Each observation contains attributes of the alternatives, charac-
teristics of the respondent, and their answers to four attitudinal questions. All four alternatives are
always available for all individuals. Alternatives 1 and 2 are branded, while alternatives 3 and 4 are
generic. Respondents provide a full ranking of alternatives for each choice task (i.e. observation).

Source

http://www.apollochoicemodelling.com/

apollo_el Calculates exploded logit probabilities

Description

Calculates the probabilities of an exploded logit model and can also perform other operations based
on the value of the functionality argument. The function calculates the probability of a ranking
as a product of logit models with gradually reducing availability, where scale differences can be
allowed for.

Usage

apollo_el(el_settings, functionality)

http://www.apollochoicemodelling.com/

apollo_el 21

Arguments

el_settings List of inputs of the exploded logit model. It shoud contain the following.
* "alternatives”: Named numeric vector. Names of alternatives and their
corresponding value in choiceVar.

e "avail”: Named list of numeric vectors or scalars. Availabilities of alter-
natives, one element per alternative. Names of elements must match those
in alternatives. Values can be O or 1.

* "choiceVars": List of numeric vectors. Contain choices for each position
of the ranking. The list must be ordered with the best choice first, second
best second, etc. It will usually be a list of columns from the database.

e "V": Named list of deterministic utilities . Utilities of the alternatives.
Names of elements must match those in alternatives.

* "scales": List of vectors. Scale factors of each logit model. Should have
one element less than choiceVars. At least one element should be normal-
ized to 1. If omitted, scale=1 for all positions is assumed.

* "rows": Boolean vector. Consideration of rows in the likelihood calcu-
lation, FALSE to exclude. Length equal to the number of observations
(nObs). Default is "all”, equivalent to rep(TRUE, nObs).

* "componentName": Character. Name given to model component.
functionality Character. Can take different values depending on desired output.

* "estimate”: Used for model estimation.

* "prediction”: Used for model predictions.

e "validate"”: Used for validating input.

e "zero_LL": Used for calculating null likelihood.

* "conditionals”: Used for calculating conditionals.

* "output”: Used for preparing output after model estimation.
* "raw": Used for debugging.

Value

The returned object depends on the value of argument functionality as follows.
* "estimate”: vector/matrix/array. Returns the probabilities for the chosen alternative for each
observation.
e "prediction”: Not applicable (NA).
* "validate”: Same as "estimate”

e "zero_LL": vector/matrix/array. Returns the probability of the chosen alternative when all
parameters are zero.

* "conditionals”: Same as "estimate”
* "output”: Same as "estimate” but also writes summary of input data to internal Apollo log.

e "raw"”: Same as "estimate”

22 apollo_estimate

apollo_estimate Estimates model

Description

Estimates a model using the likelihood function defined by apollo_probabilities.

Usage

apollo_estimate(
apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
estimate_settings = NA

Arguments

apollo_beta Named numeric vector. Names and values for parameters.

apollo_fixed Character vector. Names (as defined in apollo_beta) of parameters whose
value should not change during estimation.

apollo_probabilities
Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

* apollo_beta: Named numeric vector. Names and values of model parame-
ters.

* apollo_inputs: List containing options of the model. See apollo_validateInputs.

* functionality: Character. Can be either "estimate" (default), "prediction",

non

"validate", "conditionals", "zero_LL", or "raw".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
estimate_settings
List. Options controlling the estimation process.

* estimationRoutine: Character. Estimation method. Can take values "bfgs",
"bhhh", or "nr". Used only if apollo_control$HB is FALSE. Default is
"bfgs".

* maxIterations: Numeric. Maximum number of iterations of the estima-
tion routine before stopping. Used only if apollo_control$HB is FALSE.
Default is 200.

 writelter: Boolean. Writes value of the parameters in each iteration to a
csv file. Works only if estimation_routine="bfgs". Default is TRUE.

* hessianRoutine: Character. Name of routine used to calculate the Hessian
of the loglikelihood function after estimation. Valid values are "numDeriv”
(default) and "maxLik" to use the routines in those packages, and "none”
to avoid estimating the Hessian (and the covariance matrix). Only used if
apollo_control$HB=FALSE.

apollo_estimateHB 23

* printLevel: Higher values render more verbous outputs. Can take values
0, 1, 2 or 3. Ignored if apollo_control$HB is TRUE. Default is 3.

* constraints: Constraints on parameters to estimate. Should ignore fixed
parameters. See argument constraints in maxBFGS for more details.

* scaling: Named vector. Names of elements should match those in apollo_beta.
Optional scaling for parameters. If provided, for each parameter i, (apollo_betali]/scaling[i])

is optimised, but scaling[i]*(apollo_betal[i]/scaling[i]) is used dur-
ing estimation. For example, if parameter b3=10, while b1 and b2 are close
to 1, then setting scaling = c(b3=10) can help estimation, specially the
calculation of the Hessian. Reports will still be based on the non-scaled
parameters.

* numDeriv_settings: List. Additional arguments to the Richardson method
used by numDeriv to calculate the Hessian. See argument method.args in
grad for more details.

* bootstrapSE: Numeric. Number of bootstrap samples to calculate standard
errors. Default is 0, meaning no bootstrap s.e. will be calculated. Number
must zero or a positive integer. Only used if apollo_control$HB is FALSE.

* bootstrapSeed: Numeric scalar (integer). Random number generator seed
to generate the bootstrap samples. Only used if bootstrapSE>0. Default is
24.

« silent: Boolean. If TRUE, no information is printed to the console during
estimation. Default is FALSE.

Details

This is the main function of the Apollo package. The estimation process begins by running a
number of checks on the apollo_probabilities function provided by the user. If all checks
are passed, estimation begins. There is no limit to estimation time other than reaching the max-
imum number of iterations. If bayesian estimation is used, estimation will finish once the prede-
fined number of iterations are completed. By default, this functions writes the estimated parameter
values in each iteration to a file in the working directory. Writing can be turned off by setting
estimate_settings$writeIter to FALSE, of by using any estimation algorithm other than BFGS.
By default, final results are not written into a file nor printed into the console, so users must
make sure to call function apollo_modelOutput and/or apollo_saveOutput afterwards. Users
are strongly encouraged to visit www.apolloChoiceModelling.com to download examples on how
to use the Apollo package. The webpage also provides a detailed manual for the package, as well
as a user-group to get further help.

Value

model object

apollo_estimateHB Estimates model

24 apollo_estimateHB

Description

Estimates a model using the likelihood function defined by apollo_probabilities.

Usage

apollo_estimateHB(
apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
estimate_settings = NA

Arguments

apollo_beta Named numeric vector. Names and values for parameters.

apollo_fixed Character vector. Names (as defined in apollo_beta) of parameters whose
value should not change during estimation.

apollo_probabilities
Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

¢ apollo_beta: Named numeric vector. Names and values of model parame-
ters.

* apollo_inputs: List containing options of the model. See apollo_validateInputs.
* functionality: Character. Can be either "estimate" (default), "prediction”,

"non

"validate", "conditionals", "zero_LL", or "raw".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
estimate_settings
List. Options controlling the estimation process.

* estimationRoutine: Character. Estimation method. Can take values "bfgs",
"bhhh", or "nr". Used only if apollo_control$HB is FALSE. Default is
"bfgs".

* maxIterations: Numeric. Maximum number of iterations of the estima-
tion routine before stopping. Used only if apollo_control$HB is FALSE.
Default is 200.

 writelter: Boolean. Writes value of the parameters in each iteration to a
csv file. Works only if estimation_routine="bfgs". Default is TRUE.

* hessianRoutine: Character. Name of routine used to calculate the Hessian
of the loglikelihood function after estimation. Valid values are "numDeriv”
(default) and "maxLik" to use the routines in those packages, and "none”
to avoid estimating the Hessian (and the covariance matrix). Only used if
apollo_control$HB=FALSE.

* printLevel: Higher values render more verbous outputs. Can take values
0, 1, 2 or 3. Ignored if apollo_control$HB is TRUE. Default is 3.

* constraints: Constraints on parameters to estimate. Should ignore fixed
parameters. See argument constraints in maxBFGS for more details.

apollo_firstRow

25

scaling: Named vector. Names of elements should match those in apollo_beta.
Optional scaling for parameters. If provided, for each parameter i, (apollo_betalil/scaling[i])

is optimised, but scaling[i]*(apollo_betal[i]/scaling[i]) is used dur-
ing estimation. For example, if parameter b3=10, while b1 and b2 are close
to 1, then setting scaling = c(b3=10) can help estimation, specially the
calculation of the Hessian. Reports will still be based on the non-scaled
parameters.

* numDeriv_settings: List. Additional arguments to the Richardson method
used by numDeriv to calculate the Hessian. See argument method. args in
grad for more details.

* bootstrapSE: Numeric. Number of bootstrap samples to calculate standard
errors. Default is 0, meaning no bootstrap s.e. will be calculated. Number
must zero or a positive integer. Only used if apollo_control$HB is FALSE.

* bootstrapSeed: Numeric scalar (integer). Random number generator seed
to generate the bootstrap samples. Only used if bootstrapSE>0. Default is
24.

* silent: Boolean. If TRUE, no information is printed to the console during
estimation. Default is FALSE.

Details

This is the main function of the Apollo package. The estimation process begins by checking
the definition of apollo_probabilities by estimating it at the starting values. Then it runs
the function with argument functionality="validate”. If the user requested more than one
core for estimation (i.e. apollo_control$nCores>1), and no bayesian estimation is used (i.e.
apollo_control$HB=FALSE), then a cluster is created. Using a cluster at least doubles the re-
quires RAM, as the database must be copied into the cluster. If all checks are passed, estima-
tion begins. There is no limit to estimation time other than reaching the maximum number of
iterations. If bayesian estimation is used, estimation will finish once the predefined number of it-
erations are completed. This functions does not save results into a file nor prints them into the
console, so if users want to see and store estimation the results, they must make sure to call function
apollo_modelQutput and/or apollo_saveOutput afterwards.

Value

model object

apollo_firstRow

Keeps only the first row for each individual

Description

Given a multi-row input, keeps only the first row for each individual.

Usage

apollo_firstRow(P, apollo_inputs)

26 apollo_fitsTest

Arguments

P List of vectors, matrices or 3-dim arrays. Likelihood of the model components
(or other object).

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

Details

This a function to keep only the first row of an object per indidividual. It can handle multiple
components, scalars, vectors and three-dimensional arrays (cubes). The argument database MUST
contain a column called *apollo_sequence’, which is created by apollo_validateData.

Value

If P is a list, then it returns a list where each element has only the first row of each individual. If P is
a single element, then it returns a single element with only the first row of each individual. The size
of the element is changed only in the first dimension. If input is a scalar, then it returns a vector with
the element repeated as many times as individuals in database. If the element is a vector, its length
will be changed to the number of individuals. If the element is a matrix, then its first dimension
will be changed to the number of individuals, while keeping the size of the second dimension. If
the element is a cube, then only the first dimension’s length is changed, preserving the others.

Examples

database <- data.frame(ID=rep(1:5, each=3), apollo_sequence=rep(1:3, 5))
apollo_inputs <- list(database=database)
attach(database)

PO <- 0.5
apollo_firstRow(P@, apollo_inputs)

P1 <- rep(c(0.1, 0.2, 0.3, 0.4, 0.5), each=3)
apollo_firstRow(P1, apollo_inputs)

P2 <- matrix(rep(P1,10), nrow=15, ncol=10)
apollo_firstRow(P2, apollo_inputs)

P3 <- array(rep(P1, 10%x10), dim=c(15, 10, 10))
apollo_firstRow(P3, apollo_inputs)

P4 <- list(Po, P1, P2, P3)
apollo_firstRow(P4, apollo_inputs)

apollo_fitsTest Compares fit of model across categories

Description

Given the predictions of a model, it compares the fit across categories of observations.

apollo_initialise 27

Usage

apollo_fitsTest(model, apollo_probabilities, apollo_inputs, fitsTest_settings)

Arguments

model Model object. Estimated model object as returned by function apollo_estimate.
apollo_probabilities
Function. Returns probabilities of the model to be estimated. Must receive three
arguments:
* apollo_beta: Named numeric vector. Names and values of model parame-
ters.

