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anticlustering Anticlustering
Description

Create groups of elements (anticlusters) that are as similar as possible to each other, by maximizing
the heterogeneity within groups. Implements anticlustering algorithms as described in Papenberg

and Klau (2020; <doi:10.1037/met0000301>).


https://github.com/m-Py/anticlust/issues

anticlustering

Usage

anticlustering(

X,
K,

objective = "diversity”,
method = "exchange”,
preclustering = FALSE,
categories = NULL

Arguments

X

objective

method

preclustering

categories

Details

The data input. Can be one of two structures: (1) A feature matrix where rows
correspond to elements and columns correspond to variables (a single numeric
variable can be passed as a vector). (2) An N x N matrix dissimilarity matrix;
can be an object of class dist (e.g., returned by dist or as.dist) or a matrix
where the entries of the upper and lower triangular matrix represent pairwise
dissimilarities.

How many anticlusters should be created. Alternatively: A vector of length
nrow(x) describing how elements are assigned to anticlusters before the opti-
mization starts.

The objective to be maximized. The option "diversity" (default) maximizes the
cluster editing objective function; the option "variance" maximizes the k-means
objective function. See Details.

One of "exchange" (default) or "ilp". See Details.

Boolean. Should a preclustering be conducted before anticlusters are created?
Defaults to FALSE. See Details.

A vector, data.frame or matrix representing one or several categorical constraints.
See Details.

This function is used to solve anticlustering. That is, K groups are created in such a way that all
groups are as similar as possible. This is accomplished by maximizing instead of minimizing a
clustering objective function. This function natively supports the maximization of two clustering
objective functions:

* cluster editing ‘diversity‘ objective, setting objective = "diversity” (default)

* k-means ‘variance‘ objective, setting objective = "variance”

The k-means objective is the variance within groups—that is, the sum of the squared distances be-
tween each element and its cluster center (see variance_objective). The cluster editing objective
is the sum of pairwise distances within groups (see diversity_objective). Maximizing either
of these clustering objectives (i.e., anticlustering) will partition the data set into similar groups,
whereas traditional cluster analysis is used to obtain a low between-group similarity.
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Anticluster editing is also known as the »maximum diverse grouping problem« because it maxi-
mizes group diversity as measured by the sum of pairwise distances. Hence, anticlustering maxi-
mizes between-group similarity by maximizing within-group heterogeneity. In previous versions of
this package, method = "distance” was used (and is still supported) to request anticluster editing,
but now method = "diversity" is preferred because there are several clustering objectives based
on pairwise distances (e.g., see dispersion_objective).

If the data input x is a feature matrix (that is: each row is a "case" and each column is a "variable")
and the option objective = "diversity” is used, the Euclidean distance is computed as the basic
unit of the anticluster editing objective. If a different measure of dissimilarity is preferred, you may
pass a self-generated dissimiliarity matrix via the argument x.

In the standard case, groups of equal size are generated. Adjust the argument K to create groups of
different size.

Heuristic anticlustering

By default, a heuristic method is employed for anticlustering: the exchange method (method =
"exchange"). Building on an initial assignment of elements to anticlusters, elements are sequen-
tially swapped between anticlusters in such a way that each swap improves set similarity by the
largest amount that is possible. In the default case, elements are randomly assigned to anticlusters
before the exchange procedure starts; however, it is also possible to explicitly specify the initial
assignment using the argument K (in this case, K has length nrow(x)). The exchange procedure is
repeated for each element. Because each possible swap is investigated for each element, the total
number of exchanges grows quadratically with input size, rendering the exchange method unsuit-
able for large N.

When setting preclustering = TRUE, only the K -1 most similar elements serve as exchange part-
ners, which can dramatically speed up the optimization (more information on the preclustering
option is included below). This option is recommended for larger N. For very large N, check out
the function fast_anticlustering that was specifically implemented to process very large data
sets.

Exact anticlustering

An optimal anticluster editing objective can be found via integer linear programming (the integer
linear program implemented here can be found in Papenberg & Klau, 2020, (8) - (12)). To this
end, set method = "ilp”. To obtain an optimal solution, the open source GNU linear programming
kit (available from https://www.gnu.org/software/glpk/glpk.html) and the R package Rglpk must be
installed. The optimal solution is retrieved by setting objective = "diversity”, method = "ilp”
and preclustering = FALSE. Use this combination of arguments only for small problem sizes.

