Package 'allestimates'

July 12, 2020

Type Package

Title Effect Estimates from All Models

Version 0.1.8

Description Estimates and plots effect estimates from models with all possible combinations of a list of variables. It can be used for assessing treatment effects in clinical trials or risk factors in bio-medical and epidemiological research. Like Stata command 'confall' (Wang Z (2007) <doi:10.1177/1536867X0700700203>), 'allestimates' calculates and stores all effect estimates, and plots them against p values or Akaike information criterion (AIC) values. It currently has functions for linear regression: all_lm(), logistic and Poisson regression: all_glm() and all_speedglm(), and Cox proportional hazards regression: all_cox().

License GPL-2

Encoding UTF-8

LazyData true

Imports broom, ggplot2, speedglm, survival, tidyr, utils, stringr, dplyr

Depends R (>= 2.10)

RoxygenNote 7.1.1

Suggests spelling, knitr, rmarkdown

VignetteBuilder knitr

Language en-US

NeedsCompilation no

Author Zhiqiang Wang [aut, cre]

Maintainer Zhiqiang Wang <zhiqiang.wang@menzies.edu.au>

Repository CRAN

Date/Publication 2020-07-12 07:20:09 UTC

2 allestimates

R topics documented:

allestimates		Effect estimates from models with all possible combination ables	s of vari-
Index			11
	diab_df		10
	=		
	all_plot2		6
	all_plot		5
	all_lm		5
	all_glm		4
	all_cox		3
	allestimates		2

Description

To assess treatment effects in clinical trials and risk factors in bio-medical and epidemiological research, we use *regression coefficients*, *odds ratios* or *hazard ratios* as *effect estimates*. allestimates allows users to quickly obtain effect estimates from models with all possible combinations of a list of variables specified by users. all_lm for linear regression, all_glm for logistic regression, all_speedglm using speedlm as a faster alternative of all_glm, and all_cox for Cox Proportional Hazards Models. Users can further use those values in a returned list of results. all_plot draws scatter plots with all effect estimate values against p values, as Stata confall command (Wang Z (2007) <doi:10.1177/1536867X0700700203>). Those plots divide estimates into four categories:

Details

• positive and significant: left-top quarter

• negative and significant: left-bottom quarter

• positive and non-significant: right-top quarter

• negative and non-significant: right-bottom quarter

all_plot2 draws multiple plots. Each of those plots indicates whether a specific variable is included or not included in models. Those effect estimates help users better understand confounding effects, uncertainty of their estimates, as well as inappropriately including variables in the models. This is a tool for calculating and exploring effect estimates from all possible models. Interpretation of the results should be in the context of other analyses and biological knowledge.

all_cox 3

Examples

```
? all_speedglm
? all_glm
? all_cox
? all_lm
? all_plot
? all_plot2
```

all_cox

 $\label{lem:condition} Estimates\ all\ possible\ effect\ estimates\ using\ Cox\ Proportional\ Hazards\ regression\ models$

Description

Estimates hazard ratios using Proportional Hazards Regression models ("coxph" from **survival** package) from models with all possible combinations of a list of variables.

Usage

```
all_cox(crude, xlist, data, na_omit = TRUE, ...)
```

Arguments

crude	An object of <i>formula</i> for initial model, generally crude model. However, any other variables can also be included here as the initial model. The left-hand side
	of ~ is the outcome of interest, and the variable on the right-hand side of ~ is the exposure of the interest (either a treatment or a risk factor)
xlist	A vector of a list of variable names.
data	Data frame.
na_omit	Remove all missing values. Default is "na_omit = TRUE".
	Further optional arguments.

Value

A list of all effect estimates.

See Also

surival

```
vlist <- c("Age", "Sex", "Married", "BMI", "Education", "Income")
results <- all_cox(crude = "Surv(t0, t1, Endpoint) ~ Diabetes", xlist = vlist, data = diab_df)
results</pre>
```

4 all_glm

_ 7 7	7
all	9111
GIT.	_65 ± '''

Estimates all possible effect estimates using glm

Description

all_glm estimates odds ratios or rate ratios using generalized linear models (glm) with all possible combinations of a list of variables (potential confounding factors).