* apollo_inputs: List containing options of the model. See apollo_validateInputs.
* functionality: Character. Can be either "estimate" (default), "prediction",

"non

"validate", "conditionals", "zero_LL", or "raw".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
fitsTest_settings
List of arguments. It must contain the following elements.

» subsamples: Named list of boolean vectors. Each element of the list de-
fines whether a given observation belongs to a given subsample (e.g. by
sociodemographics).

* modelComponent: Name of model component. Set to model by default.

Details

Prints a table comparing the average fit for each category.

Value

Matrix with average fit per category (invisibly).

apollo_initialise Prepares environment

Description

Prepares environment (the global environment if called by the user) for model definition and esti-
mation.

Usage

apollo_initialise()

Details

This function detaches variables and makes sure that output is directed to console. It does not delete
variables from the working environment.

28 apollo_keepRows

Value

Nothing.

apollo_insertRows Inserts rows

Description

Given a numeric object (scalar, vector, matrix or 3-dim array) inserts rows in the specified places.

Usage

apollo_insertRows(v, r, val)

Arguments
% Numeric scalar, vector, matrix or 3-dim array.
r Boolean vector. TRUE for inserting a row from v, FALSE to insert a new row
with value val.
val Numeric scalar. Value that will fill new rows.
Details

In general, r should be longer than the number of rows in v, and sum(r)=nrow(v). If not, then a
new object with as many rows as r will be returned. Old rows will be taken from v from the top
down.

Value

The same argument v but with the rows where r==FALSE removed.

apollo_keepRows Keeps only some rows

Description

Given a numeric object (scalar, vector, matrix or 3-dim array) keeps only the specieifed rows.

Usage

apollo_keepRows(v, r)

apollo_Ic 29

Arguments
v Numeric scalar, vector, matrix or 3-dim array.
r Boolean vector. As many elements as rows in v. TRUE for keeping the row.
FALSE to drop it.
Value

The same argument v but with the rows where r==FALSE removed.

apollo_lc Calculates the likelihood of a latent class model

Description

Using the conditional likelihoods of each latent class, as well as teir classification probabilities,
calculate the weighted likelihood of the whole model.

Usage

apollo_lc(lc_settings, apollo_inputs, functionality)

Arguments

lc_settings List of arguments used by apollo_lc. It must include the following.
* inClassProb: List of probabilities. Conditional likelihood for each class.
One element per class, in the same order as classProb.

¢ classProb: List of probabilities. Allocation probability for each class. One
element per class, in the same order as inClassProb.

* componentName: Character. Name given to model component.
apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
functionality Character. Can take different values depending on desired output.

* "estimate" Used for model estimation.

* "prediction" Used for model predictions.

* "validate" Used for validating input.

 "zero_LL" Used for calculating null likelihood.

* "conditionals" Used for calculating conditionals.
 "output" Used for preparing output after model estimation.
* "raw" Used for debugging.

30 apollo_IcConditionals

Value
The returned object depends on the value of argument functionality as follows.
* "estimate”: vector/matrix/array. Returns the probabilities for the chosen alternative for each
observation.

* "prediction”: List of vectors/matrices/arrays. Returns a list with the probabilities for all
models components, for each class.

* "validate”: Same as "estimate”, but also runs a set of tests on the given arguments.

e "zero_LL": Same as "estimate”

* "conditionals”: Same as "estimate”

* "output”: Same as "estimate” but also writes summary of input data to internal Apollo log.

e "raw": Same as "prediction”

Examples

data(apollo_modeChoiceData)

database <- apollo_modeChoiceData

rm(apollo_modeChoiceData)

N <- nrow(database)

lc_settings <- list(inClassProb=list(rnorm(N), rnorm(N)),
classProb=list(stats::runif(N), stats::runif(N)))

apollo_control <- list(indivID="ID")

x <- apollo_lc(lc_settings, apollo_control, functionality="estimate")

summary (x)

apollo_lcConditionals Calculates conditionals of a latent class model.

Description

Calculates posterior expected values (conditionals) of class allocation probabilities for each indi-
vidual.

Usage

apollo_lcConditionals(model, apollo_probabilities, apollo_inputs)

Arguments

model Model object. Estimated model object as returned by function apollo_estimate.
apollo_probabilities
Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

e apollo_beta: Named numeric vector. Names and values of model parame-
ters.

apollo_IcUnconditionals 31

* apollo_inputs: List containing options of the model. See apollo_validateInputs.

* functionality: Character. Can be either "estimate" (default), "prediction”,
"validate", "conditionals", "zero_LL", or "raw".

apollo_inputs List grouping most common inputs. Created by function apollo_validatelnputs.

Details

This function can only be used with latent class models without continuous heterogeneity.

Value

A matrix with the posterior class allocation probabilities for each individual.

apollo_lcUnconditionals
Returns draws for random parameters in a latent class model model

Description

Returns draws (unconditionals) for random parameters in model, including interactions with deter-
ministic covariates

Usage

apollo_lcUnconditionals(model, apollo_probabilities, apollo_inputs)

Arguments

model Model object. Estimated model object as returned by function apollo_estimate.

apollo_probabilities
Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

* apollo_beta: Named numeric vector. Names and values of model parame-
ters.

* apollo_inputs: List containing options of the model. See apollo_validateInputs.

* functionality: Character. Can be either "estimate" (default), "prediction",

"non

"validate", "conditionals", "zero_LL", or "raw".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

Details

This functions is only meant for use with continuous distributions

Value

List of object, one per random component and one for the class allocation probabilities.

32 apollo_IICalc

apollo_l1Calc Calculates log-likelihood of all model components

Description

Calculates the log-likelihood of each model component as well as the whole model.

Usage

apollo_l1Calc(apollo_beta, apollo_probabilities, apollo_inputs, silent = FALSE)

Arguments

apollo_beta Named numeric vector. Names and values for parameters.

apollo_probabilities
Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

* apollo_beta: Named numeric vector. Names and values of model parame-
ters.
* apollo_inputs: List containing options of the model. See apollo_validateInputs.

* functionality: Character. Can be either "estimate" (default), "prediction",

non

"validate", "conditionals", "zero_LL", or "raw".
apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

silent Boolean. If TRUE, no information is printed to the console by the function.
Default is FALSE.

Details

This function calls apollo_probabilities with functionality="output". Then, it reorders the list of
likelihoods so that "model" goes first.

Value

A list of vectors. Each vector corresponds to the log-likelihood of the whole model (first element)
or a model component.

apollo_loadModel 33

apollo_loadModel Loads model from file

Description

Loads an estimated model object from a file in the current working directory.

Usage
apollo_loadModel (modelName)

Arguments

modelName Character. Name of the model to load.

Details

This function looks for a file named modelName_model.rds in the working directory, loads the
object contained in it, and returns it.

Value

A model object.

apollo_lrTest Likelihood ratio test

Description

Calculates the likelihood ratio test and prints result.

Usage

apollo_lrTest(baseModel, generalModel)

Arguments
baseModel Character. Name of a previously estimated model whose results were written to
disk by apollo_saveOutput. This is the restricted model, i.e. the one with fewer
parameters.

generalModel Either a character variable with the name of a previously estimated model, or an
estimated model in memory, as returned by apollo_estimate. This model nests
baseModel, and it should have more parameters than it.

Value

LL ratio test statistic (invisibly)

34 apollo_makeCluster

apollo_makeCluster Creates cluster for estimation.

Description

Creates cluster and loads pieces of the database for each worker.

Usage

apollo_makeCluster(
apollo_probabilities,
apollo_inputs,
silent = FALSE,
cleanMemory = FALSE

)

Arguments

apollo_probabilities
Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

* apollo_beta: Named numeric vector. Names and values of model parame-
ters.

* apollo_inputs: List containing options of the model. See apollo_validateInputs.

* functionality: Character. Can be either "estimate" (default), "prediction”,

"non

"validate", "conditionals", "zero_LL", or "raw".
apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
silent Boolean. If TRUE, it reports progress to the console. Default is FALSE.

cleanMemory Boolean. If TRUE, it saves apollo_inputs to disc, and removes database and
draws from the apollo_inputs in .GlobalEnv and the parent environment.
Details
Internal use only. Called by apollo_estimate before estimation. AT least doubles up memory
usage. But during the splitting it uses even more (~250
Value

Cluster (i.e. an object of class cluster from package parallel)

apollo_makeDraws 35

apollo_makeDraws Creates draws for models with mixing

Description

Creates a list containing all draws necessary to estimate a model with mixing.

Usage

apollo_makeDraws(apollo_inputs, silent = FALSE)

Arguments

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

silent Boolean. If true, then no information is printed to console or default output.
FALSE by default.

Details

Internal use only. Called by apollo_validateInputs. # This function creates a list whose el-
ements are the sets of draws requested by the user for use in a model with mixing. If the model
does not include mixing, then it is not necessary to run this function. The number of draws have a
massive impact on memory usage and estimation time. Memory usage and number of computations
scale geometrically as N*interNDraws*intraNDraws (where N is the number of observations). Spe-
cial care should be taken when using both inter and intra draws, as memory usage can easily reach
the GB order of magnitude. Also, keep in mind that using several threads (i.e. multicore) at least
doubles the memory usage. This function returns a list, with each element representing a random
component of the mixing model. The dimensions of the array depend on the type of draws used.

1. If only inter-individual draws are used, then draws are stored as 2-dimensional arrays (i.e.
matrices).

2. If intra-individual draws are used, then draws are stored as 3-dimensional arrays.

3. The first dimension of the arrays (rows) correspond with the observations in the database.

4. The second dimension of the arrays (columns) correspond to the number of inter-individual
draws.

5. The third dimension of the arrays correspond to the number of intra-individual draws.

Value

List. Each element is an array of draws representing a random component of the mixing model.

36 apollo_makeLogLike

apollo_makelLoglike Creates log-likelihood function.

Description

Creates log-likelihood function from the likelihood function apollo_probabilities provided by the
user.

Usage

apollo_makeloglike(
apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
apollo_estSet,
cl = NA

Arguments

apollo_beta Named numeric vector. Names and values for parameters.
apollo_fixed Character vector. Names (as defined in apollo_beta) of parameters whose
value should not change during estimation.
apollo_probabilities
Function. Returns probabilities of the model to be estimated. Must receive three
arguments:
* apollo_beta: Named numeric vector. Names and values of model parame-
ters.
* apollo_inputs: List containing options of the model. See apollo_validateInputs.
* functionality: Character. Can be either "estimate" (default), "prediction”,

"non

"validate", "conditionals", "zero_LL", or "raw".
apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

apollo_estSet List of estimation options. It must contain at least one element called estima-
tionRoutine defining the estimation algorithm. See apollo_estimate.

cl Cluster as provided by makeCluster. Assumed to be PSock.

Details
Internal use only. Called by apollo_estimate before estimation. The returned function can be
single-threaded or multi-threaded based on the model options.

Value

apollo_logLike function.

apollo_mdcev

37

apollo_mdcev

Calculates MDCEYV likelihoods.

Description

Calculates the likelihood of a Multiple Discrete Continuous Extreme Value (MDCEV) model.

Usage

apollo_mdcev(mdcev_settings, functionality)

Arguments

mdcev_settings List of settings for the MDCEV model. It must include the following.

e V: Named list. Utilities of the alternatives. Names of elements must match
those in argument ’alternatives’.

e alternatives: Character vector. Names of alternatives, elements must
match the names in list ’V’.

* alpha: Named list. Alpha parameters for each alternative, including for
any outside good. As many elements as alternatives.

* gamma: Named list. Gamma parameters for each alternative, excluding any
outside good. As many elements as inside good alternatives.

* sigma: Numeric scalar. Scale parameter of the model extreme value type I
error.

e cost: Named list of numeric vectors. Price of each alternative. One ele-
ment per alternative, each one as long as the number of observations or a
scalar. Names must match those in alternatives.

e avail: Named list. Availabilities of alternatives, one element per alterna-
tive. Names of elements must match those in argument "alternatives’. Value
for each element can be 1 (scalar if always available) or a vector with values
0 or 1 for each observation.