To relax the optimality requirement, it is possible to set the argument preclustering = TRUE. In
this case, the anticluster editing objective is still optimized using integer linear programming, but a
preprocessing forbids very similar elements to be assigned to the same anticluster. The preclustering
reduces the size of the solution space, making the integer linear programming approach applicable
for larger problem instances. With preclustering, optimality is no longer guaranteed, but the solution
is usually optimal or very close to optimal.

The variance criterion cannot be optimized to optimality using integer linear programming be-
cause the k-means objective function is not linear. However, it is possible to employ the function
generate_partitions to obtain optimal solutions for small problem instances.

Preclustering

A useful heuristic for anticlustering is to form small groups of very similar elements and assign
these to different groups. This logic is used as a preprocessing when setting preclustering =
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TRUE. That is, before the anticlustering objective is optimized, a cluster analysis identifies small
groups of similar elements (pairs if K = 2, triplets if K = 3, and so forth). The optimization of the
anticlustering objective is then conducted under the constraint that these matched elements cannot
be assigned to the same group. When using the exchange algorithm, preclustering is conducted
using a call to matching. When using method = "ilp"”, the preclustering optimally finds groups of
minimum pairwise distance by solving the integer linear program described in Papenberg and Klau
(2020; (8) - (10), (12) - (13)).

Categorical constraints

The argument categories may induce categorical constraints. The grouping variables indicated by
categories will be balanced out across anticlusters. Currently, this functionality is only available
in combination with the exchange method, but not with the integer linear programming approach.

Optimize a custom objective function

It is possible to pass a function to the argument objective. See dispersion_objective for
an example. If objective is a function, the exchange method assigns elements to anticlusters in
such a way that the return value of the custom function is maximized (hence, the function should
return larger values when the between-group similarity is higher). The custom function has to take
two arguments: the first is the data argument, the second is the clustering assignment. That is, the
argument x will be passed down to the user-defined function as first argument. However, only after
as.matrix has been called on x. This implies that in the function body, columns of the data set
cannot be accessed using data. frame operations such as $. Objects of class dist will be converted
to matrix as well.

Value

A vector of length N that assigns a group (i.e, a number between 1 and K) to each input element.

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

References

Grotschel, M., & Wakabayashi, Y. (1989). A cutting plane algorithm for a clustering problem.
Mathematical Programming, 45, 59-96.

Papenberg, M., & Klau, G. W. (2020). Using anticlustering to partition data sets into equivalent
parts. Psychological Methods. Advance Online Publication. https://doi.org/10.1037/met0000301.

Spith, H. (1986). Anticlustering: Maximizing the variance criterion. Control and Cybernetics, 15,
213-218.

See Also

fast_anticlustering
variance_objective

diversity_objective
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Examples

# Optimize the cluster editing (diversity) criterion
anticlusters <- anticlustering(

schaper2019[, 3:6],

K =3,

categories = schaper2019%$room
)
# Compare feature means by anticluster
by (schaper2019[, 3:6], anticlusters, function(x) round(colMeans(x), 2))
# Compare standard deviations by anticluster
by (schaper2019[, 3:6], anticlusters, function(x) round(apply(x, 2, sd), 2))
# check that the "room” is balanced across anticlusters:
table(anticlusters, schaper2019%room)

# You can try to improve the solution using the old output as
# the new K argument:
new_anticlusters <- anticlustering(

schaper2019[, 3:6],

K = anticlusters,

categories = schaper2019%$room

)

## Use preclustering and variance (k-means) criterion on large data set
N <- 1000

K=2

lds <- data.frame(f1 = rnorm(N), f2 = rnorm(N))

ac <- anticlustering(

lds,

K =K,

objective = "variance”,
preclustering = TRUE

# The following is equivalent to setting ‘preclustering = TRUE':
cl <- balanced_clustering(lds, K = N / K)
ac <- anticlustering(

lds,

K =K,

objective = "variance”,
categories = cl

balanced_clustering Create balanced clusters of equal size

Description

Create balanced clusters of equal size
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Usage
balanced_clustering(x, K, method = "centroid")
Arguments
X The data input. Can be one of two structures: (1) A feature matrix where rows
correspond to elements and columns correspond to variables (a single numeric
variable can be passed as a vector). (2) An N x N matrix dissimilarity matrix;
can be an object of class dist (e.g., returned by dist or as.dist) or amatrix
where the entries of the upper and lower triangular matrix represent pairwise
dissimilarities.
K How many clusters should be created.
method One of "centroid" or "ilp". See Details.
Details

