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In order to increase statistical power and precision, many psychological

experiments collect more than one data point from each participant, often across

different experimental conditions. Such repeated-measures pose a problem to most

standard statistical procedures such as ordinary least-squares regression or

(between-subjects) ANOVA as those procedures assume that the data points are

independent and identically distributed (henceforth iid). The iid assumption is

comprised of two parts: The assumption of identical distribution simply means that all

observations are samples from the same underlying distribution. The independence

assumption states that the probability of a data point taking on a specific value is

independent of the values taken by all other data points.1 In this chapter we are mainly

concerned with the latter assumption.

It is easy to see that in the case of repeated measures the independence

assumption is expected to be violated. Observations coming from the same participant

are usually correlated; e.g., they are more likely to be similar to each other than two

observations coming from two different participants. For example, when measuring

response latencies a participant that is generally slower than her/his peers will respond

comparatively slower across conditions, thus making the data points from this

participant correlated and non-independent (i.e., a participant’s rank in one condition is

predictive of their rank in other conditions). More generally, one can expect violations

of the iid assumption if data are collected from units of observations that are clustered

in groups. Other examples of this are data from experiments collected in group settings,

students within classrooms, or patients within hospitals. In such situations one would

expect that observations within each cluster (i.e., a specific group, classroom, or

hospital) are more similar to each other than observations across clusters.

1Technically, the independence assumption does not pertain to the actual data points (or marginal

distribution), but to the residuals (or conditional distribution) once the statistical model (i.e., fixed

effects, random effects, etc.) has been taken into account. With this, we can define independence

formally via conditional probabilities. The probability that any observation i takes on a specific value

xi is the same irrespective of the values taken on by all the other observations j 6= i, and a statistical

model with parameter vector θ: P (xi|θ) = P (xi | θ,
⋂

j 6=i xj).
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Unfortunately, compared to violations of other assumptions, such as the normality

assumption or the assumption of variance heterogeneity in ANOVA, standard statistical

procedures are usually not robust to violations of the independence assumption (Judd,

Westfall, & Kenny, 2012; Kenny & Judd, 1986). In a frequentist statistical framework

such violations often lead to considerably increased Type I errors (i.e., false positives).

More generally, such violations can produce overconfident results (e.g., too narrow

standard errors).

In this chapter we will describe a class of statistical model that is able to account

for most of the cases of non-independence that are typically encountered in

psychological experiments, linear mixed effects models (LMM, e.g., Baayen, Davidson,

& Bates, 2008), or mixed models for short. Mixed models are a generalization of

ordinary regression that explicitly capture the dependency among data points via

random effects parameters. Compared to traditional analyses that ignore these

dependencies, mixed models provide more accurate (and generalizable) estimates of the

effects, improved statistical power, and non-inflated Type I errors. The reason for the

recent popularity of linear mixed models boils down to the computational resources

required to implement them: In the absence of such resources, realistic data-analytic

methods had to rely on simpler models that ignored the dependencies in the data, and

relied on closed-form estimates and asymptotic results. Fortunately, today we can easily

implement most linear mixed models using any recent computer with sufficient RAM.

The remainder of this chapter is structured as follows: First, we introduce the

concepts underlying mixed models and how they allow to account for different types of

non-independence that can occur in psychological data. Next, we discuss how to set up

a mixed model and how to perform statistical inference with a mixed model. Then, we

will discuss how to estimate a mixed model using the lme4 (Bates, Mächler, Bolker, &

Walker, 2015) as well as the afex (Singmann, Bolker, Westfall, & Aust, 2017) packages

for the statistical programming language R (R Core Team, 2016). Finally, we will

provide an outlook of how to extend mixed models to handle non-normal data (e.g.,

categorical responses).
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Fixed Effects, Random Effects, and Non-Independence

The most important concept for understanding how to estimate and how to

interpret mixed models is the distinction between fixed and random effects.2 In

experimental settings fixed effects are often of primary interest to the researcher and

represent the overall or population-level average effect of a specific model term (i.e.,

main effect or interaction) or parameter on the dependent variable, irrespective of the

random or stochastic variability that is present in the data. A statistically-significant

fixed effect should be interpreted in essentially the same way as a

statistically-significant test result for any given term in a standard ANOVA or

regression model. Furthermore, for fixed effects one can easily test specific hypotheses

among the factor levels (e.g., planned contrasts).

In contrast, random effects capture random or stochastic variability in the data

that comes from different sources, such as participants or items. These sources of

stochastic variability are the grouping variables or grouping factors for the random

effects and always concern categorical variables (i.e., nominal variables such as

condition, participant, item) – continuous variables cannot serve as grouping factors for

random effects. In experimental settings, it is often useful to think about the random

effects grouping factors as the part of the design a researcher wants to generalize over.

For example, one is usually not interested in knowing whether or not two factor levels

differ for a specific sample of participants (after all, this could be done simply by looking

at the obtained means in a descriptive manner), but whether the data provides evidence

that a difference holds in the population of participants the sample is drawn from. By

specifying random effects in our model, we are able to factor out the idiosyncrasies of

our sample and obtain a more general estimate of the fixed effects of interest.3

2Note that there are different possibilities on how to define fixed and random effects, ways that are not

necessarily compatible with each other (Bolker, 2015; Gelman, 2005). The definition employed here is the

one most useful for understanding how to specify and estimate frequentist mixed model as implemented

in lme4 (Bates, Mächler, et al., 2015).
3It should be noted that this distinction, fixed effects as variables of interests versus random effects

as nuisance variables one wants to generalize over, is a simplification. Fixed effects can also serve as
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The independence assumption of standard statistical models implies that one can

only generalize across exactly one source of stochastic variability: the population from

which each observation (i.e., row in most statistical software packages) is sampled. In

psychology the unit of observation is usually participants, but occasionally other units

such as items are employed alternatively (e.g., having words as the unit of observation

is fairly common in psycholinguistic research). Importantly, the notion that the unit of

observation represents a random effect is usually only an implicit part of a statistical

model. In contrast, mixed models require an explicit specification of the random-effects

structure embedded in the experimental design. As described above, the benefit of this

extra step is that one can adequately capture a variety of dependencies that standard

models cannot.

In order to make the distinction and the role of random effects in mixed models

clearer, let us consider a simple example (constructed after Baayen et al., 2008 and

Barr, Levy, Scheepers, & Tily, 2013). Assume you have obtained response latency data

from I participants in K = 2 difficulty conditions, an easy condition that leads to fast

responses and a hard condition that produces slow responses. For example, in both

conditions participants have to make binary judgments on the same groups of words: In

the easy condition they have to make animacy judgments (whether it is a living thing).

In the hard condition participants have to a) judge whether the object the word refers

to is larger than a soccer ball and b) whether it appears in the northern hemisphere;

participants should only press a specific key if both judgments are positive. Moreover,

assume that each participant provides responses to the same J words in each difficulty

condition. Thus, difficulty is a repeated-measures factor, more specifically a

within-subjects factor with J replicates for each participant in each cell of the design,

but also a within-words factor with I replicates for each word in each cell of the design.

Note that the cells of a designs are given by the combination of all (fixed) factor levels.