* continuousChoice: Named list of numeric vectors. Amount of consump-
tion of each alternative. One element per alternative, as long as the number
of observations or a scalar. Names must match those in alternatives.

* budget: Numeric vector. Budget for each observation.

e minConsumption: Named list of scalars or numeric vectors. Minimum
consumption of the alternatives, if consumed. As many elements as alter-
natives. Names must match those in alternatives.

outside: Character. Optional name of the outside good.

* rows: Boolean vector. Consideration of rows in the likelihood calculation,
FALSE to exclude. Length equal to the number of observations (nObs).
Default is "all”, equivalent to rep (TRUE, nObs).

» componentName: Character. Name given to model component.

functionality Character. Can take different values depending on desired output.

38 apollo_mdcevlInside

* "estimate” Used for model estimation.

* "prediction” Used for model predictions.

* "validate” Used for validating input.

e "zero_LL" Used for calculating null likelihood.

* "conditionals” Used for calculating conditionals.

* "output” Used for preparing output after model estimation.
* "raw” Used for debugging.

Value
The returned object depends on the value of argument functionality as follows.
* "estimate”: vector/matrix/array. Returns the probabilities for the observed consumption for

each observation.

e "prediction”: A matrix with one row per observation, and columns indicating means and
s.d. of continuous and discrete predicted consumptions.

* "validate”: Same as "estimate”, but it also runs a set of tests to validate the function inputs.
* "zero_LL": Notimplemented. Returns a vector of NA with as many elements as observations.
* "conditionals"”: Same as "estimate”

* "output”: Same as "estimate” but also writes summary of input data to internal Apollo log.
* "raw”: Same as "estimate”

apollo_mdcevInside Calculates MDCEYV likelihoods without an outside good.

Description

Calculates the likelihood of a Multiple Discrete Continuous Extreme Value (MDCEV) model with-
out an outside good.

Usage

apollo_mdcevInside(
v,
alternatives,
alpha,
gamma,
sigma,
cost,
avail,
continuousChoice,
budget,
functionality,
minConsumption = NA,
rows = "all”,

componentName = "MDCEV"

apollo_mdcevlInside 39
Arguments
\ Named list. Utilities of the alternatives. Names of elements must match those in
argument ’alternatives’.
alternatives Character vector. Names of alternatives, elements must match the names in list
V.
alpha Named list. Alpha parameters for each alternative. As many elements as alter-
natives.
gamma Named list. Gamma parameters for each alternative. As many elements as alter-
natives.
sigma Numeric scalar. Scale parameter of the model extreme value type I error.
cost Named list of numeric vectors. Price of each alternative. One element per alter-
native, each one as long as the number of observations or a scalar. Names must
match those in alternatives.
avail Named list. Availabilities of alternatives, one element per alternative. Names of
elements must match those in argument ’alternatives’. Value for each element
can be 1 (scalar if always available) or a vector with values O or 1 for each
observation. If all alternatives are always available, then user can just omit this
argument.
continuousChoice
Named list of numeric vectors. Amount of consumption of each alternative.
One element per alternative, as long as the number of observations or a scalar.
Names must match those in alternatives.
budget Numeric vector. Budget for each observation.
functionality Character. Can take different values depending on desired output.
* "estimate" Used for model estimation.
* "prediction" Used for model predictions.
* "validate" Used for validating input.
e "zero_LL" Used for calculating null likelihood.
* "conditionals" Used for calculating conditionals.
* "output" Used for preparing output after model estimation.
* "raw" Used for debugging.
minConsumption Named list of scalars or numeric vectors. Minimum consumption of the alterna-
tives, if consumed. As many elements as alternatives. Names must match those
in alternatives.
rows Boolean vector. Consideration of rows in the likelihood calculation, FALSE to
exclude. Length equal to the number of observations (nObs). Default is "all”,
equivalent to rep(TRUE, nObs).
componentName Character. Name given to model component.
Value

The returned object depends on the value of argument functionality as follows.

40 apollo_mdcevQutside

* "estimate”: vector/matrix/array. Returns the probabilities for the chosen alternative for each
observation.

e "prediction”: A matrix with one row per observation, and means and s.d. of predicted
consumptions.

* "validate"”: Boolean. Returns TRUE if all tests are passed.
e "zero_LL": Not applicable.
* "conditionals”: Same as "prediction".

* "output”: Same as "estimate" but also writes summary of choices into temporary file (later
read by apollo_modelOutput).

* "raw": Same as "prediction”.

apollo_mdcevOutside Calculates MDCEYV likelihoods with an outside good.

Description

Calculates the likelihood of a Multiple Discrete Continuous Extreme Value (MDCEV) model with
an outside good.

Usage
apollo_mdcevOutside(
v,
alternatives,
alpha,
gamma,
sigma,
cost,
avail,
continuousChoice,
budget,
functionality,
minConsumption = NA,
outsideName = "outside”,
rows = "all”,
componentName = "MDCEV"
)
Arguments
v Named list. Utilities of the alternatives. Names of elements must match those in

argument ’alternatives’.

alternatives Character vector. Names of alternatives, elements must match the names in list
V.

apollo_mdcevOutside

41

alpha Named list. Alpha parameters for each alternative, including for the outside
good. As many elements as alternatives.
gamma Named list. Gamma parameters for each alternative, excluding the outside good.
As many elements as inside good alternatives.
sigma Numeric scalar. Scale parameter of the model extreme value type I error.
cost Named list of numeric vectors. Price of each alternative. One element per alter-
native, each one as long as the number of observations or a scalar. Names must
match those in alternatives.
avail Named list. Availabilities of alternatives, one element per alternative. Names of
elements must match those in argument ’alternatives’. Value for each element
can be 1 (scalar if always available) or a vector with values 0 or 1 for each
observation. If all alternatives are always available, then user can just omit this
argument.
continuousChoice
Named list of numeric vectors. Amount of consumption of each alternative.
One element per alternative, as long as the number of observations or a scalar.
Names must match those in alternatives.
budget Numeric vector. Budget for each observation.
functionality Character. Can take different values depending on desired output.
* "estimate" Used for model estimation.
* "prediction" Used for model predictions.
* "validate" Used for validating input.
* "zero_LL" Used for calculating null likelihood.
* "conditionals" Used for calculating conditionals.
* "output" Used for preparing output after model estimation.
* "raw" Used for debugging.
minConsumption Named list of scalars or numeric vectors. Minimum consumption of the alterna-
tives, if consumed. As many elements as alternatives. Names must match those
in alternatives.
outsideName Character. Alternative name for the outside good. The first good is assumed to
be the outside one. Default is "outside"
rows Boolean vector. Consideration of rows in the likelihood calculation, FALSE to
exclude. Length equal to the number of observations (nObs). Default is "all”,
equivalent to rep(TRUE, nObs).
componentName Character. Name given to model component.
Value

The returned object depends on the value of argument functionality as follows.

» "estimate": vector/matrix/array. Returns the probabilities for the chosen alternative for each

observation.

 "prediction":

sumptions.

A matrix with one row per observation, and means and s.d. of predicted con-

42

apollo_mdcnev

 "validate": Boolean. Returns TRUE if all tests are passed.

* "zero_LL": Not applicable.

* "conditionals": Same as "prediction".

* "output": Same as "estimate" but also writes summary of choices into temporary file (later
read by apollo_modelOutput).

* "raw": Same as "prediction".

apollo_mdcnev

Calculates MDCNEY likelihoods with an outside good.

Description

Calculates the likelihood of a Multiple Discrete Continuous Nested Extreme Value (MDCNEV)
model with an outside good.

Usage

apollo_mdcnev(mdcnev_settings, functionality)

Arguments

mdcnev_settings

List of settings for the MDCEV model. It must include the following.

V: Named list. Utilities of the alternatives. Names of elements must match
those in argument ’alternatives’.

alternatives: Character vector. Names of alternatives, elements must
match the names in list *V’.

alpha: Named list. Alpha parameters for each alternative, including for the
outside good. As many elements as alternatives.

gamma: Named list. Gamma parameters for each alternative, including for
the outside good. As many elements as alternatives.

mdcnevNests: Named list. Lambda parameters for each nest. Elements
must be named with the nest name. The lambda at the root is fixed to 1, and
therefore must be no be defined. The value of the estimated mdcnevNests
parameters should be between 0 and 1 to ensure consistency with random
utility maximization.

mdcnevStructure: Numeric matrix. One row per nest and one column per
alternative. Each element of the matrix is 1 if an alternative belongs to the
corresponding nest.

cost: Named list of numeric vectors. Price of each alternative. One ele-

ment per alternative, each one as long as the number of observations or a
scalar. Names must match those in alternatives.

apollo_mdcnev

43

avail: Named list. Availabilities of alternatives, one element per alterna-
tive. Names of elements must match those in argument ’alternatives’. Value
for each element can be 1 (scalar if always available) or a vector with val-
ues 0 or 1 for each observation. If all alternatives are always available, then
user can just omit this argument.

continuousChoice: Named list of numeric vectors. Amount of consump-
tion of each alternative. One element per alternative, as long as the number
of observations or a scalar. Names must match those in alternatives.

budget: Numeric vector. Budget for each observation.

minConsumption: Named list of scalars or numeric vectors. Minimum
consumption of the alternatives, if consumed. As many elements as alter-
natives. Names must match those in alternatives.

outside: Character. Alternative name for the outside good. Default is
"outside"

rows: Boolean vector. Consideration of rows in the likelihood calculation,
FALSE to exclude. Length equal to the number of observations (nObs).
Default is "all”, equivalent to rep (TRUE, nObs).

componentName: Character. Name given to model component.

functionality Character. Can take different values depending on desired output.

Value

"estimate" Used for model estimation.

"prediction" Used for model predictions.

"validate" Used for validating input.

"zero_LL" Used for calculating null likelihood.
"conditionals" Used for calculating conditionals.

"output" Used for preparing output after model estimation.
"raw" Used for debugging.

The returned object depends on the value of argument functionality as follows.

e "estimate”: vector/matrix/array. Returns the probabilities for the observed consumption for

each observation.

e "prediction”: A matrix with one row per observation, and columns indicating means and
s.d. of continuous and discrete predicted consumptions.

* "validate”: Same as "estimate”, butit also runs a set of tests to validate the function inputs.

* "zero_LL": Notimplemented. Returns a vector of NA with as many elements as observations.

e "conditionals":

Same as "estimate”

* "output”: Same as "estimate” but also writes summary of input data to internal Apollo log.

e "raw"”: Same as "estimate”

44 apollo_mnl

apollo_mlhs Generate random draws using MLHS algorithm

Description

Generate random draws using the Modified Latin Hypercube Sampling algorithm.

Usage

apollo_mlhs(N, d, i)

Arguments
N The number of draws to generate in each dimension
d The number of dimensions to generate draws in
i The number of individuals to generate draws for
Details

Internal use only. Algorithm described in Hess, S., Train, K., and Polak, J. (2006) Transportation
Research 40B, 147 - 163.

Value

A (N*i) x d matrix with random draws

apollo_mnl Calculates multinomial logit probabilities

Description

Calculates probabilities of a multinomial logit model.

Usage

apollo_mnl(mnl_settings, functionality)

apollo_mnl 45

Arguments

mnl_settings List of inputs of the MNL model. It should contain the following.
* alternatives: Named numeric vector. Names of alternatives and their
corresponding value in choiceVar.

e avail: Named list of numeric vectors or scalars. Availabilities of alterna-
tives, one element per alternative. Names of elements must match those in
alternatives. Values canbe O or 1.

¢ choiceVar: Numeric vector. Contains choices for all observations. It will
usually be a column from the database. Values are defined in alternatives.

¢ V: Named list of deterministic utilities . Utilities of the alternatives. Names
of elements must match those in alternatives.

¢ rows: Boolean vector. Consideration of rows in the likelihood calculation,
FALSE to exclude. Length equal to the number of observations (nObs).
Default is "all”, equivalent to rep (TRUE, nObs).

» componentName: Character. Name given to model component.
functionality Character. Can take different values depending on desired output.

* "estimate”: Used for model estimation.

* "prediction”: Used for model predictions.

* "validate"”: Used for validating input.

e "zero_LL": Used for calculating null likelihood.

* "conditionals”: Used for calculating conditionals.