Usage

```
all_glm(crude, xlist, data, family = "binomial", na_omit = TRUE, ...)
```

Arguments

crude	An object of <i>formula</i> for initial model, generally crude model. However, any other variables can also be included here as the initial model.
xlist	A vector of a list of variable names (potential confounding factors).
data	Data frame.
family	family Description of the error distribution. Default is "binomial".
na_omit	Remove all missing values. Default is "na_omit = TRUE".
	Further optional arguments.

Value

A list of all effect estimates.

See Also

stats

```
diab_df$Overweight <- as.numeric(diab_df$BMI >= 25)
vlist <- c("Age", "Sex", "Income")
all_glm(crude = "Diabetes ~ Overweight", xlist = vlist, data = diab_df)</pre>
```

all_lm 5

- 7	٦.	٦.	
aı		- 11	m

Estimates all possible effect estimates using 1m

Description

all_lm estimates coefficients of a specific variable using linear models (lm) with all possible combinations of other variables (potential confounding factors).

Usage

```
all_lm(crude, xlist, data, na_omit = TRUE, ...)
```

Arguments

crude	An object of <i>formula</i> for initial model, generally crude model. However, additional variables can also be included here as the initial model.
xlist	A vector of a list of variable names (potential confounding factors).
data	Data frame.
na_omit	Remove all missing values. Default is "na_omit = TRUE".
	Further optional arguments.

Value

A list of all effect estimates.

See Also

lm

Examples

```
vlist <- c("Age", "Sex", "Cancer", "CVD", "Education", "Income")
all_lm(crude = "BMI ~ Married", xlist = vlist, data = diab_df)</pre>
```

all_plot

Plot all effect estimates against p values

Description

all_plot() generates a scatter plot with effect estimates of all possible models again p values.

6 all_plot2

Usage

```
all_plot(
  data,
  xlabels = c(0, 0.001, 0.01, 0.05, 0.2, 0.5, 1),
  xlim = c(0, 1),
  xlab = "P value",
  ylim = NULL,
  ylab = NULL,
  yscale_log = FALSE,
  title = NULL
)
```

Arguments

data	Object from all_cox, all_glm, all_speedglm, or all_glm, including all effect estimate values.
xlabels	Numeric vector x-axis tick labels. Default is " $c(0,0.001,0.01,0.05,0.2,0.5,1)$ ".
xlim	<i>Vector</i> of 2 numeric values for x-axis limits. Default is "c(0,1)".
xlab	Character string for x-axis name. Default is "P value".
ylim	Vector of 2 numeric values for y-axis limits.
ylab	Character string for y-axis name. Default depends on original model types.
yscale_log	TRUE or FALSE to re-scale y-axis to "log10". Default is "FALSE".
title	Character for plot title. Default is "NULL".

Value

```
A ggplot2 object: scatter plot
```

Examples

```
vlist <- c("Age", "Sex", "Married", "BMI", "Education", "Income")
results <- all_cox(crude = "Surv(t0, t1, Endpoint) ~ Diabetes", xlist = vlist, data = diab_df)
all_plot(results)</pre>
```

all_plot2 Plots all effect estimates against p values with each specific variable in the models

Description

all_plot2() generates a panel of scatter plots with effect estimates of all possible models again p values. Each plot includes effect estimates from all models including a specific variable.

all_plot_aic 7

Usage

```
all_plot2(
  data,
  xlabels = c(0, 0.001, 0.01, 0.05, 0.2, 0.5, 1),
  xlim = c(0, 1),
  xlab = "P value",
  ylim = NULL,
  ylab = NULL,
  yscale_log = FALSE,
  title = NULL
)
```

Arguments

data	Object from all_cox, all_glm, all_speedglm, or all_glm, including all effect estimate values.
xlabels	<i>numeric vector</i> x-axis tick labels. Default is " $c(0,0.001,0.01,0.05,0.2,0.5,1)$ "
xlim	vector of 2 numeric values for x-axis limits. Default is "c(0,1)".
xlab	Character string for x-axis name. Default is "P value".
ylim	vector of 2 numeric values for y-axis limits.
ylab	Character string for y-axis name. Default depends on original model types.
yscale_log	TRUE or FALSE re-scale y-axis to "log10". Default is "FALSE".
title	Character title. Default is "NULL".