In the present example there are two cells, corresponding to the easy condition and the

nuisance variables (e.g., when including a fixed effect to “statistically control” for it) and random effects

(e.g., intra-class correlations) can be of primary interest.
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difficult condition, but in a 2 × 2 design we would have four cells instead.4

Figure 1 illustrates the response latency data from two participants (S1 and S2)

across the easy and hard conditions, for two words (I1 and I2). The different panels

show the observed data together with the predictions from a specific model. Going from

top to bottom, the complexity of these models increases. The features of each of these

models will become clear throughout the remainder of this chapter. But at this point a

brief description of the data is in order: First, note that there is a general individual

difference across conditions, with Subject 1 being overall slower than Subject 2. Also,

the two subjects differ in terms of the slowing-down effect observed between the easy

and hard conditions, with the increase in response latency being larger for Subject 2

than for Subject 1. We also find that responses to item I1 tend to be generally faster

than I2, a difference that is smaller in the hard condition. The models discussed below

will differ in their ability to account for these differences observed across subjects and

items.

Fixed-Effects-Only Model

Let us first consider the ordinary regression model that completely ignores the

non-independence in the data. Such a model could be specified in the following manner:

yi,j,k = β0 + βδXi,j,k + ǫi,j,k,

i = 1, 2, . . . , I, j = 1, 2, . . . , J, k = 1, 2,

ǫ ∼ N (0, σ2

ǫ ),

(1)

where yi,j,k denotes the dependent variable (here observed response latencies) for the ith

participant and jth item in the kth condition. Parameter β0 is the intercept and grand

mean, βδ corresponds to the effect of the difficulty condition, and Xi,j,k is an indicator

variable which takes on value 1 in the easy condition and -1 in the hard condition (thus

4For simplicity the example assumes perfect balance (i.e., all cells have the same number of partic-

ipants, items, and observations). In principle, the methods discussed here generalize to non-balanced

data sets, but numerical or other issues often arise if the imbalance is not small. Furthermore, imbalance

can considerably impact power (Judd, Westfall, & Kenny, 2017).
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Figure 1 . Example data and the predictions from different models. The complexity of

the models increases across rows (top row being the simplest model). Note that this is

an illustration only; a model that perfectly describes the data as shown in the bottom

row is non-identifiable as it has more parameters than data points.
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2 × βδ is the difference between the conditions). Finally, ǫi,j,k is the residual error. The

third row states that the vector of all residual errors, ǫ (non-scalar variables such as

vectors or matrices are printed in bold font), is assumed to follow a normal (i.e.,

Gaussian: N ) distribution with mean 0 (i.e., zero-centered) and residual variance σ2

ǫ .

This distribution of residuals implies the iid assumption, which is clearly violated for

the given data. For example, the fact that Subject 1’s response in the easy condition for

item I1 is slower than Subject’s 2 response to the same item is predictive of their

relative speed in the hard condition. Overall, the fixed-effects model provides a poor

account of the data as it completely precludes any of the dependencies that are present

in it (see Figure 1, top row).

Random-Intercepts Model

As noted above, independence is violated if we can learn something about a

specific data point by knowing the value of a different data point (after taking the

structure of the statistical model into account). A natural assumption here would be

that data points from one participant are more similar to each other than data points

from other participants. One way to interpret this assumption is to assume that each

participant has an idiosyncratic overall response latency; some participants are slower

than the average and some are faster than the average. At this point, the shortcomings

of the statistical model described in Equation 1 becomes clear: it only assumes a single

intercept β0 to characterize all participants.

In order to allow for idiosyncratic average response latencies per participant we

need to introduce effects that capture the displacement of each participant from the

grand mean (i.e., the intercept β0). Such a model could be specified as:

yi,j,k = β0 + S0,i + βδXi,j,k + ǫi,j,k,

i = 1, 2, . . . , I, j = 1, 2, . . . , J, k = 1, 2,

ǫ ∼ N (0, σ2

ǫ ),

S0 ∼ N (0, σ2

S0
),

(2)

where S0,i corresponds to the idiosyncratic effect associated to participant i.
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Furthermore, we assume that the vector of the idiosyncratic effects, S0, follows a

zero-centered normal distribution with variance σ2

S0
. The individual S0,i values can be

either positive and negative, summing up to zero. These values allow individual

participants to have their own “grand means” (see Figure 1, second row), which are

assumed to be normally distributed around β0.

Because this model adjusts the grand mean or intercept β0 for each participant,

this model is commonly referred to as a random-intercepts model. In this particular case

the traditional fixed-effects model is augmented with by-participant random intercepts

(i.e, participant is the random effects grouping factor for which we estimate random

intercepts). Note that the random-intercepts model is sufficient to account for

correlations across data points that are brought about by differences in overall levels of

performance such as some participants being generally slower and some being generally

faster.

From the model expressed in Equation 2 it is relatively easy to see the differences

between the fixed effects and the random effects. The fixed effects parameters are the

traditional regression parameters β0 and βδ. Both of these are scalar values; there is

exactly one value for β0 which represents the grand mean across all participants (for our

example the total mean response time) and one value for βδ which represents the

difference between the two condition across all participants. In contrast, the random

effects vector S0 includes all the idiosyncratic displacements S0,i that are added to the

grand mean for each participant. It is is important to keep in mind that this model only

has four parameters: β0, βδ, σ2

ǫ , and, σ2

S0
. This number does not change as a function of

the number of individuals (e.g., more parameters as sample size increases). In order to

specify the random intercepts, it suffices to introduce the variance parameter σ2

S0
. The

participant-level displacements captured by S0 do not correspond to parameters that

were estimated (e.g., unlike β0). Instead, they correspond to conditional modes

(sometimes referred to as posterior mean values) obtained when conditionalizing on the

data and the above-described parameters (see Bates, Mächler, et al., 2015, Pinheiro &

Bates, 2000; the individual displacements are also known as best linear unbiased
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predictions or BLUPs, but this terminology is somewhat outdated).

Random-Intercepts-and-Slopes Model

The random-intercepts model expressed in Equation 2 does not, however, account

for all potential dependencies in the data brought about by the different participants.

The reason for this is the presence of the within-subjects factor ‘difficulty’. The two

previous models assume that the difference between the difficulty conditions is equal for

all participants, but that does not necessarily have to be the case. It is easy to imagine

that this difference is larger for some participants but smaller for other participants (or

even takes on a different direction). For example, imagine that for some participants the

conjunctive task associated to the hard condition is particularly challenging, leading to

larger differences between the two conditions. This situation would lead to

dependencies that would be unaccounted by the models discussed so far: by knowing

the values in a pair of data points from such a participant (one from each condition), we

know something about other possible pairs of data points.