* "output”: Used for preparing output after model estimation.
* "raw”: Used for debugging.

Value
The returned object depends on the value of argument functionality as follows.
* "estimate”: vector/matrix/array. Returns the probabilities for the chosen alternative for each
observation.

* "prediction”: List of vectors/matrices/arrays. Returns a list with the probabilities for all
alternatives, with an extra element for the probability of the chosen alternative.

* "validate”: Same as "estimate”, but it also runs a set of tests to validate the function inputs.

e "zero_LL": vector/matrix/array. Returns the probability of the chosen alternative when all
parameters are zero.

* "conditionals”: Same as "estimate”
* "output”: Same as "estimate” but also writes summary of input data to internal Apollo log.

e "raw": Same as "prediction”

Examples

Load data
data(apollo_modeChoiceData)
database <- apollo_modeChoiceData
rm(apollo_modeChoiceData)

46 apollo_mnl_2

Parameters
b = list(asc_1=0, asc_2=0, asc_3=0, asc_4=0, tt=0, tc=0, acc=0)

List of utilities

V = list()

V[['car' 1] = b$asc_1 + b$ttxdatabase$time_car + b$tcxdatabase$cost_car

VI['bus' 11 b$asc_2 + b$ttxdatabase$time_bus + b$tcxdatabase$cost_bus +
b$accxdatabase$access_bus

V[['air']] = b$asc_3 + b$ttxdatabase$time_air + b$tcxdatabase$cost_air +
b$accxdatabase$access_air

V[['rail']] = b$asc_4 + b$ttxdatabase$time_rail + b$tcxdatabase$cost_rail +
b$accxdatabase$access_rail

MNL settings
mnl_settings <- list(
alternatives = c(car=1, bus=2, air=3, rail=4),

avail = list(car=database$av_car, bus=database$av_bus,
air=database$av_air, rail=database$av_rail),

choiceVar = database$choice,

\% =V

)

Compute choice probabilities using MNL model
apollo_mnl(mnl_settings, functionality="estimate")

apollo_mnl_2 Calculates probabilities of a multinomial logit model.

Description

Calculates probabilities of a multinomial logit model.

Usage

apollo_mnl_2(mnl_settings, functionality)

Arguments

mnl_settings List of inputs of the MNL model. It should contain the following.

e alternatives: Named numeric vector. Names of alternatives and their
corresponding value in choiceVar.

¢ avail: Named list of numeric vectors or scalars. Availabilities of alterna-
tives, one element per alternative. Names of elements must match those in
alternatives. Values can be O or 1.

e choiceVar: Numeric vector. Contains choices for all observations. It will
usually be a column from the database. Values are defined in alternatives.

¢ V: Named list of deterministic utilities . Utilities of the alternatives. Names
of elements must match those in alternatives.

apollo_mnl_2 47

¢ rows: Boolean vector. Consideration of rows in the likelihood calculation,
FALSE to exclude. Length equal to the number of observations (nObs).
Default is "all”, equivalent to rep (TRUE, nObs).

* componentName: Character. Name given to model component.
functionality Character. Can take different values depending on desired output.

* "estimate": Used for model estimation.

* "prediction": Used for model predictions.

* "validate": Used for validating input.

e "zero_LL": Used for calculating null likelihood.

* "conditionals": Used for calculating conditionals.

* "output": Used for preparing output after model estimation.
* "raw": Used for debugging.

Value

The returned object depends on the value of argument functionality as follows.

* "estimate”: vector/matrix/array. Returns the probabilities for the chosen alternative for each
observation.

* "prediction”: List of vectors/matrices/arrays. Returns a list with the probabilities for all
alternatives, with an extra element for the probability of the chosen alternative.

* "validate”: Same as "estimate”, but it also runs a set of tests to validate the function inputs.

e "zero_LL": vector/matrix/array. Returns the probability of the chosen alternative when all
parameters are zero.

* "conditionals”: Same as "estimate”
* "output”: Same as "estimate” but also writes summary of input data to internal Apollo log.

e "raw": Same as "prediction”

Examples

Load data
data(apollo_modeChoiceData)
database <- apollo_modeChoiceData
rm(apollo_modeChoiceData)

Parameters
b = list(asc_1=0, asc_2=0, asc_3=0, asc_4=0, tt=0, tc=0, acc=0)

List of utilities

vV = list()

V[['car' J1 = b$asc_1 + b$ttxdatabase$time_car + b$tcxdatabase$cost_car

VL['bus' 1] = b$asc_2 + b$tt*database$time_bus + b$tcxdatabase$cost_bus +

b$accxdatabase$access_bus

b$asc_3 + b$ttxdatabase$time_air + b$tc*xdatabase$cost_air +

b$accxdatabase$access_air

V[['rail']]l = b$asc_4 + b$ttxdatabase$time_rail + b$tcxdatabase$cost_rail +
b$accxdatabase$access_rail

VL['air' 1]

48

apollo_modeChoiceData

MNL settings
mnl_settings <- list(
alternatives = c(car=1, bus=2, air=3, rail=4),

avail = list(car=database$av_car, bus=database$av_bus,
air=database$av_air, rail=database$av_rail),

choiceVar = database$choice,

\' =V

)

Compute choice probabilities using MNL model
apollo_mnl(mnl_settings, functionality="estimate")

apollo_modeChoiceData Simulated dataset of mode choice.

Description

A simulated dataset containing 8000 mode choices among four alternatives.

Usage

apollo_modeChoiceData

Format

A data frame with 8000 rows and 25 variables:

ID Numeric. Identification number of the individual.

RP Numeric. 1 if the row corresponds to a revealed preference (RP) observation. 0 otherwise.
RP_journey Numeric. Consecutive ID of RP observation.

SP Numeric. 1 if the row corresponds to a stated preference (SP) observation. 0 otherwise.
SP_task Numeric. Consecutive ID of SP choice task.

access_air Numeric. Access time (in minutes) of mode air.

access_bus Numeric. Access time (in minutes) of mode bus.

access_rail Numeric. Access time (in minutes) of mode rail.

av_air Numeric. 1 if the mode air (plane) is available. O otherwise.

av_bus Numeric. 1 if the mode bus is available. O otherwise.

av_car Numeric. 1 if the mode car is available. 0 otherwise.

av_rail Numeric. 1 if the mode rail (train) is available. O otherwise.

business Numeric. Purpose of the trip. 1 for business, O for other.

choice Numeric. Choice indicator, 1=car, 2=bus, 3=air, 4=rail.

cost_air Numeric. Cost (in GBP) of mode air.

cost_bus Numeric. Cost (in GBP) of mode bus.

apollo_modelOutput 49

cost_car Numeric. Cost (in GBP) of mode car.

cost_rail Numeric. Cost (in GBP) of mode rail.

female Numeric. Sex of individual. 1 for female, O for male.
income Numeric. Income (in GBP per annum) of the individual.

service_air Numeric. Additional services in the air mode. O for none, 1 for a meal, 2 for wifi, 3 for
meal and wifi.

service_rail Numeric. Additional services in the rail mode. O for none, 1 for a meal, 2 for wifi, 3
for meal and wifi.

time_air Numeric. Travel time (in minutes) of mode air.
time_bus Numeric. Travel time (in minutes) of mode bus.
time_car Numeric. Travel time (in minutes) of mode car.

time_rail Numeric. Travel time (in minutes) of mode rail.

Details

This dataset is to be used for discrete choice modelling. Data comes from 500 individuals, each
with one revealed preferences (RP) observation, and 15 stated preferences (SP) observations. There
are 8000 choices in total. Data is simulated. Each observation contains attributes of the alternatives,
availability of alternatives, and characteristics of the individuals.

Source

http://www.apollochoicemodelling.com/

apollo_modelQutput Prints estimation results to console

Description

Prints estimation results to console. Amount of information presented can be adjusted through
arguments.

Usage

apollo_modelQutput (model, modelOutput_settings = NA)

Arguments

model Model object. Estimated model object as returned by function apollo_estimate.
modelQutput_settings
List of options. It can include the following.
* printClassical: Boolean. TRUE for printing classical standard errors.
TRUE by default.
* printPVal: Boolean. TRUE for printing p-values. FALSE by default.

http://www.apollochoicemodelling.com/

50 apollo_nl

e printT1: Boolean. If TRUE, t-test for HO: apollo_beta=1 are printed.
FALSE by default.

* printDiagnostics: Boolean. TRUE for printing summary of choices in
database and other diagnostics. TRUE by default.

* printCovar: Boolean. TRUE for printing parameters covariance matrix.
If printClassical=TRUE, both classical and robust matrices are printed.
FALSE by default.

e printCorr: Boolean. TRUE for printing parameters correlation matrix.
If printClassical=TRUE, both classical and robust matrices are printed.
FALSE by default.

e printOutliers: Boolean or Scalar. TRUE for printing 20 individuals with
worst average fit across observations. FALSE by default. If Scalar is given,
this replaces the default of 20.

* printChange: Boolean. TRUE for printing difference between starting
values and estimates. FALSE by default.

Details

Prints to screen the output of a model previously estimated by apollo_estimate()

Value

A matrix of coefficients, s.d. and t-tests (invisible)

apollo_nl Calculates probabilities of a nested logit

Description

Calculates probabilities of a nested logit model.

Usage

apollo_nl(nl_settings, functionality)

Arguments

nl_settings List of inputs of the NL model. It shoud contain the following.

e alternatives: Named numeric vector. Names of alternatives and their
corresponding value in choiceVar.

¢ avail: Named list of numeric vectors or scalars. Availabilities of alterna-
tives, one element per alternative. Names of elements must match those in
alternatives. Values canbe O or 1.

¢ choiceVar: Numeric vector. Contains choices for all observations. It will
usually be a column from the database. Values are defined in alternatives.

apollo_nl 51

¢ V: Named list of deterministic utilities . Utilities of the alternatives. Names
of elements must match those in alternatives.

* nlNests: List of numeric scalars or vectors. Lambda parameters for each
nest. Elements must be named with the nest name. The lambda at the root
is fixed to 1 if excluded (recommended).

* nlStructure: Named list of character vectors. As many elements as nests,
it must include the "root". Each element contains the names of the nests or
alternatives that belong to it. Element names must match those in nlNests.

¢ rows: Boolean vector. Consideration of rows in the likelihood calculation,
FALSE to exclude. Length equal to the number of observations (nObs).
Default is "all”, equivalent to rep(TRUE, nObs).

e componentName: Character. Name given to model component.
functionality Character. Can take different values depending on desired output.

* "estimate”: Used for model estimation.

e "prediction”: Used for model predictions.

e "validate": Used for validating input.

e "zero_LL": Used for calculating null likelihood.

* "conditionals": Used for calculating conditionals.

* "output”: Used for preparing output after model estimation.
* "raw": Used for debugging.

Details

In this implementation of the nested logit model, each nest must have a lambda parameter associated
to it. For the model to be consistent with utility maximisation, the estimated value of the Lambda
parameter of all nests should be between 0 and 1. Lambda parameters are inversely proportional
to the correlation between the error terms of alternatives in a nest. If lambda=1, then there is
no relevant correlation between the unobserved utility of alternatives in that nest. The tree must
contain an upper nest called "root”. The lambda parameter of the root is automatically set to 1 if
not specified in n1Nests. And while setting it to another value is possible, it is not recommended.

Value
The returned object depends on the value of argument functionality as follows.
* "estimate”: vector/matrix/array. Returns the probabilities for the chosen alternative for each
observation.

e "prediction”: List of vectors/matrices/arrays. Returns a list with the probabilities for all
alternatives, with an extra element for the probability of the chosen alternative.

* "validate”: Same as "estimate”, but it also runs a set of tests to validate the function inputs.

e "zero_LL": vector/matrix/array. Returns the probability of the chosen alternative when all
parameters are zero.

* "conditionals"”: Same as "estimate”
* "output”: Same as "estimate” but also writes summary of input data to internal Apollo log.

