Package 'akmeans'

February 19, 2015

Type Package
Title Adaptive Kmeans algorithm based on threshold
Version 1.1
Date 2014-04-08
Author Jungsuk Kwac
Maintainer Jungsuk Kwac <kwjusu1@stanford.edu></kwjusu1@stanford.edu>
Description Adaptive K-means algorithm with various threshold settings. It support two distance metric: Euclidean distance, Cosine distance (1 - cosine similarity) In version 1.1, it contains one more threshold condition.
License GPL-2
LazyLoad yes

NeedsCompilation no

Repository CRAN

Index

Date/Publication 2014-05-09 00:47:43

R topics documented:

akmeans-package	2
akmeans	2
norm.sim.ksc	4
norm.sim.ksc.center.update	5
quick.norm	5
	- 7

akmeans-package

Description

This package provides two things. At first, K-means based on cosine distance is provided as a component of this package. Then, based on existing 'kmeans' function and the new kmeans with cosine distance, adaptive part is implemented using various thresholds.

Details

Package:	akmeans
Type:	Package
Version:	1.1
Date:	2014-04-08
License:	GPL-2
LazyLoad:	yes

- akmeans the main function, adaptive kmeans algorithm
- norm.sim.ksc kmeans based on cosine distance

Author(s)

Jungsuk Kwac <kwjusu1@stanford.edu>

akmeans

Adaptive K-means algorithm with threshold setting

Description

Adaptive K-means algorithm is quite simple ## 1. Set min.k and max.k. ## 2. Run K-means with $K = \min.k$ ## 3. For each cluster, check the threshold condition. ## 4. If all clusters satisfy the threshold condition => Done, return the result ## 5. Check K>max.k => If yes, stop. If no, go to step 5. ## 6. For any cluster violating the threshold condition, run K'-means with K'=2 on those cluster members, ## which means K will increase by the number of violating clusters. ## 7. Run K-means setting the present cluster centers as the initial centers and go to step 4.

Usage

akmeans

Arguments

x	data matrix n by p: all elements should be numeric
ths1	threshold to decide whether to increase k or not: check sum((sample-assigned center)^2) < ths1*sum(assigned center^2)
ths2	threshold to decide whether to increase k or not: check all components of lsample- assigned centerl < ths2
ths3	threshold to decide whether to increase k or not: check inner product of (sam- ple,assigned center) > ths3, this is only for cosine distance metric
ths4	threshold to decide whether to increase k or not: check all components of sum(abs(sample-assigned center)) < ths4
min.k	minimum number of clusters, starting k
max.k	maximum number of clusters
iter.max	will be delivered to kmeans function
nstart	will be delivered to kmeans function
mode	1: use ths1, 2: use ths2, 3: use ths3
d.metric	1: use euclidean distance metric, otherwise use cosine distance metric
verbose	print the messages or not

Details

ths1: threshold to decide whether to increase k or not: check sum((sample-assigned center)^2) < ths1*sum(assigned center^2) ## ths2: threshold to decide whether to increase k or not: check all components of lsample-assigned centerl < ths2 ## ths3: threshold to decide whether to increase k or not: check inner product of (sample,assigned center) > ths3, this is only for cosine distance metric ## ths4: threshold to decide whether to increase k or not: check all components of sum(abs(sample-assigned center)) < ths4

Value

if d.metric=1, it will return the same result as 'kmeans' function. if d.metric is not 1, a list will be returned with components : cluster: A vector of integers indicating the cluster to which each point is allocated. centers: A matrix of cluster centres size: The number of points in each cluster

Author(s)

Jungsuk Kwac

Examples

```
x = matrix(rnorm(1000),100,10)
akmeans(x) ## euclidean distance based
```

akmeans(x,d.metric=2,ths3=0.8,mode=3) ## cosine distance based

norm.sim.ksc

Description

On the assumption that the two samples are already normalized to have L2 norm as 1, cosine distance is defined as 1 - inner product of the two samples.

Usage

norm.sim.ksc(A, k, init.cen = NULL, init.mem = NULL, iter.max = 100)

Arguments

A	n by p matrix, each row is a sample
k	the number of clusters
init.cen	initial cluster centers
init.mem	initial cluster member assignment
iter.max	the maximum number of iteration

Value

A list will be returned with components : cluster: A vector of integers indicating the cluster to which each point is allocated. centers: A matrix of cluster centres size: The number of points in each cluster

Author(s)

Jungsuk Kwac

Examples

norm.sim.ksc.center.update

Internal function in norm.sim.ksc

Description

Internal function in norm.sim.ksc

Usage

```
norm.sim.ksc.center.update(mem, A, k, cur.center = NULL)
```

Arguments

Author(s)

Jungsuk Kwac

quick.norm normalization function

Description

it is normalizing each row to have L2 norm as 1 or sum as 1

Usage

quick.norm(A, mod = 2)

Arguments

A	Input matrix, n by p
mod	1: make each row has L2 norm as 1 2: make each row has sum as 1

Value

A normalized n by p matrix will be returned

quick.norm

Author(s)

Jungsuk Kwac

Examples

```
quick.norm(matrix(rnorm(9),3,3))
quick.norm(matrix(rnorm(9),3,3),mod=1)
```

Index

*Topic **adaptive kmeans** akmeans, 2

akmeans, 2akmeans-package, 2

norm.sim.ksc,4 norm.sim.ksc.center.update,5

quick.norm, 5