This function partitions a set of elements into K equal-sized clusters. The function offers two meth-
ods: a heuristic and an exact method. The heuristic (method = "centroid"”) first computes the
centroid of all data points. If the input is a feature matrix, the centroid is defined as the mean vector
of all columns. If the input is a dissimilarity matrix, the most central element acts as the centroid;
the most central element is defined as the element having the minimum maximal distance to all other
elements. After identifying the centroid, the algorithm proceeds as follows: The element having the
highest distance from the centroid is clustered with its (N/K) -1 nearest neighbours (neighbourhood
is defined according to the Euclidean distance if the data input is a feature matrix). From the re-
maining elements, again the element farthest to the centroid is selected and clustered with its (N/K)
-1 neighbours; the procedure is repeated until all elements are part of a cluster.

An exact method (method = "ilp") can be used to solve equal-sized weighted cluster editing op-
timally (implements the integer linear program described in Papenberg and Klau, 2020; (8) -
(10), (12) - (13)). The cluster editing objective is the sum of pairwise distances within clus-
ters; clustering is accomplished by minimizing this objective. If the argument x is a features
matrix, the Euclidean distance is computed as the basic unit of the cluster editing objective. If
another distance measure is preferred, users may pass a self-computed dissimiliarity matrix via
the argument x. The optimal cluster editing objective can be found via integer linear program-
ming. To obtain an optimal solution, the open source GNU linear programming kit (available from
https://www.gnu.org/software/glpk/glpk.html) and the R package Rglpk must be installed.

Value

An integer vector representing the cluster affiliation of each data point

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>
Meik Michalke <meik.michalke@hhu.de>
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Source

The centroid method was originally developed and contributed by Meik Michalke. It was later
rewritten by Martin Papenberg, who also implemented the integer linear programming method.

References

Grotschel, M., & Wakabayashi, Y. (1989). A cutting plane algorithm for a clustering problem.
Mathematical Programming, 45, 59-96.

Papenberg, M., & Klau, G. W. (2020). Using anticlustering to partition data sets into equivalent
parts. Psychological Methods. Advance Online Publication. https://doi.org/10.1037/met0000301.

Examples

# Cluster a data set and visualize results

N <- 1000

lds <- data.frame(f1 = rnorm(N), f2 = rnorm(N))
cl <- balanced_clustering(lds, K = 10)
plot_clusters(lds, clusters = cl)

# Repeat using a distance matrix as input
cl2 <- balanced_clustering(dist(lds), K = 10)
plot_clusters(lds, clusters = cl2)

categorical_sampling  Random sampling employing a categorical constraint

Description

This function can be used to obtain a stratified split of a data set.

Usage

categorical_sampling(categories, K)

Arguments
categories A matrix or vector of one or more categorical variables.
K The number of groups that are returned.

Details

This function can be used to obtain a stratified split of a data set. Using this function is like calling
aanticlustering* with argument ‘categories‘ where no optimization is conducted; the categories
are just evenly split between samples. Apart from the restriction that categories are balanced be-
tween samples, the split is random.
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Value

A vector representing the sample each element was assigned to.

Examples

data(schaper2019)

categories <- schaper2019%$room

groups <- categorical_sampling(categories, K = 6)
table(groups, categories)

dispersion_objective  Cluster dispersion

Description
Compute the dispersion objective for a given clustering (i.e., the minimum distance between two
elements within the same cluster).

Usage

dispersion_objective(x, clusters)

Arguments
X The data input. Can be one of two structures: (1) A feature matrix where rows
correspond to elements and columns correspond to variables (a single numeric
variable can be passed as a vector). (2) An N x N matrix dissimilarity matrix;
can be an object of class dist (e.g., returned by dist or as.dist) or a matrix
where the entries of the upper and lower triangular matrix represent pairwise
dissimilarities.
clusters A vector representing (anti)clusters (e.g., returned by anticlustering).
Details

The dispersion is the minimum distance between two elements within the same cluster. When the
input x is a feature matrix, the Euclidean distance is used as the distance unit. Maximizing the
dispersion maximizes the minimum heterogeneity within clusters and is an anticlustering task.