In order to account for such dependencies at the level of a given factor, we once

again introduce a new random effect corresponding to the participant-level

displacements from the condition effect βδ:

yi,j,k = β0 + S0,i + (βδ + Sδ,i)Xi,j,k + ǫi,j,k,

i = 1, 2, . . . , I, j = 1, 2, . . . , J, k = 1, 2,

ǫ ∼ N (0, σ2

ǫ ),







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Sδ
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0

0
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
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





,

(3)

where S0,i is the displacement of participant i from β0, and Sδ,i is displacement of the

same participant i from the difficulty effect βδ (see Figure 1, third row). We now

estimate two random-effect vectors, the random intercept S0 and a random effects term

added to the condition effect, Sδ. Furthermore, we assume that the two random effects

come from a zero-centered multivariate normal distribution for which we estimate both

variances, σ2

S0
and σ2

Sδ
, as well as the correlation, ρSδ,S0

= ρS0,Sδ
. Estimating the
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correlation allows us to account for dependencies that arise when both random effects

are correlated. For example, participants that are overall slow could also have an overall

larger condition effect which would result in a positive correlation. Because the

regression parameters besides the intercept are usually called slopes, Sδ is also known

as a random slope. Thus, the model in Equation 3 is a mixed model with by-participant

random-intercept and by-participant random slopes as well as a correlation among the

by-participant random effects.

We have now established the fundamental distinction between fixed and random

effects in mixed models, and discussed the different types of random effects that can be

added to a model: random intercepts, random slopes, and correlations among random

effects for a specific random effects grouping factor. The random effects are added to a

model so that it can provide a more accurate account of the data-generating process

that takes into account the heterogeneity observed across participants as well as the

dependencies that are expected in the data. The shortcomings of the random-intercepts

model expressed in Equation 2 and the extension expressed in Equation 3 clarifies the

need to include a random slope per factor in order to account for the possibility that

the differences observed across the levels of a factor can vary across participants.

Failure to add such random slopes can lead to considerably increased Type I error rates

as discussed in greater detail below (Barr et al., 2013; Schielzeth & Forstmeier, 2009).

It is important to keep in mind that random effects do not alter the interpretation

of the fixed effects. If we are interested in knowing whether a specific factor has an

overall effect, this is only possible by investigating the fixed effects. The random effects

only tell us whether or not there is variation in a fixed effect for the different levels of

the random effects term (from this it follows that it is rare to include a random effects

parameter, but not the corresponding fixed effect). But given that the variation is

zero-centered, the random effects cannot adjust the overall effect. They are added with

the sole purpose of accounting for the non-independence present in the data due to

observing multiple observations from a given random-effects level. Also important to

note is the fact that the introduction of random effects does not necessarily translate
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into a considerable increase in the number of parameters to be estimated (one variance

parameter per effect). However, the same does not hold when the correlations across

effects are also estimated. The model in Equation 3 including random intercepts and

random slopes only introduces one correlation to be estimated. But as the number of

random effects increases, the number of correlations to be estimated can explode. For a

model with r random effects, r(r − 1)/2 correlations could be estimated (e.g., for r = 5,

the number of correlations is 10).

There is one more angle from which to view random effects, namely how they

allow us to improve estimation on an individual level. The simplest model to for the

example data was the simple regression model given in Equation 1. If one ignores all

individual variability and dependencies and estimates the complete data set with this

model one employs complete pooling, with all data points being treated as independent

observations, which violates the iid assumption. An alternative analysis strategy that

takes the dependencies and individual variability into account would be to fit the data

of each individual participant separately with the model in Equation 1. With this

approach, one would obtain an individual set of regression parameters for each

participant, which could then be analyzed in a second step. This approach, designated

as no pooling, would not violate the iid assumption. However, this no-pooling approach

has a few downsides: a) It does not easily lend itself to mixed designs with both

between- and within-subjects factors, b) one has to decide on how to analyze the

individual parameter estimates, and c) it requires sufficient data on the individual level

for obtaining reliable parameter estimates. Mixed models, with both fixed and random

effects, provide a principled compromise via what is known as partial pooling: The

random effects allow each individual participants to basically have an individual

parameter estimate, as in the no pooling approach. However, the normality assumption

underlying the random effects provides additional structure which ensures that the

estimation of each individual participants’ data is informed by the complete data set.

Mixed models therefore acknowledge the presence of individual differences, but at the

same time take into account the fact that individuals are similar to a certain degree.
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Figure 2 . Different Types of Random Effects. Observations are labeled from y1 to yN .

Different participants are labeled from P1 to PM . Different items are labeled from I1 to

IK . Different groups (where each participant is in exactly one group) are labeled from

G1 to GL.

y1 y2 y3 y4 y5 y6 . . . yN−2 yN−1 yN

P1 P2 . . . PM

(a) Single Random Effect

y1 y2 y3 y4 y5 y6 . . . yN−2 yN−1 yN

P1 P2 . . . PM

I1 I2 IK

(b) Crossed Random Effects

y1 y2 y3 y4 y5 y6 . . . yN−2 yN−1 yN

P1 P2 . . . PM

G1 . . . GL

(c) Nested Random Effects

The normality assumption also leads to what is known as hierarchical shrinkage: the

individual parameter estimates for individuals for which the data diverges considerably

from the rest are adjusted towards the mean. As a consequence – and in contrast with

traditional ANOVA models – the predicted cell means of mixed models do not

necessarily coincide with the observed cell means.

Crossed and Nested Random Effects

One important characteristic of mixed models is that they allow random effects

for multiple, possibly independent, random effects grouping factors. Figure 2 provides

an overview over the different random effects grouping factor types discussed in this

chapter. In the models expressed in Equations 2 and 3 we only introduced

by-participant random effects (Figure 2a). However, participants were not the only

source of stochastic variability in the example experiment. The task was to judge words

and each presented word can also be seen as a sample from the population of all words.
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Therefore, the sample of presented words can be seen as another source of stochastic

variability (Clark, 1973). Figure 1 (second and third row) illustrates how the

fixed-effects model could have been extended with random intercepts and slopes for

items rather than for subjects. However, in experiments in which both participants and

items are sampled, there is interest in simultaneously generalizing across the two

sources of stochastic variability and not only one of them.

Generalization across both participants and items can be easily achieved by adding

by-item random effects in addition to the by-participant random effects. Note that in

the example experiments, condition varies within words (i.e., each word appears in each

difficulty condition) and we thus not only want to have by-item random intercepts but

also by-item random slopes (Figure 2b). The full mixed model is given by:

yi,j,k = β0 + S0,i + I0,j + (βδ + Sδ,i + Iδ,j)Xi,j,k + ǫi,j,k,

i = 1, 2, . . . , I, j = 1, 2, . . . , J, k = 1, 2,
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(4)

where I0 is the by-item random intercept and Iδ the by-item random slope for the

difficulty effect for the J different words. As before, for each by-item random effect we

estimate the corresponding variance, here σ2

I0
and σ2

Iδ
, as well as their correlation ρI0,Iδ

.