* "raw": Same as "prediction”

52 apollo_normalDensity

Examples

Load data
data(apollo_modeChoiceData)
database <- apollo_modeChoiceData
rm(apollo_modeChoiceData)

Parameters
b = list(asc_1=0, asc_2=0, asc_3=0, asc_4=0, tt=0, tc=0, acc=0, lambda=0.5)

V = list()

V[['car' J]1 = b$asc_1 + b$ttxdatabase$time_car + b$tcxdatabase$cost_car

V[['bus' J]1 = b$asc_2 + b$ttxdatabase$time_bus + b$tcxdatabase$cost_bus +
b$accxdatabase$access_bus

VI['air' J]1 = b$asc_3 + b$ttxdatabase$time_air + b$tcxdatabase$cost_air +
b$accxdatabase$access_air

V[['rail'l]l = b$asc_4 + b$ttxdatabase$time_rail + b$tcxdatabase$cost_rail +
b$accxdatabase$access_rail

NL settings
nl_settings <- list(
alternatives = c(car=1, bus=2, air=3, rail=4),

avail = list(car=database$av_car, bus=database$av_bus,
air=database$av_air, rail=database$av_rail),

choiceVar = database$choice,

v =V,

nlNests = list(root=1, public=b$lambda),

nlStructure = list(root=c("car”, "public"), public=c("bus”,"air”,"rail"))

Compute choice probabilities using NL model
apollo_nl(nl_settings, functionality="estimate")

apollo_normalDensity Calculates density from a Normal distribution

Description
Calculates density from a Normal distribution at a specific value with a specified mean and standard
deviation.

Usage

apollo_normalDensity(normalDensity_settings, functionality)

Arguments

normalDensity_settings
List of arguments to the functions. It must contain the following.

* outcomeNormal: Numeric vector. Dependant variable.

apollo_normalDensity

53

xNormal: Numeric vector. Single explanatory variable.
mu: Numeric scalar. Intercept of the linear model.

sigma: Numeric scalar. Variance of error component of linear model to be
estimated.

rows: Boolean vector. Consideration of rows in the likelihood calculation,
FALSE to exclude. Length equal to the number of observations (nObs).
Default is "all”, equivalent to rep (TRUE, nObs).

componentName: Character. Name given to model component.

functionality Character. Can take different values depending on desired output.

Details

"estimate": Used for model estimation.

"prediction": Used for model predictions.

"validate": Used for validating input.

"zero_LL": Used for calculating null likelihood.
"conditionals": Used for calculating conditionals.

"output": Used for preparing output after model estimation.
"raw": Used for debugging.

This function estimates the linear model outcomeNormal = mu + xNormal + epsilon, where epsilon
is a random error distributed Normal(0,sigma). If using this function in the context of an Integrated
Choice and Latent Variable (ICLV) model with continuous indicators, then outcomeNormal would
be the value of the indicator, xNormal would be the value of the latent variable (possibly multiplied
by a parameter to measure its correlation with the indicator, e.g. xNormal=lambda*LV), and mu
would be an additional parameter to be estimated (the mean of the indicator, which should be fixed
to zero if the indicator is centered around its mean beforehand).

Value

The returned object depends on the value of argument functionality as follows.

* "estimate”: vector/matrix/array. Returns the likelihood for each observation.

* "prediction”: Not implemented. Returns NA.

* "validate”: Same as "estimate”, but it also runs a set of tests to validate the function inputs.

e "zero_LL": Not implemented. Returns NA.

e "conditionals":

Same as "estimate”

e "output”: Same as "estimate"” but also writes summary of input data to internal Apollo log.

e "raw”: Same as "estimate”

Examples

Load data

xNormal <- runif(100)

outcomeNormal <- 1 + 2xxNormal + rnorm(100, mean=0, sd=0.5)

Parameters

54 apollo_ol

b = list(a=1, m=2)

normalDensity settings
normalDensity_settings <- list(

outcomeNormal = outcomeNormal,
xNormal = 2*xxNormal,

mu =1,

sigma = 0.5

)

Compute choice probabilities using MNL model
apollo_normalDensity(normalDensity_settings, functionality="estimate")

apollo_ol Calculates the probability of an ordered logit model

Description

Calculates the probabilities of an ordered logit model and can also perform other operations based
on the value of the functionality argument.

Usage

apollo_ol(ol_settings, functionality)

Arguments

ol_settings List of settings for the OL model. It should include the following.

* outcomeOrdered Numeric vector. Dependant variable. The coding of this
variable is assumed to be from 1 to the maximum number of different lev-
els. For example, if the ordered response has three possible values: "never",
"sometimes" and "always", then it is assumed that outcomeOrdered con-
tains "1" for "never", "2" for "sometimes", and 3 for "always". If another
coding is used, then it should be specified using the coding argument.

e V Numeric vector. A single explanatory variable (usually a latent variable).
Must have the same number of rows as outcomeOrdered.

* tau Numeric vector. Thresholds. As many as number of different levels in
the dependent variable - 1. Extreme thresholds are fixed at -inf and +inf.
No mixing allowed in thresholds.

* coding Numeric or character vector. Optional argument. Defines the order
of the levels in outcomeOrdered. The first value is associated with the
lowest level of outcomeOrdered, and the last one with the highest value. If
not provided, is assumed to be 1: (Length(tau) + 1).

¢ rows Boolean vector. TRUE if a row must be considered in the calculations,
FALSE if it must be excluded. It must have length equal to the length of
argument outcomeOrdered. Default value is "all"”, meaning all rows are
considered in the calculation.

apollo_op 55

* componentName Character. Name given to model component.
functionality Character. Can take different values depending on desired output.

* "estimate” Used for model estimation.

* "prediction” Used for model predictions.

* "validate"” Used for validating input.

» "zero_LL" Used for calculating null likelihood.

* "conditionals"” Used for calculating conditionals.

* "output” Used for preparing output after model estimation.
* "raw” Used for debugging.

Details

This function estimates an ordered logit model of the type: y* = V + epsilon outcomeOrdered =
1 if -Inf < y* < tau[1] 2 if tau[l] < y* < tau[2] ... maxLvl if tau[length(tau)] < y* < +Inf Where
epsilon is distributed standard logistic, and the values 1, 2, ..., maxLvl can be replaces by coding[1],
coding[2], ..., coding[maxLvl]. The behaviour of the function changes depending on the value of
the functionality argument.

Value

The returned object depends on the value of argument functionality as follows.
* "estimate”: vector/matrix/array. Returns the probabilities for the chosen alternative for each
observation.

* "prediction”: List of vectors/matrices/arrays. Returns a list with the probabilities for all
possible levels, with an extra element for the probability of the chosen alternative.

* "validate": Same as "estimate”, but it also runs a set of tests to validate the function inputs.
* "zero_LL": Notimplemented. Returns a vector of NA with as many elements as observations.
* "conditionals”: Same as "estimate”

* "output”: Same as "estimate” but also writes summary of input data to internal Apollo log.

* "raw": Same as "prediction”

apollo_op Calculates the probability of an ordered probit model

Description
Calculates the probabilities of an ordered probit model and can also perform other operations based
on the value of the functionality argument.

Usage

apollo_op(op_settings, functionality)

56 apollo_op

Arguments

op_settings List of settings for the OP model. It should include the following.

* outcomeOrdered Numeric vector. Dependant variable. The coding of this
variable is assumed to be from 1 to the maximum number of different lev-
els. For example, if the ordered response has three possible values: "never",
"sometimes" and "always", then it is assumed that outcomeOrdered con-
tains "1" for "never", "2" for "sometimes", and 3 for "always". If another
coding is used, then it should be specified using the coding argument.

* V Numeric vector. A single explanatory variable (usually a latent variable).
Must have the same number of rows as outcomeOrdered.

* tau Numeric vector. Thresholds. As many as number of different levels in
the dependent variable - 1. Extreme thresholds are fixed at -inf and +inf.
No mixing allowed in thresholds.

* coding Numeric or character vector. Optional argument. Defines the order
of the levels in outcomeOrdered. The first value is associated with the
lowest level of outcomeOrdered, and the last one with the highest value. If
not provided, is assumed to be 1: (length(tau) + 1).

¢ rows Boolean vector. TRUE if a row must be considered in the calculations,
FALSE if it must be excluded. It must have length equal to the length of
argument outcomeOrdered. Default value is "all”, meaning all rows are
considered in the calculation.

* componentName Character. Name given to model component.
functionality Character. Can take different values depending on desired output.

 "estimate'' Used for model estimation.

 "prediction' Used for model predictions.

 "validate' Used for validating input.

» "zero_LL" Used for calculating null likelihood.n Not implemented for or-

dered probit.

* "conditionals' Used for calculating conditionals.

* "output" Used for preparing output after model estimation.

» "raw" Used for debugging.

Details
This function estimates an ordered probit model of the type:
y'=Vtey=1if —oo <y" <1,2ifr <y <72, man(y)ifTmane)—1 <Y < 00
Where e is distributed standard logistic, and the values 1, 2, ..., maz(y) can be replaced by coding[1], coding[2], ..., codi

The behaviour of the function changes depending on the value of the functionality argument.

Value
The returned object depends on the value of argument functionality as follows.

* "estimate"”: vector/matrix/array. Returns the probabilities for the chosen alternative for each
observation.

apollo_outOfSample 57

* "prediction”: List of vectors/matrices/arrays. Returns a list with the probabilities for all
possible levels, with an extra element for the probability of the chosen alternative.

* "validate”: Same as "estimate”, but it also runs a set of tests to validate the function inputs.
* "zero_LL": Notimplemented. Returns a vector of NA with as many elements as observations.
* "conditionals”: Same as "estimate”

* "output”: Same as "estimate” but also writes summary of input data to internal Apollo log.

e "raw": Same as "prediction”

apollo_outOfSample Out-of-sample fit (LL)

Description

Randomly generates estimation and validation samples, estimates the model on the first and calcu-
lates the likelihood for the second, then repeats.

Usage

apollo_outOfSample(
apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
estimate_settings = list(estimationRoutine = "bfgs"”, maxIterations = 200, writelter =
FALSE, hessianRoutine = "numDeriv"”, printLevel = 3L, silent = TRUE),
outOfSample_settings = list(nRep = 10, validationSize = 0.1, samples = NA)
)

Arguments

apollo_beta Named numeric vector. Names and values for parameters.
apollo_fixed Character vector. Names (as defined in apollo_beta) of parameters whose
value should not change during estimation.
apollo_probabilities
Function. Returns probabilities of the model to be estimated. Must receive three
arguments:
¢ apollo_beta: Named numeric vector. Names and values of model parame-
ters.
* apollo_inputs: List containing options of the model. See apollo_validateInputs.
* functionality: Character. Can be either "estimate" (default), "prediction",

"non

"validate", "conditionals", "zero_LL", or "raw".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
estimate_settings
List. Options controlling the estimation process. See apollo_estimate.

58

apollo_outOfSample

outOfSample_settings
List. Options defining the sampling procedure. The following are valid options.

nRep Numeric scalar. Number of times a different pair of estimation and vali-
dation sets are to be extracted from the full database. Default is 30.

validationSize Numeric scalar. Size of the validation sample. Can be a per-
centage of the sample (0-1) or the number of individuals in the validation
sample (>1). Default is 0.1.

samples Numeric matrix or data.frame. Optional argument. Must have as many
rows as observations in the database, and as many columns as number of
repetitions wanted. Each column represents a re-sample, and each element
must be a 0 if the observation should be assigned to the estimation sample,
or 1 if the observation should be assigned to the prediction sample. If this
argument is provided, then nRep and validationSize are ignored. Note
that this allows sampling at the observation rather than the individual level.

Details

A common way to test for overfitting of a model is to measure its fit on a sample not used during
estimation that is, measuring its out-of-sample fit. A simple way to do this is splitting the complete
available dataset in two parts: an estimation sample, and a validation sample. The model of interest
is estimated using only the estimation sample, and then those estimated parameters are used to
measure the fit of the model (e.g. the log-likelihood of the model) on the validation sample. Doing
this with only one validation sample, however, may lead to biased results, as a particular validation
sample need not be representative of the population. One way to minimise this issue is to randomly
draw several pairs of estimation and validation samples from the complete dataset, and apply the
procedure to each pair.

The splitting of the database into estimation and validation samples is done at the individual level not
at the observation level. If the sampling wants to be done at the individual level (not recommended
on panel data), then the optional outOfSample_settings$samples argument should be provided.