References

Brusco, M. J., Cradit, J. D., & Steinley, D. (in press). Combining diversity and dispersion criteria for
anticlustering: A bicriterion approach. British Journal of Mathematical and Statistical Psychology.
https://doi.org/10.1111/bmsp.12186
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Examples

N <- 50 # number of elements

M <- 2 # number of variables per element

K <= 5 # number of clusters

random_data <- matrix(rnorm(N * M), ncol = M)
random_clusters <- sample(rep_len(1:K, N))
dispersion_objective(random_data, random_clusters)

# Maximize the dispersion
optimized_clusters <- anticlustering(
random_data,
K = random_clusters,
objective = dispersion_objective
)

dispersion_objective(random_data, optimized_clusters)

diversity_objective (Anti)cluster editing "diversity" objective

Description

Compute the diversity for a given clustering.

Usage

diversity_objective(x, clusters)

Arguments
X The data input. Can be one of two structures: (1) A data matrix where rows
correspond to elements and columns correspond to features (a single numeric
feature can be passed as a vector). (2) An N x N matrix dissimilarity matrix;
can be an object of class dist (e.g., returned by dist or as.dist) or amatrix
where the entries of the upper and lower triangular matrix represent the pairwise
dissimilarities.
clusters A vector representing (anti)clusters (e.g., returned by anticlustering).
Details

The objective function used in (anti)cluster editing is the diversity, i.e., the sum of the pairwise
distances between elements within the same groups. When the input x is a feature matrix, the
Euclidean distance is computed as the basic distance unit of this objective.

Value

The cluster editing objective
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Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

References

Brusco, M. J., Cradit, J. D., & Steinley, D. (in press). Combining diversity and dispersion criteria for
anticlustering: A bicriterion approach. British Journal of Mathematical and Statistical Psychology.
https://doi.org/10.1111/bmsp.12186

Papenberg, M., & Klau, G. W. (2020). Using anticlustering to partition data sets into equivalent
parts. Psychological Methods. Advance Online Publication. https://doi.org/10.1037/met0000301.

Examples

data(iris)

distances <- dist(iris[1:60, -5])

## Clustering

clusters <- balanced_clustering(distances, K = 3)
# This is low:

diversity_objective(distances, clusters)

## Anticlustering

anticlusters <- anticlustering(distances, K = 3)
# This is higher:

diversity_objective(distances, anticlusters)

fast_anticlustering Fast anticlustering

Description

The most efficient way to solve anticlustering optimizing the k-means variance criterion with an
exchange method. Can be used for very large data sets.

Usage

fast_anticlustering(x, K, k_neighbours = Inf, categories = NULL)

Arguments
X A numeric vector, matrix or data.frame of data points. Rows correspond to ele-
ments and columns correspond to features. A vector represents a single numeric
feature.
K How many anticlusters should be created.

k_neighbours The number of neighbours that serve as exchange partner for each element. De-
faults to Inf, i.e., each element is exchanged with each element in other groups.

categories A vector, data.frame or matrix representing one or several categorical constraints.
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Details

This function was created to make anticlustering applicable to large data sets (e.g., 100,000 ele-
ments). It optimizes the k-means variance objective because computing all pairwise distances is
not feasible for many elements. Additionally, this function employs a speed-optimized exchange
method. For each element, the potential exchange partners are generated using a nearest neighbor
search with the function nn2 from the RANN package. The nearest neighbors then serve as exchange
partners. This approach is inspired by the preclustering heuristic according to which good solutions
are found when similar elements are in different sets—by swapping nearest neighbors, this will
often be the case. The number of exchange partners per element has to be set using the argument
k_neighbours; by default, it is set to Inf, meaning that all possible swaps are tested. This default
must be changed by the user for large data sets. More exchange partners generally improve the
output, but also increase run time.

When setting the categories argument, exchange partners will be generated from the same cate-
gory. Note that when categories has multiple columns (i.e., each element is assigned to multiple
columns), each combination of categories is treated as a distinct category by the exchange method.

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

See Also

anticlustering

variance_objective

Examples

features <- iris[, - 5]

start <- Sys.time()
ac_exchange <- fast_anticlustering(features, K = 3)
Sys.time() - start

## The following call is equivalent to the call above:

start <- Sys.time()

ac_exchange <- anticlustering(features, K = 3, objective = "variance”
Sys.time() - start

## Improve run time by using fewer exchange partners:

start <- Sys.time()

ac_fast <- fast_anticlustering(features, K = 3, k_neighbours = 10)
Sys.time() - start

by(features, ac_exchange, function(x) round(colMeans(x), 2))
by(features, ac_fast, function(x) round(colMeans(x), 2))
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generate_partitions Generate all partitions of same cardinality

Description

Generate all partitions of same cardinality

Usage

generate_partitions(N, K, generate_permutations = FALSE)

Arguments
N The total N. K has to be dividble by N.
K How many partitions

generate_permutations
If TRUE, all permutations are returned, resulting in duplicate partitions.