Because each item appears for each participant, the corresponding random effects are

known as crossed (this would also be the case if each participant worked on a random

subset of the items). In the example shown in Figure 1, the crossed random effects

model including random intercepts and slopes for participants and items is able to

perfectly capture the data.5

5Please note that more data points than shown in Figure 1 are necessary for uniquely identifying the

parameters of the model and a perfect description of the data is usually not possible for a model with

identifiable parameters, see below for details.
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The mixed model in Equation 4 with crossed random effects for participants and

items and by-participant and by-item random intercepts as well as random slopes for

the difficulty effect as well as correlation among the by-item random effects and

correlation among the by-participant random effects implements the maximal random

effects structure justified by the design.6 As already alluded to earlier, by virtue of being

able to accommodate different forms of heterogeneity that can be found in the data, the

maximal model is the mixed model that is the most likely to provide the accurate

description of the data generating process in the mixed model framework and the model

that in principle provides the best protection against inflated Type I errors (Barr et al.,

2013; Schielzeth & Forstmeier, 2009). It is therefore always a good idea to start a mixed

model analysis of a new data set with the maximal model. We will return to the

question what to do should this model not converge successfully below.7

One common problem in designs with crossed-random effects is the identification

of the maximal random effects structure. For the by-participant random effects

grouping factor the maximal structure is simply the combination of all within-subjects

factors (i.e., main effects and all interactions). For identifying the maximal structure for

a (crossed) by-item random effects grouping factor it is important to temporarily ignore

the different participants. The maximal structure of the random item effect is then

simply the combination of all factors varying within items. More specifically, if a

6If we had replicates for each combination of participant and item, we could additionally estimate

random effects for the random effects grouping factor resulting from the participant-by-item interaction,

potentially with random slopes for all fixed effects. With such data, such a model would constitute the

maximal model. As the example experiment however did not include this data, this effect is confounded

with the residual variance and cannot be estimated.
7It should be noted that the modeling of crossed-random effects supersedes remedial approaches

that are commonly used by researchers. Prominent among these, particularly in the psycholinguistic

literature, is the separate testing of effects when aggregating data across participants versus aggregating

across items (Clark, 1973). Instead of checking the robustness of an effect when relying on alternative

aggregation procedures (e.g., F1 vs. F2 tests), linear mixed models do not rely on aggregation at all and

estimate the different dependencies in the data directly. This not only avoids ambiguities on how to best

integrate the different analysis, but also provides a better protection against inflated Type I errors (Barr

et al., 2013).
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specific item appears in all levels of a given factor (independent of whether that

happens within one participant or across participants) this factor varies within items

and the corresponding random slope is part of the maximal random effects structure.

And if two different factors are both within-item factors, the random slope of the

interaction of the factors is also part of the maximal random effects structure. Note

further that for unbalanced designs (e.g., if the items for each participant are selected

randomly from a pool of items) to be able to estimate by-item random slopes for a

specific fixed fixed effect it is not necessary that this fixed effect varies among all levels

of the item effect. In other words, mixed models can deal with missing values on the

level of the random effects. If there is too much missing data the variance of the

random effects will simply be estimated to be zero.

Some random effects are not crossed, but nested; this is the case if some levels of

one random effects grouping factor only appear in one level of a second random effects

grouping factor (Figure 2c). For example, if participants are tested in groups,

participants are nested within groups, and if different groups are tested by different

experimenters, groups itself would again be nested within experimenters. In such

designs, the lower level grouping factors (i.e., participants) are sometimes called “Level

1”, the second lowest (i.e., groups) “Level 2”, etc., and statistical models with nested

random effects are also called multilevel or hierarchical models. It is important to

realize that in terms of the statistical model, crossed and nested random effects do not

behave differently. One can only add random intercepts, random slopes, and their

correlations for any random effects grouping factor. For example, if in our study

participants were collected in groups, we could add a by-group random effects such as

by-group random intercepts, by-group random slopes, and their correlation to the

model presented in Equation 4 to account for potential correlations among participants

that were tested in the same group. In contrast to experimental designs with crossed

random effects in which the random effects can often be considered nuisance parameters

and are not of primary interest, researchers are often interested in the values of the

random effects parameters in nested designs. More specifically, researchers are often
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interested in the intraclass correlation coefficient (ICC) which is a measure of the

degree of similarity within the levels of the random effect. A comprehensive overview

about the specific type of statistical and substantive questions that are of interest in

nested designs is provided by Snijders and Bosker (2012).8

You should now have a clear understanding of the difference between fixed and

random effects, but let us sum this up once again. Random effects (or random effects

parameters) are zero centered offsets or displacements that are added to the fixed effect

parameters in order to control for dependencies in the data, ultimately providing a more

accurate description of the data-generating process. An important rule of thumb is that

a random effects can only be specified practically for grouping factors which have at

least five or six different levels (Bolker, 2015). With fewer levels the estimation of the

variance of the random effects will be very imprecise which can lead to numerical

problems in the estimation process. Random effects with a low number of levels also

have an extremely detrimental effect on statistical power (Westfall, Kenny, & Judd,

2014). This goes so far that for crossed random effects the random effects grouping

factor with the lower number of levels provides an upper bound of the maximally

attainable power. For example, in an experiment with crossed random effects for

participants and items but only 8 different items the maximally attainable power is

below .5 even under otherwise favorable conditions and with unlimited participants

(Judd et al., 2017, Figure 2). Westfall et al. (2014) provide two rules of thumb for

power in mixed models (pp. 2033): (1) “it is generally better to increase the sample size

of whichever random factor is contributing more random variation to the data” and (2)

“if one of the two sample sizes is considerably smaller than the other, there is generally

a greater power benefit in increasing the smaller sample size compared to the larger

8Note that not all computer programs fully support all types of random effects. Specifically, older

programs or specialized and/or niche programs sometimes only support nested random effects and do

not support (or at least not fully) crossed random effects (e.g., in R this is true for package nlme). For the

software discussed here there is usually no necessity to treat crossed and nested random effects differently

as long as the levels of each random effects grouping factor receive unique identifiers (e.g., the identifier

“participant 1” only exists exactly once and not in two different groups).
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sample size”. In line with the recommendation of Simmons, Nelson, and Simonsohn

(2011) that each between-subjects condition should have at least 20 participants we

recommend that each random effects grouping factor should have at least 20 levels,

otherwise the power is likely too low.

Another important aspect is that one can only estimate a specific random effects

parameter if there are multiple observations for each level of the random effects

grouping factor and the fixed effects parameter to which one wants to add the random

effects parameter. If this is not the case (i.e., there is only one observation for each level

of the random effects grouping factor), the random effects parameter is confounded with

the residual variance and cannot be uniquely identified (see also Footnote 6). For

example, if each participant provides only one observation in total (i.e., a completely

between-subjects design) one cannot even estimate by-participant random intercepts

and consequently no mixed model. Likewise, if one only has one observation of each

participant in each within-subject condition (as is the case in a traditional

repeated-measures ANOVA), one cannot estimate by-participant random slopes for that

condition. Mixed models require replicates (i.e., multiple observations) for each level of

the random effects grouping factor and each factor that varies within the random effect.

Setting up a Mixed Model

Before discussing the software implementations for fitting mixed models, we still

need to discuss a few issues: How to perform statistical inference, how to set up the

random effects structure, how to deal with categorical independent variables (i.e.,

factors), and effect sizes.

Statistical Inference in Mixed Models

Statistical inference (i.e., obtaining p-values concerning null hypotheses) in the

context of mixed models is far from being a trivial endeavor. The main problem is,

again, the existence of dependencies within levels of a random effects grouping factor.