This function writes two different files to the working directory:
* modelName_outOfSample_params.csv: Records the estimated parameters, final loglikeli-
hood, and number of observations on each repetition.
* modelName_outOfSample_samples.csv: Records the sample composition of each repetition.
The first two files are updated throughout the run of this function, while the last one is only written
once the function finishes.

When run, this function will look for the two files above in the working directory. If they are found,
the function will attempt to pick up re-sampling from where those files left off. This is useful in
cases where the original bootstrapping was interrupted, or when additional re-sampling wants to be
performed.

Value

A matrix with the average log-likelihood per observation for both the estimation and validation
samples, for each repetition. Two additional files with further details are written to the working
directory.

apollo_panelProd 59

apollo_panelProd Calculates product of panel observations.

Description

Multiplies likelihood of observations from the same individual, or adds the log of them.

Usage

apollo_panelProd(P, apollo_inputs, functionality)

Arguments

P List of vectors, matrices or 3-dim arrays. Likelihood of the model components.
apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
functionality Character. Can take different values depending on desired output.

* "estimate” For model estimation, returns probabilities of chosen alterna-

tives.

e "prediction” For model predictions, returns probabilities of all alterna-
tives.

* "validate” Validates input.
e "zero_LL" Return probabilities with all parameters at zero.

* "conditionals” For conditionals, returns probabilities of chosen alterna-
tives.

e "output” Checks that the model is well defined.

* "raw” For debugging, returns probabilities of all alternatives.

Details

This function should be called inside apollo_probabilities only if the data has a panel structure. It
should be called after apollo_avgIntraDraws if intra-individual draws are used.

Value

Probabilities at the individual level.

60 apollo_prediction

apollo_prediction Predicts using an estimated model

Description

Calculates apollo_probabilities with functionality="prediction" and extracts one element from the
returned list.

Usage

apollo_prediction(
model,
apollo_probabilities,
apollo_inputs,
prediction_settings = list(),

modelComponent = "model”
)
Arguments
model Model object. Estimated model object as returned by function apollo_estimate.

apollo_probabilities
Function. Returns probabilities of the model to be estimated. Must receive three
arguments:
¢ apollo_beta: Named numeric vector. Names and values of model parame-
ters.
* apollo_inputs: List containing options of the model. See apollo_validateInputs.
* functionality: Character. Can be either "estimate" (default), "prediction”,

"non

"validate", "conditionals", "zero_LL", or "raw".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
prediction_settings
List of settings. It can have the following elements.

* modelComponent Character. Name of component of apollo_probabilities
output to calculate predictions for. Defaultis "model", i.e. the whole model.

* silent Boolean. If TRUE, thsi function won’t print any output to screen.

modelComponent Deprecated. Same as modelComponent inside prediction_settings.

Details

Structure of predictions are simplified before returning, e.g. list of vectors are turned into a matrix.

Value

A list containing predictions for component modelComponent of the model described in apollo_probabilities.
The particular shape of the prediction will depend on the model component.

apollo_prepareProb 61

apollo_prepareProb Checks likelihood

Description

Checks that likelihoods, i.e. probabilities in the case of choice models, are in the appropiate format
to be returned.

Usage

apollo_prepareProb(P, apollo_inputs, functionality)

Arguments

P List of vectors, matrices or 3-dim arrays. Likelihood of the model components.
apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
functionality Character. Can take different values depending on desired output of apollo_probabilities.

"estimate'' For model estimation, returns probabilities of chosen alternatives.
"prediction' For model predictions, returns probabilities of all alternatives.
""validate' Validates input.

""zero_LL'" Return probabilities with all parameters at zero.

"conditionals' For conditionals, returns probabilities of chosen alternatives.
"output' Checks that the model is well defined.

"raw'" For debugging, returns probabilities of all alternatives

Details

This function should be called inside apollo_probabilities, near the end of it, just before
return(P). This function only performs checks on the shape of P, but does not change its values in
any way.

Value
The returned object depends on the value of argument functionality as follows.

* "estimate”: Returns only the "model” component of argument P.
* "prediction”: Returns argument P without any changes.
* "validate”: Returns argument P without any changes.

e "zero_LL": Returns argument P without any changes to its content, but gives names the
unnamed elements.

* "conditionals": Returns only the "model” component of argument P.

e "output”: Returns argument P without any changes to its content, but gives names the un-
named elements.

* "raw": Returns argument P without any changes.

62 apollo_readBeta

apollo_printLog Returns the log of Apollo

Description

Returns the apolloLog variable either as a list or as text.

Usage

apollo_printLog(apolloLog, book = 1)

Arguments
apollolog Environment. It contains the character vectors of titles and content.
book Positive scalar integer. Book number inside the log (default is 1).
Details

The variable apolloLog is a list whose elements are character vectors with two elements. The first
element is the title of the entry, and the second element is content of the entry. ApolloLog lives in
the namespace environment of the Apollo package.

Value

A list or a scalar character variable.

apollo_readBeta Reads parameters from file

Description

Reads in parameters from a previously estimated model and copies the values to the given apollo_beta
vector, only for those parameters whose name matches.

Usage

apollo_readBeta(
apollo_beta,
apollo_fixed,
inputModelName,
overwriteFixed = FALSE

apollo_reportModelTypeLog 63

Arguments

apollo_beta Named numeric vector. Names and values for parameters.

apollo_fixed Character vector. Names (as defined in apollo_beta) of parameters whose
value should not change during estimation.

inputModelName Character. modelName for model from which results are used as starting values.

overwriteFixed Boolean. TRUE if starting values for fixed parameters should also be updated
from input file.

Details

This function will update the values of the parameters in its argument apollo_beta with the match-
ing values in the file (inputModelName)_estimates.csv. If there is no match for a given param-
eter in apollo_beta, its value will not be updated.

Value

Named numeric vector. Names and updated starting values for parameters.

Examples

#i## Define starting values and fixed parameters

apollo_beta <- c(asc1=0, asc2=0, b1=0, b2=0)

apollo_fixed <- c("asc1")

Not run:

Not run:

Update starting values

apollo_beta <- apollo_readBeta(apollo_beta, apollo_fixed,
"oldModelName"”, overwriteFixed=FALSE)

End(Not run)

End(Not run)

apollo_reportModelTypelog
Writes the type of a model inside apollolLog

Description

Writes the type of the model in a list inside apolloLog, which lives inside apollo_inputs.

Usage
apollo_reportModelTypelLog(modelType, apollolog)

Arguments

modelType Character. Type of the model, e.g. "MNL" or "MDCEV"

apollolog Environment. It contains the character vectors of titles and content.

64

Details

The variable apolloLog is an environment created inside apollo_inputs by apollo_validateInputs,

apollo_saveQOutput

but re-set by apollo_estimate. As an environment, it can be modified in place, i.e. all changes done
within this function are recorded in apolloLog, even if it belongs to another environment.

Value

TRUE if writing was succesful, FALSE if not.

apollo_saveOutput

Saves estimation results to files.

Description

Writes files in the working directory with the estimation results.

Usage

apollo_saveOutput(model, saveOutput_settings = NA)

Arguments

model Model object. Estimated model object as returned by function apollo_estimate.

saveQutput_settings

List of options. Valid options are the following.

printClassical: Boolean. TRUE for printing classical standard errors.
TRUE by default.

printPVal: Boolean. TRUE for printing p-values. FALSE by default.

printT1: Boolean. If TRUE, t-test for HO: apollo_beta=1 are printed.
FALSE by default.

printDiagnostics: Boolean. TRUE for printing summary of choices in
database and other diagnostics. TRUE by default.

printCovar: Boolean. TRUE for printing parameters covariance matrix.
If printClassical=TRUE, both classical and robust matrices are printed.
TRUE by default.

printCorr: Boolean. TRUE for printing parameters correlation matrix.
If printClassical=TRUE, both classical and robust matrices are printed.
TRUE by default.

printOutliers: Boolean or Scalar. TRUE for printing 20 individuals with
worst average fit across observations. FALSE by default. If Scalar is given,
this replaces the default of 20.

printChange: Boolean. TRUE for printing difference between starting
values and estimates. TRUE by default.

saveEst: Boolean. TRUE for saving estimated parameters and standard
errors to a CSV file. TRUE by default.

apollo_searchStart 65

* saveCov: Boolean. TRUE for saving estimated correlation matrix to a CSV
file. TRUE by default.

* saveCorr: Boolean. TRUE for saving estimated correlation matrix to a
CSV file. TRUE by default.

* saveModelObject: Boolean. TRUE to save the R model object to a file
(use apollo_loadModel to load it to memory). TRUE by default.

* writeF12: Boolean. TRUE for writing results into an F12 file (ALOGIT
format). FALSE by default.

Details
Estimation results are printed to different files in the working directory:

* (modelName)_output. txt Text file with the output produced by function apollo_modelOutput.
* (modelName)_estimates.csv CSV file with the estimated parameter values, their standars
errors, and t-ratios.

* (modelName)_covar.csv CSV file with the estimated classical covariance matrix. Only when
bayesian estimation was not used.

* (modelName)_robcovar.csv CSV file with the estimated robust covariance matrix. Only
when bayesian estimation was not used.

* (modelName)_corr.csv CSV file with the estimated classical correlation matrix. Only when
bayesian estimation was not used.

* (modelName)_robcorr.csv CSV file with the estimated robust correlation matrix. Only
when bayesian estimation was not used.

* (modelName).F12 F12 file with model results. Compatible with ALOGIT.

Value

nothing

apollo_searchStart Searches for better starting values.

Description

Given a set of starting values and a range for them, searches for points with a better likelihood.

Usage

apollo_searchStart(
apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
searchStart_settings = NA

66 apollo_searchStart

Arguments

apollo_beta Named numeric vector. Names and values for parameters.

apollo_fixed Character vector. Names (as defined in apollo_beta) of parameters whose
value should not change during estimation.

apollo_probabilities
Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

* apollo_beta: Named numeric vector. Names and values of model parame-
ters.

* apollo_inputs: List containing options of the model. See apollo_validateInputs.

* functionality: Character. Can be either "estimate" (default), "prediction",

"validate", "conditionals", "zero_LL", or "raw".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
searchStart_settings
List containing options for the search of starting values. The following are valid
options.

* nCandidates: Numeric scalar. Number of candidate sets of parameters to
be used at the start. Should be an integer bigger than 1. Default is 100.

* smartStart: Boolean. If TRUE, candidates are randomly generated with
more chances in the directions the Hessian indicates improvement of the
LL function. Default is FALSE.

* apolloBetaMin: Vector. Minimum possible value of parameters when gen-
erating candidates. Ignored if smartStart is TRUE. Default is apollo_beta
-0.1.

* apolloBetaMax: Vector. Maximum possible value of parameters when
generating candidates. Ignored if smartStart is TRUE. Default is apollo_beta
+0.1.

* maxStages: Numeric scalar. Maximum number of search stages. The al-
gorithm will stop when there is only one candidate left, or if it reaches this
number of stages. Default is 5.

 dTest: Numeric scalar. Tolerance for test 1. A candidate is discarded if its
distance in parameter space to a better one is smaller than dTest. Default
is 1.

e gTest: Numeric scalar. Tolerance for test 2. A candidate is discarded if
the norm of its gradient is smaller than gTest AND its LL is further than
11Test from a better candidate. Default is 10+ (-3).

e 11Test: Numeric scalar. Tolerance for test 2. A candidate is discarded if
the norm of its gradient is smaller than gTest AND its LL is further than
11Test from a better candidate. Default is 3.

* bfgsIter: Numeric scalar. Number od BFGS iterations to perform at each
stage to each remaining candidate. Default is 20.

Details

This function implements a simplified version of the algorithm proposed by Bierlaire, Themans,
& Zufferey (2010). The main difference lies in it implementing only two out of three tests on the

apollo_setRows 67

candidates described by the authors. The implemented algorithm has the following steps.

1. Randomly draw nCandidates candidates from an interval given by the user.
2. Label all candidates with a valid log-likelihood (LL) as active.

3. Apply bfgsIter iterations of the BFGS algorithm to each active candidate.
4. Apply the following tests to each active candidate:

(a) Has the BGFS search converged?