Value

A ggplot2 object: scatter plot

Examples

```
vlist <- c("Age", "Sex", "Married", "BMI", "Education", "Income")
results <- all_cox(crude = "Surv(t0, t1, Endpoint) ~ Diabetes", xlist = vlist, data = diab_df)
all_plot2(results)</pre>
```

all_plot_aic

Draws scatter plot with all effect estimates against AIC

Description

all_plot_aic() generates a scatter plot with all effect estimates against AIC.

Usage

```
all_plot_aic(data, xlab = "AIC", ylab = NULL, title = NULL)
```

8 all_plot_aic2

Arguments

data	$Object$ from all_cox, all_glm, all_speedglm, or all_glm, including all effect estimate values.
xlab	Character string for x-axis name. Default is "AIC"
ylab	Character string for y-axis name. Default depends on original model types.
title	Character for plot title. Default is "NULL".

Value

A ggplot2 object: scatter plot

Examples

```
vlist <- c("Age", "Sex", "Married", "BMI", "Education", "Income")
results <- all_cox(crude = "Surv(t0, t1, Endpoint) ~ Diabetes", xlist = vlist, data = diab_df)
all_plot_aic(results)</pre>
```

all_plot_aic2

Draws multiple scatter plots of all effect estimates against AIC

Description

all_plot_aic2() draws multiple scatter plots of all effect estimates against AIC. Each plot indicates if a specific variable is included in the models.

Usage

```
all_plot_aic2(data, xlab = "AIC", ylab = NULL, title = NULL)
```

Arguments

data	<i>Object</i> from all_cox, all_glm, all_speedglm, or all_glm, including all effect estimate values.
xlab	Character string for x-axis name. Default is "AIC".
ylab	Character string for y-axis name. Default depends on original model types.
title	Character for plot title. Default is "NULL".

Value

A ggplot2 object: scatter plot.

```
vlist <- c("Age", "Sex", "Married", "BMI", "Education", "Income")
results <- all_cox(crude = "Surv(t0, t1, Endpoint) ~ Diabetes", xlist = vlist, data = diab_df)
all_plot_aic(data = results)</pre>
```

all_speedglm 9

all_speedglm	Effect estimates from all possible models using speedglm

Description

This is a faster alternative to all_glm. all_speedglm estimates odds ratios or rate ratios using generalized linear models (speedglm) with all possible combinations of a list of variables (potential confounding factors) specified in xlist argument.

Usage

```
all_speedglm(crude, xlist, data, family = binomial(), na_omit = TRUE, ...)
```

Arguments

crude	An object of <i>formula</i> for initial model, generally crude model. However, any other variables can also be included here as the initial model.
xlist	A <i>vector</i> of characters with variable names to be included in as potential confounding factors.
data	Data frame.
family	Description of the error distribution. Default is binomial().
na_omit	Remove all missing values. Default is "na_omit = TRUE".
	Further optional arguments.

Value

A list of all effect estimates.

See Also

speedglm

```
vlist <- c("Age", "Sex", "Married", "Cancer", "CVD", "Education", "Income")
results <- all_speedglm(crude = "Endpoint ~ Diabetes", xlist = vlist, data = diab_df)
results$estimate</pre>
```

10 diab_df

Description

A data frame with 2372 rows and 14 variables with diabetes status diabetes and mortality status endpoint. For the purpose of demonstrate, assume that we are interested in the association between diabetes and endpoint. Other variables are considered as possible confounding factors. The purposes of this dataset is to illustrate those functions in **chest** and **allestimates** packages only. Therefore, we assume it is a cohort design for Cox Proportional Hazard regression, and a case-control design for logistic regression.

Usage

diab_df

Format

A data frame with 2372 rows and 14 variables:

Diabetes diabetes status 1: with diabetes 0: without diabetes **Endpoint** mortality status 1: reached end point, and 0: survived

Age Age, in years

Sex sex, 1: male, 2: Female BMI Body mass index

Married marital status 1: married, 0: not

Smoke smoking status 1: smoker, 0: non-smoker

CVD cardiovascular disease 1: yes 0: no

Cancer cancer 1: yes, 0: no

Education education 1: high, 0: low **Income** income 1: high, 0: low

t0 time (age) at the start of the follow-upt1 time (age) at the end of the follow-up

mid matched set id, for conditional logistic regression

Index

```
* datasets
diab_df, 10
all_cox, 3
all_glm, 4
all_lm, 5
all_plot, 5
all_plot_aic, 7
all_plot_aic2, 8
all_speedglm, 9
allestimates, 2
diab_df, 10
```