Details

In principle, anticlustering can be solved to optimality by generating all possible partitions of N
items into K groups. The example code below illustrates how to do this. However, this approach
only works for small N because the number of partitions grows exponentially with N.

The partition c(1, 2, 2, 1) is the same as the partition c(2, 1, 1, 2) but they correspond to different
permutations of the elements [1, 1, 2, 2]. If the argument generate_permutations is TRUE, all
permutations are returned. To solve balanced anticlustering exactly, it is sufficient to inspect all
partitions while ignoring duplicated permutations.

Value

A list of all partitions (or permutations if generate_permutations is TRUE).

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

References

Papenberg, M., & Klau, G. W. (2020). Using anticlustering to partition data sets into equivalent
parts. Psychological Methods. Advance Online Publication. https://doi.org/10.1037/met0000301.
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Examples

## Generate all partitions to solve k-means anticlustering
## to optimality.

N <- 14

K<-2

features <- matrix(sample(N * 2, replace = TRUE), ncol = 2)
partitions <- generate_partitions(N, K)

length(partitions) # number of possible partitions

## Create an objective function that takes the partition

## as first argument (then, we can use sapply to compute

## the objective for each partition)

var_obj <- function(clusters, features) {
variance_objective(features, clusters)

3

all_objectives <- sapply(
partitions,
FUN = var_obj,
features = features

## Check out distribution of the objective over all partitions:
hist(all_objectives) # many large, few low objectives

## Get best k-means anticlustering objective:

best_obj <- max(all_objectives)

## It is possible that there are multiple best solutions:
sum(all_objectives == best_obj)

## Select one best partition:

best_anticlustering <- partitions[all_objectives == best_obj][[1]]
## Look at mean for each partition:

by(features, best_anticlustering, function(x) round(colMeans(x), 2))

## Get best k-means clustering objective:

min_obj <- min(all_objectives)

sum(all_objectives == min_obj)

## Select one best partition:

best_clustering <- partitions[all_objectives == min_objJ][[1]]

## Plot minimum and maximum objectives:
user_par <- par("mfrow")
par(mfrow = c(1, 2))
plot_clusters(
features,
best_anticlustering,
illustrate_variance = TRUE,
main = "Maximum variance”
)
plot_clusters(
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features,

15

best_clustering,
illustrate_variance = TRUE,
main = "Minimum variance”

)

par(mfrow = user_par)

matching

Matching

Description

Conduct K-partite or unrestricted (minimum distance) matching to find pairs or groups of similar
elements. By default, finding matches is based on the Euclidean distance between data points, but
a custom dissimilarity measure can also be employed.

Usage
matching(
X ’
p =2,

match_betwee
match_within

n

= NULL,
= NULL,

match_extreme_first = TRUE,
target_group = NULL,

sort_output

Arguments

X

p
match_between

match_within

TRUE

The data input. Can be one of two structures: (1) A feature matrix where rows
correspond to elements and columns correspond to variables (a single numeric
variable can be passed as a vector). (2) An N x N matrix dissimilarity matrix;
can be an object of class dist (e.g., returned by dist or as.dist) or a matrix
where the entries of the upper and lower triangular matrix represent pairwise
dissimilarities.

The size of the groups; the default is 2, in which case the function returns pairs.

An optional vector, data. frame or matrix representing one or several categor-
ical constraints. If passed, the argument p is ignored and matches are sought
between elements of different categories.

An optional vector, data. frame or matrix representing one or several categor-
ical constraints. If passed, matches are sought between elements of the same
category.

match_extreme_first

Logical: Determines if matches are first sought for extreme elements first or for
central elements. Defaults to TRUE.
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target_group  Currently, the options "none", smallest" and "diverse" are supported. See De-
tails.

sort_output Boolean. If TRUE (default), the output clusters are sorted by similarity. See
Details.

Details

If the data input x is a feature matrix, matching is based on the Euclidean distance between data
points. If the argument x is a dissimilarity matrix, matching is based on the user-specified dissim-
ilarities. To find matches, the algorithm proceeds by selecting a target element and then searching
its nearest neighbours. Critical to the behaviour or the algorithm is the order in which target ele-
ments are selected. By default, the most extreme elements are selected first, i.e., elements with the
highest distance to the centroid of the data set (see balanced_clustering that relies on the same
algorithm). Set the argument match_extreme_first to FALSE, to enforce that elements close to
the centroid are first selected as targets.