(b) Are the candidate parameters after BFGS closer than dTest from any other candidate
with higher LL?

(c) Is the LL of the candidate after BFGS further than distLL from a candidate with better
LL, and its gradient smaller than gTest?

5. Mark any candidates for which at least one test results in yes as inactive.

6. Go back to step 3, unless only one candidate is active, or the maximum number of iterations
(maxStages) has been reached.

This function will write a CSV file to the working directory summarising progress. This file is
called modelName_searchStart.csv .

Value

named vector of model parameters. These are the best values found.

apollo_setRows Sets specified rows to a given value

Description

Given a numeric object (scalar, vector, matrix or 3-dim array) sets a subset of rows to a given value.

Usage

apollo_setRows(v, r, val)

Arguments
% Numeric scalar, vector, matrix or 3-dim array. Rows of this object will be re-
placed by val and
r Boolean vector. As many elements as rows in v. TRUE for replacing that row,
FALSE for not changing it.
val Numeric scalar. Value to which the specified rows must be set to.
Value

The same argument v but with the rows where r==TRUE set to val.

68 apollo_sharesTest

apollo_sharesTest Compares predicted and observed shares

Description

Prints tables comparing the shares predicted by the model with the shares observed in the data.

Usage

apollo_sharesTest(
model,
apollo_probabilities,
apollo_inputs,
sharesTest_settings

)

Arguments

model Model object. Estimated model object as returned by function apollo_estimate.

apollo_probabilities
Function. Returns probabilities of the model to be estimated. Must receive three
arguments:

* apollo_beta: Named numeric vector. Names and values of model param-
eters.

* apollo_inputs: List containing options of the model. See apollo_validateInputs.

e functionality: Character. Can be either "estimate" (default), "predic-

non non

tion", "validate", "conditionals", "zero_LL", or "raw".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.
sharesTest_settings
List of arguments. It must include the following.
* alternatives: Named numeric vector. Names of alternatives and their
corresponding value in choiceVar.
* choiceVar: Numeric vector. Contains choices for all observations. It will
usually be a column from the database. Values are defined in alternatives.
e subsamples: Named list of boolean vectors. Each element of the list de-
fines whether a given observation belongs to a given subsample (e.g. by
sociodemographics).
» modelComponent: Name of model component. Set to model by default.

Details

This is an auxiliary function to help guide the definition of utility functions in a choice model. By
comparing the predicted and observed shares of alternatives for different categories of the data, it is
possible to identify what additional explanatory variables could improve the fit of the model.

apollo_speedTest 69

Value

Nothing

apollo_speedTest Measures evaluation time of a model

Description

Measures the evaluation time of a model for different number of cores and draws.

Usage

apollo_speedTest(
apollo_beta,
apollo_fixed,
apollo_probabilities,
apollo_inputs,
speedTest_settings = NA

Arguments

apollo_beta Named numeric vector. Names and values for parameters.
apollo_fixed Character vector. Names (as defined in apollo_beta) of parameters whose
value should not change during estimation.
apollo_probabilities
Function. Returns probabilities of the model to be estimated. Must receive three
arguments:
* apollo_beta: Named numeric vector. Names and values of model param-
eters.
* apollo_inputs: List containing options of the model. See apollo_validateInputs.
e functionality: Character. Can be either "estimate" (default), "predic-

non non

tion", "validate", "conditionals", "zero_LL", or "raw".

apollo_inputs List grouping most common inputs. Created by function apollo_validatelnputs.
speedTest_settings
List containing options for the speed test. The following are valid options.
* nDrawsTry: Numeric vector. Number of inter and intra-person draws to try.
Default value is ¢(50, 100, 200).

* nCoresTry: Numeric vector. Number of threads to try. Default is from 1 to
the detected number of cores.

¢ nRep: Numeric scalar. Number of times the likelihood is evaluated for each
combination of threads and draws. Default is 10.

70 apollo_splitDataDraws

Details

This function evaluates the function apollo_probabilities several times using different number
of threads (a.k.a. processor cores), and draws (if the model uses mixing). Then it plots the estima-
tion time for each combination. Estimation time grows at least linearly with number of draws, while
time savings are decreasing with the number of threads. This function can help decide what number
of draws and cores to use for estimation, though a high number of draws is always recommended. If
the computer will be used for additional activities during estimation, no more than (machine num-
ber of cores - 1) should be used. Using more threads than cores available in the machine will lead to
reduce performance. The use of additional cores come at the expense of additional memory usage.
If R uses more memory than the physical RAM available, then significant slow-downs in processing
time can be expected. This function can help avoiding such pitfalls.

Value

A matrix with the average time per evaluation for each number of threads and draws combination.
A graph is also plotted.

apollo_splitDataDraws Splits data and draws for loading in cluster

Description

Splits apollo_inputs into pieces and writes them to disk (temporary folder).

Usage

apollo_splitDataDraws(apollo_inputs, silent = FALSE)

Arguments

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

silent Boolean. If TRUE, no information is printed to console or default output.

Details

Internal use only. This function is called by apollo_makeCluster.

Value

Character vector of file names of the pieces of apollo_inputs.

apollo_swissRouteChoiceData 71

apollo_swissRouteChoiceData
Dataset of route choice.

Description

A Stated Preference dataset containing 3,492 route choices among two alternatives.

Usage

apollo_swissRouteChoiceData

Format

A data frame with 3,492 rows and 16 variables:

ID Numeric. Identification number of the individual.

choice Numeric. 1 for alternative 1, and 2 for alternative 2.

ttl Numeric. Travel time (in minutes) for alternative 1.

tcl Numeric. Travel cost (in CHF) for alternative 1.

hw1l Numeric. Headway time (in minutes) for alternative 1.

chl Numeric. Number of interchanges for alternative 1.

tt2 Numeric. Travel time (in minutes) for alternative 2.

tc2 Numeric. Travel cost (in CHF) for alternative 2.

hw2 Numeric. Headway time (in minutes) for alternative 2.

ch2 Numeric. Number of interchanges for alternative 2.

hh_inc_abs Numeric. Household income (in CHF per annum).
car_availability Numeric. 1 if respondent has a car available, O otherwise.
commute Numeric. 1 if the purpose of the trip is commuting. O otherwise.
shopping Numeric. 1 if the purpose of the trip is shopping. 0 otherwise.
business Numeric. 1 if the purpose of the trip is business. 0 otherwise.

leisure Numeric. 1 if the purpose of the trip is leisure. 0 otherwise.

Details

This dataset is to be used for discrete choice modelling. Data comes from 388 individuals who par-
ticipated on a Stated Choice experiment (SC), providing a total of 3,492 observations. Each choice
scenario includes two alternatives described in terms of travel time, cost, headway and interchanges.
Additional information on respondents is available. This dataset comes from the following publi-
cation. Vrtic, Axhausen 2003, The impact of tilting trains in Switzerland: A route choice model of
regional and long distance public transport trips. 82nd annual meeting of the transportation research
board, Washington, DC.

72 apollo_timeUseData

Source

http://www.apollochoicemodelling.com/

apollo_timeUseData Dataset of time use.

Description

A Revealed Preference dataset containing 2,826 full-day observations.

Usage

apollo_timeUseData

Format

An object of class data. frame with 2826 rows and 20 columns.

Details

This dataset is to be used for Multiple Discrete Continuous (MDC) modelling. Data comes from 447
individuals who provided activitry diaries for a total of 2,826 days. Each observation summarizes
the amount of time spent in each of twelve different activities. The dataset also incluides character-
istics of the participants. This dataset comes from the following publication. Calastri, Crastes dit
Sourd and Hess (2018) We want it all: experiences from a survey seeking to capture social network
structures, lifetime events and short-term travel and activity planning. Transportation 2018 1-27.

indivID Numeric. Identification number of the individual.
day Numeric. Index of the day for each individual (day 1 was excluded).
date Numeric. Date in format yyyymmdd.

budget Numeric. Total amount of time registered during the day (in minutes).

t_a0l Numeric. Time spent dropping-of or picking up other people (in minutes).

t_a02 Numeric. Time spent working (in minutes).

t_a03 Numeric. Time spent on educational activities (in minutes).

t_a04 Numeric. Time spent shopping (in minutes).

t_a05 Numeric. Time spent on private business (in minutes).

t_a06 Numeric. Time spent getting petrol (in minutes).

t_a07 Numeric. Time spent on social or leasure activities (in minutes).

t_a08 Numeric. Time spent on vacation or long (inter-city) travel (in minutes).
t_a09 Numeric. Time spent doing exercise (in minutes).

t_al0 Numeric. Time spent at home (in minutes).

t_all Numeric. Time spent travelling (everyday travelling) (in minutes).

t_al2 Numeric. Non-allocated time (in minutes).

http://www.apollochoicemodelling.com/

apollo_unconditionals 73

female Numeric. 1 if respondent is female. O otherwise.
age Numeric. Age of respondent (in years, approximate).
occ_full_time Numeric. 1 if the respondent works full time.

weekend Numeric. 1 if the current date is a weekend.

Source

http://www.apollochoicemodelling.com/

apollo_unconditionals Returns draws for random parameters in a latent class model model

Description

Returns draws (unconditionals) for random parameters in model, including interactions with deter-
ministic covariates

Usage

apollo_unconditionals(model, apollo_probabilities, apollo_inputs)

Arguments

model Model object. Estimated model object as returned by function apollo_estimate.
apollo_probabilities
Function. Returns probabilities of the model to be estimated. Must receive three
arguments:
* apollo_beta: Named numeric vector. Names and values of model parame-
ters.
* apollo_inputs: List containing options of the model. See apollo_validateInputs.
* functionality: Character. Can be either "estimate" (default), "prediction”,

"non

"validate", "conditionals", "zero_LL", or "raw".

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

Details

This functions is only meant for use with continuous distributions

Value

List of object, one per random coefficient. With inter-individual draws only, this will be a ma-
trix, with one row per individual, and one column per draw. With intra-individual draws, this will
be a three-dimensional array, with one row per observation, inter-individual draws in the second
dimension, and intra-individual draws in the third dimension.

http://www.apollochoicemodelling.com/

74 apollo_validateControl

apollo_validateControl
Validates apollo_control

Description

Validates the options controlling the running of the code apollo_control and sets default values
for the omitted ones.

Usage

apollo_validateControl (database, apollo_control, silent = FALSE)

Arguments

database data.frame. Data used by model.
apollo_control List. Options controlling the running of the code.
* modelName: Character. Name of the model. Used when saving the output
to files.
* modelDescr: Character. Description of the model. Used in output files.

e indivID: Character. Name of column in the database with each decision
maker’s ID.

* mixing: Boolean. TRUE for models that include random parameters.

e nCores: Numeric>0. Number of cores to use in calculations of the model
likelihood.

* seed: Numeric. Seed for random number generation.
* HB: Boolean. TRUE if using RSGHB for Bayesian estimation of model.

* noValidation: Boolean. TRUE if user does not wish model input to be
validated before estimation - FALSE by default.

* noDiagnostics: Boolean. TRUE if user does not wish model diagnostics
to be printed - FALSE by default.

e weights: Character. Name of column in database containing weights for
estimation.

* workInLogs: Boolean. TRUE for increased numeric precision in models
with panel data - FALSE by default.

* panelData: Boolean. TRUE if there are multiple obsrvations (i.e. Tows)
for each decision maker - Automatically set based on indivID by default.

silent Boolean. If TRUE, no messages are printed to screen.

Details

This function should be run before running apollo_validateData.

apollo_validateData 75

Value

Validated version of apollo_control, with additional element called panelData set to TRUE for re-
peated choice data.

apollo_validateData Validates data

Description
Checks consistency of the database with apollo_control, sorts it by indivID, and adds an internal
ID variable (apollo_sequence)

Usage

apollo_validateData(database, apollo_control, silent)

Arguments

database data.frame. Data used by model.

apollo_control List. Options controlling the running of the code. See ?apollo_validateControl
for details.

silent Boolean. TRUE to keep the function from printing to the console. Default is
FALSE.
Details
This function should be called after calling apollo_validateControl. Observations are sorted only if
apollo_control$panelData=TRUE.
Value

Data.frame. Validated version of database.

apollo_validateHBControl
Validates the apollo_HB list of parameters

Description

Validates the apollo_HB list of parameters and sets default values for the omitted ones.