This prevents a simple counting of the denominator degrees of freedom via the number

of observed data points, as done in standard ANOVA. As a consequence, the standard R
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function for mixed models, lmer, does not report any p-values (Bates, 2006). However,

we now have several methods that allow for us to obtain p-values (for an overview see

https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#testing-hypotheses).

Here, we mainly focus on those methods that compare two nested models. Nested

models means that one of the two models, the reduced model, needs to be a special case

of the other model, the encompassing model (i.e., the reduced model corresponds to the

encompassing model when one or several parameters from the latter are 0). Specifically,

in order to test a specific effect (i.e., main effect or interaction) the encompassing model

is usually the full model that includes all parameters and the reduced model is the one

in which the parameters corresponding to that effect are withheld (i.e., fixed to 0).

More specifically, the fixed effects parameters and not the random effects parameters

are withheld. We generally recommend the Kenward-Roger approximation (Halekoh &

Højsgaard, 2014; Kenward & Roger, 1997), which is based on a modified F test and also

estimates the denominator degrees of freedom, as it is known to provide the best control

of Type I errors with the limited sample sizes that are common in experimental designs

in psychology. However, the Kenward-Roger approximation is the most expensive

method in terms of computational resources. Especially with complicated random-effect

structures (i.e., many random slopes and correlations among random parameters) it

may require amounts of RAM that can exceed what is available in normal computers.

An alternative that is less expensive in terms of RAM, but quite similar in terms of

Type I error control, is the Satterthwaite approximation (Kuznetsova, Brockhoff, &

Christensen, 2016; Satterthwaite, 1941).

An alternative that does not rely on approximating the denominator degrees of

freedom is the likelihood ratio test (LRT). The LRT is a standard statistical test for

comparing the goodness of fit of two nested models. This test consists of the ratio of the

maximum likelihoods of the encompassing and reduced models.9 The test statistic of

the LRT follows asymptotically the χ2-distribution with degrees of freedom equal to the

9Note that the Kenward-Roger approximation requires a model to be fitted with restricted maximum-

likelihood estimation (REML), for details see (Bates & DebRoy, 2004).

https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#testing-hypotheses
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difference in number of parameters between encompassing and reduced model. In other

words, only in the limit with unlimited levels for the random effects grouping factors

does the LRT adequately control for Type I errors. With limited sample sizes the LRT

tends to be anti-conservative (i.e., gives significant p-values although the null hypothesis

is true; e.g., Pinheiro & Bates, 2000) and we can only recommend its use if the number

of levels for each random effects grouping factor is considerable (e.g., > 40 or 50).

In case one does not want to rely on the asymptotic nature of the LRT, a further

alternative is parametric bootstrap. The parametric bootstrap procedure simulates

synthetic datasets from the reduced model and then fits both models to the synthetic

data which produces a reference distribution of likelihood-ratio values under the

null-hypothesis. The parametric bootstrap p-value corresponds to the percentage of

simulated likelihood-ratio values that are larger than the observed likelihood-ratio

value. One potential problem with the parametric bootstrap is that for complex models,

calculating the sampling distribution of the likelihood-ratio test under the null

hypothesis can be quite time consuming. However, it should be able to control for Type

I error better than the LRT. Note that parametric bootstrap and the LRT are

procedures that can also be used to test the parameters associated to the random

effects (Matuschek, Kliegl, Vasishth, Baayen, & Bates, 2017; see also Scheipl, Greven, &

Küchenhoff, 2008).

Another alternative is to simply compare the t-statistic of the parameter estimates

with the z distribution (e.g., Baayen, 2008; the rule of thumb is that values larger than

2 indicate statistical significance). Unfortunately, this approach has two problems.

First, it can only be used with factors with two levels. As soon as a factor has more

than two levels, inspecting the parameter estimates becomes very challenging and

essentially useless if the factor is part of an interaction. Second, this approach does the

worst job in controlling for Type I errors. We therefore cannot generally recommend to

perform statistical inference for mixed models using this “t as z” approach.



MIXED MODELS 21

Specifying the Random Effects Structure

Perhaps more important than the choice of method for evaluating statistical

significance is the correct specification of the random-effects structure. Omitting a

random effect when there is in fact variability in this effect across the levels of a random

effects grouping factor can dramatically increase Type I errors as shown in a number of

independent simulation studies (Barr et al., 2013; Judd et al., 2012; Schielzeth &

Forstmeier, 2009). This means that in most cases one should initially start with the

maximal random effects structure justified by the design as recommended by Barr et al.

(2013). The maximal model is the model that includes random effects parameters for all

sources of stochastic variability (i.e., random effects grouping factors). Specifically, it

contains random intercepts as well as random slopes for all fixed effects that vary within

the levels of a given random effects grouping factor, plus the correlations among the

random effects.

For the limited sample sizes that are common in psychology and related disciplines

a common problem is that the maximal model is not fully identified (Bates, Kliegl,

Vasishth, & Baayen, 2015), especially for mixed models with complicated random effects

structures. Even though the optimization algorithm converges to the optimum (i.e., the

maximum-likelihood estimate for a given data set) the variance-covariance matrix of the

random effects parameters at the optimum is degenerate or singular. At least for

models estimated with lme4 this is often signified by convergence warnings. Other signs

of singular fits are variance estimates of or near zero and correlation estimates of ±1.

The occurrence of such situations is due to the fact the parameters associated to

random effects (e.g., σ2

Sδ
) are more difficult to estimate than fixed effects (e.g., βδ).

Additional ways to detect degenerate fits are discussed in Bates, Kliegl, et al. (2015).

In the case of a singular fit, it is in principle recommended to reduce the random

effects structure given that degenerate or overparameterized models can reduce the

statistical power of any tests conducted with them (Matuschek et al., 2017). As a first

step, it seems advisable to remove the correlations among random slopes as these

contribute the largest number of random effects parameters if the number of variance
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parameters for a given random effects grouping factor exceeds three. Additionally, the

correlation parameters appear to be even more difficult to estimate than the variance

parameters, at least in a frequentist framework (Bates, Kliegl, et al., 2015). If a model

still shows problems after removing correlations, other random-effects parameters could

be removed, starting with the highest-order random effects parameter with the lowest

estimated variance. Empirical-based approaches to address this question and obtain the

optimal random effects are provided by Matuschek et al. (2017) and Bates, Kliegl, et al.

(2015). However, following these recommendation usually requires the researcher to

choose a specific model selection procedure and criterion. The consequence of this is

that researchers that decide to report results based on a reduced model should make

this explicit to the reader and be prepared to defend their choices. In any case, we

recommend that one should always start with the maximal model and reduce random

effects instead of starting with a minimal model and gradually include random effects.