If the argument match_between is passed and the groups specified via this argument are of differ-
ent size, target elements are selected from the smallest group by default (because in this group, all
elements can be matched). However, it is also possible to specify how matches are selected through
the option target_group. When specifying "none”, matches are always selected from extreme
elements, irregardless of the group sizes (or from central elements first if match_extreme_first
= FALSE). With option "smallest”, matches are selected from the smallest group. With option
"diverse”, matches are selected from the most heterogenous group according to the sum of pair-
wise distances within groups.

The output is an integer vector encoding which elements have been matched. The grouping numbers
are sorted by similarity. That is, elements with the grouping number »1« have the highest intra-
group similarity, followed by 2 etc (groups having the same similarity index are still assigned a
different grouping number, though). Similarity is measured as the sum of pairwise (Euclidean)
distances within groups (see diversity_objective). To prevent sorting by similarity (this is some
extra computational burden), set sort_output = FALSE. Some unmatched elements may be NA.
This happens if it is not possible to evenly split the item pool evenly into groups of size p or if the
categories described by the argument match_between are of different size.
Value

An integer vector encoding the matches. See Details for more information.

Note

It is possible to specify grouping restrictions via match_between and match_within at the same
time.

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

Examples

# Find triplets



matching

N <- 120
lds <- data.frame(f1 = rnorm(N), f2 = rnorm(N))
triplets <- matching(lds, p = 3)
plot_clusters(
lds,
clusters = triplets,
within_connection = TRUE

)

# Bipartite matching with unequal-sized groups:
# Only selects matches for some elements
N <- 100
data <- matrix(rnorm(N), ncol = 1)
groups <- sample(1:2, size = N, replace = TRUE, prob = c(0.8, 0.2))
matched <- matching(datal, 1], match_between = groups)
plot_clusters(
cbind(groups, data),
clusters = matched,
within_connection = TRUE

)

# Match objects from the same category only
matched <- matching(

schaper2019[, 3:6],

p =3,

match_within = schaper2019%$room

)
head(table(matched, schaper2019%$room))

# Match between different plant species in the »iris« data set
species <- iris$Species != "versicolor”
matched <- matching(
iris[species, 11,
match_between = iris[species, 5]
)
# Adjust ‘match_extreme_first‘ argument
matched2 <- matching(
iris[species, 11,
match_between = iris[species, 5],
match_extreme_first = FALSE
)
# Plot the matching results
user_par <- par("mfrow")
par(mfrow = c(1, 2))
data <- data.frame(
Species = as.numeric(iris[species, 51),
Sepal.Length = iris[species, 1]
)
plot_clusters(
data,
clusters = matched,
within_connection = TRUE,
main = "Extreme elements matched first”

17
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)
plot_clusters(

data,

clusters = matched2,

within_connection = TRUE,

main = "Central elements matched first”

)

par(mfrow = user_par)

mean_sd_obj An objective function measuring similarity of sets

Description

Compute the discrepancy in means and standard deviations between clusters.

Usage

mean_sd_obj(features, clusters)

Arguments
features A matrix or data.frame of data points. Rows correspond to elements and columns
correspond to features.
clusters A clustering vector
Details

This function can be passed as the argument objective to the function anticlustering to mini-
mize differences in means and standard deviations between anticlusters.

Value
A value quantifying similarity in means and standard deviations. Higher values indicate that means
and standard deviations are more similar.

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>



mean_sd_tab

Examples

data(schaper2019)
features <- schaper2019[1:48, 3:6]
ac <- anticlustering(
features,
K =3,
categories = schaper2019$room[1:48],
objective = mean_sd_obj
)
by(features, ac, function(x) round(colMeans(x), 2))
by(features, ac, function(x) round(apply(x, 2, sd), 2))

mean_sd_tab Means and standard deviations by group variable formatted in table

Description

Means and standard deviations by group variable formatted in table

Usage

mean_sd_tab(features, groups, decimals = 2, na.rm = FALSE, return_diff = FALSE)

Arguments
features A data frame of features
groups A grouping vector
decimals The number of decimals
na.rm Should NAs be removed prior to computing stats (Default = FALSE)
return_diff Boolean. Should an additional row be printed that contains the difference be-
tween minimum and maximum
Value

A table that illustrates means and standard deviations (in brackets)