Usage

apollo_validateHBControl(apollo_HB, apollo_beta, apollo_fixed, apollo_control)

76 apollo_validatelnputs

Arguments
apollo_HB List. Contains options for bayesian estimation. See doHB for details. Param-
eters modelname, gVarNamesFixed, gVarNamesNormal, gDIST, svN and FC are
automatically set based on the other arguments of this function. It should also
include a named character vector called hbDist identifying the distribution of
each parameter to be estimated. Possible values are as follows.
* "DNE": Parameter kept at its starting value (not estimated).
» "F": Fixed (as in non-random) parameter.
e "N": Normal.
* "LN+": Positive log-normal.
* "LN-": Negative log-normal.
* "CN+": Positive censored normal.
e "CN-": Negative censored normal.
* "JSB": Johnson SB.
apollo_beta Named numeric vector. Names and values for parameters.

apollo_fixed Character vector. Names (as defined in apollo_beta) of parameters whose
value should not change during estimation. value is constant throughout estima-
tion).

apollo_control List. Options controlling the running of the code. See apollo_validateInputs.

Details

This function is only necessary when using bayesian estimation.

Value

Validated apollo_HB

apollo_validatelInputs Prepares input for apollo_estimate

Description

Searches the user work space (.GlobalEnv) for all necessary input to run apollo_estimate, and
packs it in a single list.

Usage

apollo_validatelInputs(
apollo_beta = NA,
apollo_fixed = NA,
database = NA,
apollo_control = NA,
apollo_HB = NA,

apollo_validatelnputs 77

apollo_draws = NA,
apollo_randCoeff = NA,
apollo_lcPars = NA,
silent = FALSE

Arguments

apollo_beta Named numeric vector. Names and values for parameters.

apollo_fixed Character vector. Names (as defined in apollo_beta) of parameters whose
value should not change during estimation.

database data.frame. Data used by model.
apollo_control List. Options controlling the running of the code.
* modelName: Character. Name of the model. Used when saving the output
to files. Avoid characters not allowed in file names, such as \, *, :, etc.
* modelDescr: Character. Description of the model. Used in output files.

e indivID: Character. Name of column in the database with each decision
maker’s ID.

* mixing: Boolean. TRUE for models that include random parameters.

* nCores: Numeric>0. Number of threads (processors) to use in estimation
of the model.

* workInLogs: Boolean. TRUE for higher numeric stability at the expense
of computational time. Useful for panel models only. Default is FALSE.

* seed: Numeric. Seed for random number generation.
* HB: Boolean. TRUE if using RSGHB for Bayesian estimation of model.

* noValidation: Boolean. TRUE if user does not wish model input to be
validated before estimation - FALSE by default.

* noDiagnostics: Boolean. TRUE if user does not wish model diagnostics
to be printed - FALSE by default.

* panelData: Boolean. TRUE if using panelData data (created automatically
by apollo_validateControl).

* weights: Character. Name of column in database containing weights for
estimation.

apollo_HB List. Contains options for bayesian estimation. See ?RSGHB: : doHB for details.

Parameters modelname, gVarNamesFixed, gVarNamesNormal, gDIST, svN and
FC are automatically set based on the other arguments of this function. It should
also include a named character vector called hbDist identifying the distribution
of each parameter to be estimated. Possible values are as follows.

e "DNE": Parameter kept at its starting value (not estimated).

* "F": Fixed (as in non-random) parameter.

¢ "N": Normal.

* "LN+": Positive log-normal.

e "LN-": Negative log-normal.

e "CN+": Positive censored normal.

78 apollo_validatelnputs

e "CN-": Negative censored normal.
e "JSB": Johnson SB.
apollo_draws List of arguments describing the inter and intra individual draws. Required only
if apollo_control$mixing = TRUE. Unused elements can be ommited.
* interDrawsType: Character. Type of inter-individual draws ("halton’,’mlhs’,pmc’,’ sobol’,’sobolOw
’sobolFaureTezuka’, ’sobolOwenFaureTezuka’ or the name of an object
loaded in memory, see manual in www.ApolloChoiceModelling.com for
details).
* interNDraws: Numeric scalar (>=0). Number of inter-individual draws per
individual. Should be set to 0 if not using them.
* interUnifDraws: Character vector. Names of uniform-distributed inter-
individual draws.
* interNormDraws: Character vector. Names of normaly distributed inter-
individual draws.
* intraDrawsType: Character. Type of intra-individual draws ("halton’,’mlhs’,’pmc’,’sobol’,’sobolOw
’sobolOwenFaureTezuka’ or the name of an object loaded in memory).
e intraNDraws: Numeric scalar (>=0). Number of intra-individual draws per
individual. Should be set to 0 if not using them.
intraUnifDraws: Character vector. Names of uniform-distributed intra-
individual draws.
e intraNormDraws: Character vector. Names of normaly distributed intra-
individual draws.

apollo_randCoeff
Function. Used with mixing models. Constructs the random parameters of a
mixing model. Receives two arguments:
* apollo_beta: Named numeric vector. Names and values of model param-
eters.
* apollo_inputs: The output of this function (apollo_validateInputs).
apollo_lcPars Function. Used with latent class models. Constructs a list of parameters for each
latent class. Receives two arguments:
* apollo_beta: Named numeric vector. Names and values of model param-
eters.
e apollo_inputs: The output of this function (apollo_validateInputs).
silent Boolean. TRUE to keep the function from printing to the console. Default is
FALSE.

Details

All arguments to this function are optional. If the function is called without arguments, then it it
will look in the user workspace (i.e. the global environment) for variables with the same name as
its ommited arguments. We strongly recommend users to visit www.ApolloChoiceModelling.com
for examples on how to use Apollo. In the website, users will also find a detailed manual and a
user-group for help and further reference.

Value

List grouping several required input for model estimation.

apollo_weighting 79

apollo_weighting Applies weights

Description

Applies weights to individual observations in likelihood function.

Usage

apollo_weighting(P, apollo_inputs, functionality)

Arguments

P List of vectors, matrices or 3-dim arrays. Likelihood of the model components.

apollo_inputs List grouping most common inputs. Created by function apollo_validateInputs.

functionality Character. Can take different values depending on desired output of apollo_probabilities.
* "estimate” For model estimation, returns probabilities of chosen alterna-

tives.

* "prediction” For model predictions, returns probabilities of all alterna-
tives.

* "validate” Validates input.
e "zero_LL" Return probabilities with all parameters at zero.

* "conditionals” For conditionals, returns probabilities of chosen alterna-
tives.

e "output” Checks that the model is well defined.

* "raw” For debugging, returns probabilities of all alternatives

Details

This function should be called inside apollo_probabilities, near the end of it, just before
return(P).

Value

The likelihood (i.e. probability in the case of choice models) of the model in the appropriate form
for the given functionality, multiplied by individual-specific weights.

80 apollo_writeTheta

apollo_writeF12 Writes an F12 file with the results of a model estimation.

Description

Writes an F12 file with the results of a model estimation.

Usage
apollo_writeF12(model, truncateCoeffNames = TRUE)

Arguments
model Model object. Estimated model object as returned by function apollo_estimate.
truncateCoeffNames
Boolean. TRUE to truncate parameter names to 10 characters. FALSE by de-
fault.
Value
Nothing.
apollo_writeTheta Writes the vector [beta,ll] to a file called modelname_iterations.csv
Description

Werites the vector [beta,ll] to a file called modelname_iterations.csv

Usage

apollo_writeTheta(beta, 11, modelName)

Arguments
beta vector of parameters to be written.
11 scalar representing the loglikelihood of the whole model.
modelName Character. Name of the model.

Value

Nothing.

Index

+Topic datasets
apollo_drugChoiceData, 19
apollo_modeChoiceData, 48
apollo_swissRouteChoiceData, 71
apollo_timeUseData, 72
.onAttach, 3

apollo_addLog, 4
apollo_attach, 5, 16
apollo_avgInterDraws, 6
apollo_avgIntraDraws, 7
apollo_bootstrap, 8
apollo_choiceAnalysis, 9
apollo_cnl, 10
apollo_combineModels, 13
apollo_combineResults, 14
apollo_conditionals, 14
apollo_deltaMethod, 15
apollo_detach, 5, 16
apollo_dft, 17
apollo_drugChoiceData, 19
apollo_el, 20
apollo_estimate, 8, 15,22, 27, 30, 31, 33,
36,49, 57, 60, 64, 68, 73, 80
apollo_estimateHB, 23
apollo_firstRow, 25
apollo_fitsTest, 26
apollo_initialise, 27
apollo_insertRows, 28
apollo_keepRows, 28
apollo_lc, 29
apollo_lcConditionals, 30
apollo_lcUnconditionals, 31
apollo_l1Calc, 32
apollo_loadModel, 33, 65
apollo_1rTest, 33
apollo_makeCluster, 34, 70
apollo_makeDraws, 35
apollo_makelLoglLike, 36
apollo_mdcev, 37

81

apollo_mdcevInside, 38
apollo_mdcevOutside, 40
apollo_mdcnev, 42
apollo_mlhs, 44
apollo_mnl, 44
apollo_mnl_2, 46
apollo_modeChoiceData, 48
apollo_modelOutput, 49
apollo_nl, 50
apollo_normalDensity, 52
apollo_ol, 54

apollo_op, 55
apollo_outOfSample, 57
apollo_panelProd, 59
apollo_prediction, 60
apollo_prepareProb, 61
apollo_printLog, 62
apollo_readBeta, 62
apollo_reportModelTypelog, 63
apollo_saveOutput, 33, 64
apollo_searchStart, 65
apollo_setRows, 67
apollo_sharesTest, 68
apollo_speedTest, 69
apollo_splitDataDraws, 70
apollo_swissRouteChoiceData, 71
apollo_timeUseData, 72
apollo_unconditionals, 73
apollo_validateControl, 74
apollo_validateData, 26, 75
apollo_validateHBControl, 75
apollo_validatelnputs, 5-8, 10, 13, 15, 16,

22,24,26, 27,29, 31, 32, 34-36, 57,
59-61, 66, 68-70, 73, 76,76, 79

apollo_weighting, 79
apollo_writeF12, 80
apollo_writeTheta, 80

doHB, 76

82

grad, 23, 25

makeCluster, 36
maxBFGS, 23, 24

on.exit, 5

INDEX

	.onAttach
	apollo_addLog
	apollo_attach
	apollo_avgInterDraws
	apollo_avgIntraDraws
	apollo_bootstrap
	apollo_choiceAnalysis
	apollo_cnl
	apollo_combineModels
	apollo_combineResults
	apollo_conditionals
	apollo_deltaMethod
	apollo_detach
	apollo_dft
	apollo_drugChoiceData
	apollo_el
	apollo_estimate
	apollo_estimateHB
	apollo_firstRow
	apollo_fitsTest
	apollo_initialise
	apollo_insertRows
	apollo_keepRows
	apollo_lc
	apollo_lcConditionals
	apollo_lcUnconditionals
	apollo_llCalc
	apollo_loadModel
	apollo_lrTest
	apollo_makeCluster
	apollo_makeDraws
	apollo_makeLogLike
	apollo_mdcev
	apollo_mdcevInside
	apollo_mdcevOutside
	apollo_mdcnev
	apollo_mlhs
	apollo_mnl
	apollo_mnl_2
	apollo_modeChoiceData
	apollo_modelOutput
	apollo_nl
	apollo_normalDensity
	apollo_ol
	apollo_op
	apollo_outOfSample
	apollo_panelProd
	apollo_prediction
	apollo_prepareProb
	apollo_printLog
	apollo_readBeta
	apollo_reportModelTypeLog
	apollo_saveOutput
	apollo_searchStart
	apollo_setRows
	apollo_sharesTest
	apollo_speedTest
	apollo_splitDataDraws
	apollo_swissRouteChoiceData
	apollo_timeUseData
	apollo_unconditionals
	apollo_validateControl
	apollo_validateData
	apollo_validateHBControl
	apollo_validateInputs
	apollo_weighting
	apollo_writeF12
	apollo_writeTheta
	Index