One problem that may arise from an iterative procedure for determining the

random effects structure is that sometimes it might not be possible to reduce the

random-effects structure such that all problematic random effects parameters can be

removed (e.g., in cases when there is random variability in higher-order effects, but not

in lower-order effects). From the pragmatic standpoint that false positives are in

principle more dangerous for scientific progress than false negatives, we suggest that in

those cases one can accept a few problematic or degenerate parameters (e.g., variances

of zero). This strategy strikes us as more reasonable (i.e., more conservative) than

simply removing justifiable random effects and inflating Type I error rates to an

unknown degree. It is clear that a model with such problematic or degenerate

parameters is not the most adequate from a purely statistical standpoint, but it can

nevertheless be a reasonable solution if the focus is ultimately on the fixed effects. In

any case, one should compare the fixed-effects estimates and the hypothesis tests

regarding the fixed effects across all the estimated models. It is often the case that the

testing of fixed effects in highly overparameterized models with degenerate estimates

diverge from analogous tests applied to reduced models. In those cases, one should
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report the results for the reduced model.

One further alternative for addressing convergence problems is to switch to

Bayesian estimation (Gelman et al., 2013), for example as implemented in packages

rstanarm (function stan_lmer(); Gabry & Goodrich, 2016), blme (Chung,

Rabe-Hesketh, Dorie, Gelman, & Liu, 2013), or MCMCglmm (Hadfield, 2010). In line with

the literature (Bates, Kliegl, et al., 2015; Kimball, Shantz, Eager, & Roy, 2016) we

believe that the regularization provided by the priors in a Bayesian framework (as long

as the priors are not completely non-informative) is often enough to avoid the problems

associated with degenerate or singular fits (e.g., the posteriors of correlation parameters

which cannot be identified given a specific data set will simply be extremely wide and

include 0, see Bates, Kliegl, et al., 2015, Figure 3). Additionally, the identification of

actual convergence problems is comparatively simple via visual inspection of the chains.

However, Bayesian approaches require even more care when choosing a contrast scheme,

as the prior distribution should ideally be equal for all factor levels, which is not the

case for the simple sum-to-zero contrast discussed below (see Rouder, Morey,

Speckman, & Province, 2012, p. 363). Furthermore, there is currently no consensus on

how to perform hypothesis testing for hierarchical models in a Bayesian framework,

especially when a factor contains more than two levels. Consequently, we currently

cannot wholeheartedly recommend Bayesian approaches as the default or off-the-shelf

procedure for estimating mixed models (but see Singmann, Klauer, & Kellen, 2014). We

are hopeful this will change in the next years.

Random Effects Structures for Traditional ANOVA Designs. The

estimation of the maximal model is not possible when there is only one observation per

participant and cell of a repeated-measures design (i.e., designs typically analyzed using

a repeated-measures ANOVA). In this kind of design, the random slopes for the

highest-order interaction are perfectly confounded with the residual error term (in more

technical language, the model is only identifiable up to the sum of these two variance

components). To nevertheless analyze such designs with mixed models the most

reasonable decision is to remove the highest-order random slope (e.g., the random slope
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for the highest order-interaction). Even though the maximal-random effects structure is

not identified in this case, the variability of the random variability of the non-identified

effect is added to the residual error term and also incorporated into the standard errors

in the appropriate way. We have shown this by simulation elsewhere.10. In any case, we

strongly recommend researchers to consider this issue before collecting any data. More

data and replicates at the level of the cell are always a good idea when estimating

mixed models.11

Parameterization of Categorical Covariates

All regression-type models, including mixed models, can only be estimated with

numerical independent variables. Consequently, factors with m levels need to be

transformed into m − 1 numerical contrast variables according to a contrast scheme (for

an extensive treatment see Cohen, Cohen, West, & Aiken, 2002). Often the choice of

contrast scheme does not matter, but there are two situations when it does: For the

interpretation of parameters estimates (especially if models include interactions) and for

so-called Type III sums of squares tests.12

The definitions of the different types of sums of squares revolve around whether or

not to test lower order effects in the presence (= Type III) or absence (= Type II) of

higher order effects. In the statistical literature there is fierce discussion on the

“correct” type of sums of squares that we do not want to reiterate here (see Hector,

Von Felten, & Schmid, 2010, for an overview). In most cases this only matters for

10http://wp.me/p4Y5u1-83
11It should be noted again that the discussion in the current paragraph is specifically about a situation

in which the number of replicates per cells of the design and units of observation (i.e., levels of the

random effects grouping factor) is as low as it can be (i.e., 1). This is different from a situation in which

the number of levels of one random effects grouping factor is low (e.g., 6 or lower). However, in such

a situation we recommend treating that effect as fixed (other effects that can be specified as random

should remain so).
12Please do not confuse the type of sums of squares (here we discuss only Type II and Type III) with

the nomenclature used for distinguishing the different types of inferential errors (e.g., Type I and Type

II).

http://wp.me/p4Y5u1-83
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unbalanced designs (i.e., for balanced data the different types of sums of squares

produce identical results). In the psychological literature on experimental designs (e.g.,

Howell, 2013; Maxwell & Delaney, 2004) Type III are usually recommended because

they are more reasonable under two conditions that are commonly met in psychological

experiments: (1) Type III tests assume the imbalance in the data occurs randomly and

is not a result of differences in the population (i.e., Type III tests “correct” the

imbalance by assuming all cells have the same size). (2) Lower order effects need to be

possible in light of interactions (i.e., the pattern of the higher order effect is such that it

cancels itself out completely, such as for a perfect cross-over interaction). Consequently,

we also recommend to use Type III tests as a default.

A common contrast scheme, which is the default in R, is called treatment contrasts

(i.e., contr.treatment; also called dummy coding). With treatment contrasts the first

factor level serves as the baseline whereas all other levels are mapped onto exactly one

of the contrast variables with a value of 1. As a consequence, the intercept corresponds

to the mean of the baseline group and not the grand mean. When fitting models

without interactions, this type of contrast has the advantage that the estimates (i.e.,

the parameters corresponding to the contrast variables) indicate whether there is a

difference between the corresponding factor level and the baseline. However, when

including interactions, treatment contrasts lead to results that are often difficult to

interpret. Whereas the highest-order interaction is unaffected, the lower-order effects

(such as main effects) are estimated at the level of the baseline, ultimately yielding

what are known as simple effects rather than the usually expected lower-order effects.

Importantly, this applies to both the resulting parameter estimates of the lower order

effects as well as their Type III tests. In other words, a mixed model (or any other

regression type model) that includes interactions with factors using treatment contrasts

produces parameter estimates as well as Type III tests that often do not correspond to

what one wants (e.g., main effects are not what is commonly understood as a main

effect). Therefore we generally recommend to avoid treatment contrasts for models that

include interactions. Note that this issue is independent of whether or not the design is



MIXED MODELS 26

balanced.

Contrasts schemes that enable an interpretation of both higher- and lower-order

effects are orthogonal in balanced designs (i.e., the sum of each variable across

observations is zero and the sum of the product of all variable pairs is also zero). In

such schemes, the intercept corresponds to the grand mean (or the unweighted grand

mean in case of unbalanced data) and lower-level effects are estimated at the level of

the grand mean. In what follows, we will use one such contrasts known as effects coding

(i.e., contr.sum). In effects coding the last factor level receives a value of −1 on all

contrast variables whereas all other factor levels are mapped onto exactly one contrast

variable with a value of 1. In the case of a factor with only two levels, the effect-coded

parameter value is equal to half of the difference between the two conditions.