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

Examples

data(iris)
mean_sd_tab(iris[, -5], iris[, 5])
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plot_clusters

n_partitions Number of equal sized partitions

Description

Number of equal sized partitions

Usage

n_partitions(N, K)

Arguments
N How many elements
K How many partitions
Value

The number of partitions

Examples

n_partitions(20, 2)

plot_clusters Visualize a cluster analysis

Description

Visualize a cluster analysis

Usage

plot_clusters(
features,
clusters,
within_connection = FALSE,
between_connection = FALSE,
illustrate_variance = FALSE,
show_axes = FALSE,

xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,

nn

main = ,
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1ty = 2,
frame.plot = FALSE,
cex_centroid = 2

)
Arguments
features A data.frame or matrix representing the features that are plotted. Must have two
columns.
clusters A vector representing the clustering

within_connection
Boolean. Connect the elements within each clusters through lines? Useful to
illustrate a graph structure.
between_connection
Boolean. Connect the elements between each clusters through lines? Useful to
illustrate a graph structure. (This argument only works for two clusters).
illustrate_variance
Boolean. Illustrate the variance criterion in the plot?

show_axes Boolean, display values on the x and y-axis? Defaults to ‘FALSE".
xlab The label for the x-axis

ylab The label for the y-axis

x1lim The limits for the x-axis

ylim The limits for the y-axis

main The title of the plot

cex The size of the plotting symbols, see par

cex.axis The size of the values on the axes

cex.lab The size of the labels of the axes

lwd The width of the lines connecting elements.

1ty The line type of the lines connecting elements (see par).
frame.plot a logical indicating whether a box should be drawn around the plot.

cex_centroid The size of the cluster center symbol (has an effect only if illustrate_variance
is TRUE)

Details

In most cases, the argument clusters is a vector returned by one of the functions anticlustering,
balanced_clustering or matching. However, the plotting function can also be used to plot the
results of other cluster functions such as kmeans. This function is usually just used to get a fast
impression of the results of an (anti)clustering assignment, but limited in its functionality. It is
useful for depicting the intra-cluster connections using argument within_connection.



22 plot_similarity

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

Examples

N <- 15

features <- matrix(runif(N * 2), ncol = 2)

K <-3

clusters <- balanced_clustering(features, K = K)

anticlusters <- anticlustering(features, K = K)

user_par <- par("mfrow")

par(mfrow = c(1, 2))

plot_clusters(features, clusters, main = "Cluster editing”, within_connection = TRUE)
plot_clusters(features, anticlusters, main = "Anticluster editing”, within_connection = TRUE)
par(mfrow = user_par)

plot_similarity Plot similarity objective by cluster

Description

Plot similarity objective by cluster

Usage

plot_similarity(x, groups)

Arguments
X The data input. Can be one of two structures: (1) A data matrix where rows
correspond to elements and columns correspond to features (a single numeric
feature can be passed as a vector). (2) An N x N matrix dissimilarity matrix;
can be an object of class dist (e.g., returned by dist or as.dist) or amatrix
where the entries of the upper and lower triangular matrix represent the pairwise
dissimilarities.
groups A grouping vector of length N, usually the output of matching.
Details

Plots the sum of pairwise distances by group.

Value

The diversity (sum of distances) by group.
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Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

See Also

diversity_objective
Examples

# Match elements and plot similarity by match
N <- 100

lds <- data.frame(f1 = rnorm(N), f2 = rnorm(N))
pairs <- matching(lds, p = 2)
plot_similarity(lds, pairs)

schaper2019 Ratings for 96 words

Description

A stimulus set that was used in experiments by Schaper, Kuhlmann and Bayen (2019a; 2019b).
The item pool consists of 96 German words. Each word represents an object that is either typically
found in a bathroom or in a kitchen.

Usage

schaper2019

Format
A data frame with 96 rows and 7 variables

item The name of an object (in German)

room The room in which the item is typically found; can be ’kitchen’ or *bathroom’
rating_consistent How expected would it be to find the item in the typical room
rating_inconsistent How expected would it be to find the item in the atypical room
syllables The number of syllables in the object name

frequency A value indicating the relative frequency of the object name in German language (lower
values indicate higher frequency)

list Represents the set affiliation of the item as realized in experiments by Schaper et al.