One additional complication arises when a regression model includes continuous

covariates that interact with other variables included (Cohen et al., 2002). For type III

tests with appropriate orthogonal contrasts, the lower-order effects of variables that

interact with the continuous covariates are performed at the origin of this covariate (i.e.,

where it is zero). A common way to deal with this is to center the continuous covariate

such that the test of the lower order effect is performed at its mean (e.g., Dalal &

Zickar, 2012). However, this might not make sense in all situations. If the zero-point is

already meaningful on its own and present in the data, centering is usually not

necessary. Another alternative consists of scaling the continuous covariate such that the

zero-point becomes meaningful (e.g., to the midpoint of a scale). Note that some

authors recommend specific centering schemes for mixed models, mainly for models

with nested random effects (e.g., Wang & Maxwell, 2015).

Effect Sizes For Mixed Models

One standardized effect size for categorical fixed effects in mixed models has been

developed by Westfall et al. (2014). More specifically, they present formulas for

calculating d for mixed models with a single fixed effect with two levels and various

random effects structures (see also Judd et al., 2017). In principle, their approach can
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also be extended to account for designs with factors with more than two levels and/or

interactions (Westfall, 2015, pp. 19-21). However, we are currently not aware of any

implementation of this approach.

Fitting Mixed Models in R

The gold standard for fitting mixed models in R is function lmer() in the lme4

package (Bates, Mächler, et al., 2015). As for most modeling functions in R, the data

need to be in a data.frame in the long format (also known as tidy data; Wickham &

Grolemund, 2017): Each observation corresponds to one row with one column

containing the dependent variable and the other columns containing information

pertaining to the identity of the observation (e.g., participant id, item number,

conditions). In order to specify the mixed model, lmer() needs to be called with a

formula and the data as arguments. Table 1 provides an overview of different ways to

specify terms in formulas. In the mixed effect formula the dependent variable is on the

left side of ~ and the random effects are enclosed in parentheses wherein the pipe

symbol “|” separates the random effects parameters (on the left) from the random

effects grouping factor (on the right). Table 2 provides an overview of different ways for

specifying random effects structures. The complete formula for the maximal model

described above (i.e., Equation 4) could be:

y ~ difficulty + (difficulty|participant) + (difficulty|item)

Note that formulas automatically include an intercept, unless it is specifically

suppressed via 0 or -1 (which rarely makes sense).

Using lmer() to directly fit a mixed model is associated with the problems already

noted above. First, lmer() does not provide p-values so that one needs to perform an

additional inferential step. Second, the default contrast codes in R are such that model

with categorical covariates (i.e., factors) produce parameter estimates that do not

accurately represent lower-order effects (e.g., main effects) if higher-order effects (i.e.,

interactions) are present. This latter fact is the reason that some people recommend to

transform factors into numerical covariates by hand. However, this is not necessary; R
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Table 1

Model formulas in R

formula meaning

a + b main effects of a and b (and no interaction)

a:b only interaction of a and b (and no main effects)

a * b main effects and interaction of a and b (expands to: a + b + a:b)

(a+b+c)ˆ2 main effects and two-way interactions, but no three-way interaction (ex-

pands to: a + b + c + a:b + b:c + a:c)

(a+b)*c expands to: a + b + c + a:c + b:c

0 + a 0 suppresses the intercept resulting in a model that has one parameter

per level of a (identical to: a - 1)

Note. Whitespace is ignored in formulas (i.e., a + b is identical to a+b). The default

behavior of R is to prevent models with higher order effects in the absence of lower

order effects. Thus, a+a:b has the same number of parameters as a*b, albeit with

different parametrization (i.e., R will add an additional parameter to a+a:b that is not

part of the formula).

contains coding schemes that are orthogonal and do not have this problem. The easiest

way to change the coding globally is via the afex function set_sum_contrasts():

require(afex) # this loads afex, equivalent to library(afex)

set_sum_contrasts()

Note that the global coding scheme affects all R modeling functions (e.g., lm, glm) and

not only lmer(). But as already mentioned above, for experimental designs orthogonal

sum-to-zero contrasts are often a more reasonable default than treatment contrasts.

The afex package (Singmann et al., 2017) contains function mixed() that is built

on top of lmer() and avoids both of the problems mentioned in the previous paragraph.

It uses orthogonal sum-to-zero contrasts in the default settings and calculates p-values

for the terms in the mixed model using the methods discussed above: Kenward-Roger

(method="KR", the default), Satterthwaite (method="S"), LRTs (method="LRT"), and
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Table 2

Random effects in lmer

random term meaning

(1|s) random intercepts for s (i.e., by-s random intercepts), Equation 2

(1|s) + (1|i) by-s and by-i random intercepts

(a|s) by-s random intercepts and by-s random slopes for a plus their cor-

relation (identical to (1+a|s)), Equation 3

(a*b|s) by-s random intercepts and by-s random slopes for a, b, and the a:b

interaction plus correlations among the by-s random effects param-

eters

(0+a|s) by-s random slopes for a and no random intercept

(a||s) by-s random intercepts and by-s random slopes for a, but no corre-

lation (expands to: (0+a|s) + (1|s))

Note. Suppressing the correlation parameters via || works only for numerical covariates

in lmer and not for factors. afex provides the functionality to suppress the correlation

also among factors if argument expand_re = TRUE in the call to mixed() (see also

function lmer_alt()).

parametric bootstrap (method="PB").13 An example analysis could be (assuming the

data is in a data.frame called d):

require(afex)

13Contrary to the description given above, p-values for the first two methods are calculated directly

from the full model using Wald tests in which the parameters corresponding to the specific effects are

set to 0 (Fox, 2015). This is faster than explicitly comparing nested models, but equivalent for those two

methods. For the latter two methods, the p-values are calculated via the comparison of nested models;

mixed() fits an encompassing model with all parameters and one reduced model corresponding to each

of the model terms in which the parameters corresponding to the term are withhold from the full model

(all fits are performed with lmer()). Estimating the different models can be distributed across different

CPU cores to speed up the overall fitting process. After estimating all necessary models the p-values are

calculated with the corresponding method.
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set_sum_contrasts() # not strictly necessary, but always a good idea

m1 <- mixed(y ~ difficulty + (difficulty|participant) + (difficulty|item), d)

m1

Note that loading afex also loads lme4, but at the same time replaces the original

lme4 lmer() function with a function of the same name from package lmerTest

(Kuznetsova et al., 2016). The only difference between the lmerTest versions of lmer()

compared to the original lme4 version is that the output of the former includes p-values

based on the Satterthwaite approximation in the standard output. Furthermore, the

result can be passed to the anova function which then reports p-values for the effects.

Note again, that one needs to be careful and use appropriate (sum-to-zero) contrasts

whenever lmer() is invoked directly and parameters estimated interpreted or the type

III tests calculated.

When fitting mixed models with complicated random effects structures,

convergence warnings appear frequently. It is important to distinguish between the

warnings that indicate that the results are not to be trusted and those that suggest

there is a problem, but the results may still be interpretable. All warnings from the

optimization algorithm (the default one is bobyqa) belong into the former category.