Source

Courteously provided by Marie Lusia Schaper and Ute Bayen.
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References

Schaper, M. L., Kuhlmann, B. G., & Bayen, U. J. (2019a). Metacognitive expectancy effects in
source monitoring: Beliefs, in-the-moment experiences, or both? Journal of Memory and Lan-
guage, 107, 95-110. https://doi.org/10.1016/j.jm1.2019.03.009

Schaper, M. L., Kuhlmann, B. G., & Bayen, U. J. (2019b). Metamemory expectancy illusion and
schema-consistent guessing in source monitoring. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 45, 470. https://doi.org/10.1037/xIm0000602

Examples

head(schaper2019)
features <- schaper2019[, 3:6]

# Optimize the variance criterion
# (tends to maximize similarity in feature means)
anticlusters <- anticlustering(

features,
K =3,
objective = "variance”,
categories = schaper2019%$room,
method = "exchange”

)

# Means are quite similar across sets:

by(features, anticlusters, function(x) round(colMeans(x), 2))

# Check differences in standard deviations:

by(features, anticlusters, function(x) round(apply(x, 2, sd), 2))
# Room is balanced between the three sets:

table(Room = schaper2019%room, Set = anticlusters)

# Maximize the diversity criterion
ac_dist <- anticlustering(

features,
K= 3,
objective = "diversity”,
categories = schaper2019%$room,
method = "exchange”

)

# With the distance criterion, means tend to be less similar,
# but standard deviations tend to be more similar:
by(features, ac_dist, function(x) round(colMeans(x), 2))
by(features, ac_dist, function(x) round(apply(x, 2, sd), 2))

variance_objective Objective value for the variance criterion
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Description

Compute the k-means variance objective for a given clustering.

Usage

variance_objective(x, clusters)

Arguments
X A vector, matrix or data.frame of data points. Rows correspond to elements and
columns correspond to features. A vector represents a single feature.
clusters A vector representing (anti)clusters (e.g., returned by anticlustering orbalanced_clustering)
Details

The variance objective is given by the sum of the squared errors between cluster centers and indi-
vidual data points. It is the objective function used in k-means clustering, see kmeans.

Value

The total within-cluster variance

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

References

Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31,
651-666.

Papenberg, M., & Klau, G. W. (2020). Using anticlustering to partition data sets into equivalent
parts. Psychological Methods. Advance Online Publication. https://doi.org/10.1037/met0000301.

Spith, H. (1986). Anticlustering: Maximizing the variance criterion. Control and Cybernetics, 15,
213-218.

Examples

data(iris)
## Clustering
clusters <- balanced_clustering(
iris[, -5],
K =3
)
# This is low:
variance_objective(
iris[, -5],
clusters

)
## Anticlustering
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anticlusters <- anticlustering(

iris[, -5],
K = 3,
objective = "variance”

)

# This is higher:

variance_objective(
iris[, -5],
anticlusters

# Illustrate variance objective

N <- 18

data <- matrix(rnorm(N * 2), ncol = 2)

cl <- balanced_clustering(data, K = 3)
plot_clusters(data, cl, illustrate_variance = TRUE)

wce Exact weighted cluster editing

Description

Optimally solves weighted cluster editing (also known as »correlation clustering« or »clique parti-
tioning problem).

Usage
wce(x)
Arguments
X AN x N similarity matrix. Larger values indicate stronger agreement / similarity
between a pair of data points
Details

Finds the clustering that maximizes the sum of pairwise similarities within clusters. In the input
some similarities should be negative (indicating dissimilarity) because otherwise the maximum sum
of similarities is obtained by simply joining all elements within a single big cluster.

Value

An integer vector representing the cluster affiliation of each data point

Note

This function requires the R package Rglpk and the GNU linear programming kit.
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Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

References

Bansal, N., Blum, A., & Chawla, S. (2004). Correlation clustering. Machine Learning, 56, 89-113.

Bocker, S., & Baumbach, J. (2013). Cluster editing. In Conference on Computability in Europe
(pp. 33-44).

Grotschel, M., & Wakabayashi, Y. (1989). A cutting plane algorithm for a clustering problem.
Mathematical Programming, 45, 59-96.

Wittkop, T., Emig, D., Lange, S., Rahmann, S., Albrecht, M., Morris, J. H., . . . Baumbach, J.
(2010). Partitioning biological data with transitivity clustering. Nature Methods, 7, 419—-420.

Examples

features <- swiss

distances <- dist(scale(swiss))

hist(distances)

# Define agreement as being close enough to each other.

# By defining low agreement as -1 and high agreement as +1, we
# solve *unweighted* cluster editing

agreements <- ifelse(as.matrix(distances) < 3, 1, -1)

clusters <- wce(agreements)

plot(swiss, col = clusters, pch = 19)
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