One such message notes that the convergence code is 1 and/or specifies that the

“maximum number of function evaluations [was] exceeded”. One way to address

this warning is to increase the maximum number of function evaluations and rerun the

model. The following code increases the maximum number of iterations to 1 million:

mixed(..., control = lmerControl(optCtrl = list(maxfun = 1e6)))

Note that the same argument could also be used in the call to lmer(). A warning

unique to mixed() indicating that the results cannot be trusted is reported if a nested

model provides a better fit than a superordinate (i.e., the full) model. As such a pattern

is logically impossible, such a warning indicates the presence of a severe problem caused

by the present combination of data, model, and optimization algorithm. One way to

address this problem is to change the optimization algorithm or trying a variety of



MIXED MODELS 31

optimization algorithms (by setting all_fit=TRUE). However, it is our experience that

changing the optimizer sometimes does not always solve this kind of problem, as the

warning may indicate that there is too few data for estimating the desired

random-effects structure (Bates, Kliegl, et al., 2015).

lmer() also performs a variety of convergence checks on the obtained results that

may result in a warning (indicated by ‘In checkConv(...)’). These warnings do not

necessarily indicate that the results cannot be trusted. It is possible that these warnings

are false positives and the model converged successfully. In this case, the warnings can

be safely ignored. Another possible reason for these warnings is that some of the

(usually random effects) parameters have identifiability or other numerical problems

and the fit is singular or degenerate. However, this does not necessarily affect the tests

of fixed effects (but see Matuschek et al., 2017). As mentioned above, variance

estimates of 0 and correlations at the boundary are clear indications of degenerate

parameter estimates. In this case one could try to refit the model without the

problematic random effects parameters. A good strategy is often to start by removing

the correlation among the random effects parameters. mixed allows the user to suppress

the correlation for random effects (even for factors) if expand_re=TRUE. When setting

expand_re=TRUE, the random effects factors are transformed into numerical covariates

for which the correlation parameters are then suppressed. For example, the following

code suppresses the correlations among the by-id random effects parameters, but not

among the by-item random effects parameters:

mixed(y~x1*x2+(x1*x2||id)+(x1|item), expand_re=TRUE)

Some more advice on how to address and diagnose convergence warnings are provided

by lme4 author Ben Bolker14 and in Bates, Kliegl, et al. (2015). Again, it is important

to keep in mind that there is no guarantee that a given data set converges for a desired

random effects structure as random effects parameters are more difficult to estimate

than fixed effects parameters.15

14see https://rpubs.com/bbolker/lme4_convergence and https://rpubs.com/bbolker/lme4trouble1
15“The combination of some data and an aching desire for an answer does not ensure that a reasonable

https://rpubs.com/bbolker/lme4_convergence
https://rpubs.com/bbolker/lme4trouble1
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One final note regarding lmer and mixed is that models fitted with both functions

can be directly used for follow-up tests, planned contrasts, or plotting with the methods

implemented in package lsmeans (Lenth, 2015) or effects (Fox, 2003). Importantly,

these methods take the dependencies in the data into account. A comprehensive

example analysis for a factorial design with crossed-random effects that also includes

follow up-tests is provided at

https://cran.r-project.org/package=afex/vignettes/afex_mixed_example.html.

Beyond Linear Mixed Models and the Identity Link Function

All models discussed in this chapter so far share one commonality, namely the

assumption that the residuals follow a normal distribution with variance σ2

ǫ . This is the

normality assumption that linear mixed models share with ordinary linear regression

and ANOVA models. However, not all data can be reasonably described under such an

assumption. For example, a common dependent variable in experimental designs is

accuracy (i.e., one binary response per trial) which follows a binomial distribution and

should therefore not be analyzed with models assuming a normal distribution (Dixon,

2008). One adequate procedure to analyze categorical data like the one following a

binomial distribution is logistic regression, which is a member of the class of generalized

linear models (GLMs; McCullagh & Nelder, 1994). GLMs differ from ordinary linear

models by allowing the specification of the residual distribution and the link function

that maps the model predictions – which are defined on a real scale – onto the

(dependent variable’s) outcome space. In the case of logistic regression, the residual

distribution is binomial and the link function the logistic function. Another GLM for

binomial data that is common in economics is probit regression. It again assumes a

binomial residual distribution but instead uses the probit function (i.e., the cumulative

distribution function of the normal distribution) as a the link between the model

predictions and the dependent variable’s outcome space. Other residual distributions

such as the Poisson (suitable for handling count data) are also possible. However, unlike

answer can be extracted from a given body of data.” (Tukey, 1986, pp. 74)

https://cran.r-project.org/package=afex/vignettes/afex_mixed_example.html
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ordinary linear regression – which can be seen as a special case of GLMs with normal

residual distribution and identity link function – there are no repeated-measures

variants of GLMs. Hence, standard GLMs cannot account for non-independence due to

repeated measures and cannot be used for within-subject designs.

Fortunately, linear mixed models can be extended to generalized linear mixed

models (GLMMs) that also allow to specify the residual distribution and link function,

but also allow for the inclusion of random effects. Several of the issues discussed for

LMMs (such as the specification of random effects and factor codings) apply in exactly

the same way to GLMMs. Furthermore, GLMMs can also be estimated with function

mixed by passing a family argument and an appropriate method for testing such as

LRT (e.g., mixed(..., family=binomial(link="logit"), method = "LRT")).

However, due to the nonlinear nature of most link functions, the interpretations of most

model predictions, specifically of lower-order effects in factorial designs, can be quite

challenging. Additionally, specifically binomial GLMMs can be quite prone to producing

singular fits or other convergence problems due to the limited amount of information

provided by each data point (i.e., 0 or 1; see Eager & Roy, 2017). A comprehensive

introduction to GLMMs is beyond the scope of the current chapter so we refer the

interested reader to further literature on this matter (e.g., Bolker, 2015; Jaeger, 2008).

Summary

Mixed models are a modern class of statistical models that extend regular

regression models by including random effects parameters to account for dependencies

among related data points. More specifically, these random effects parameters control

for the stochastic variability associated with the levels of a random effects grouping

factor (e.g., participant, item, group) by adjusting the fixed effects parameters with

idiosyncratic displacements or offsets. This essentially gives each level of the random

grouping factor its own set of regression parameters under the restriction of hierarchical

shrinkage implementing an efficient data analysis strategy also known as partial pooling.

Importantly, modern mixed model implementations allow to simultaneously control for
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multiple independent (i.e., crossed) sources of stochastic variability. The goal of this

chapter was to provide a general introduction to the concepts underlying mixed models

and to walk through the steps necessary to set up a mixed model in R with a special

focus on common hurdles researchers may encounter. To reiterate, the most important

step for researchers is to identify the maximal random effects structure which is given

by random intercepts for each source of random variation (i.e., random effects grouping

factor), random slopes for all fixed effects that vary within the levels of a random effects

parameter, and correlations among all random effects parameters for a given grouping

factor. Once the appropriate random effects structure for a design has been identified,

tests of fixed effect (assuming appropriate contrasts) take the stochastic variability into

account, but can be interpreted as tests of effects in a regular ANOVA. For more

information on specifying the random effects structure we recommend Barr et al.

(2013). Aspects of mixed models that go beyond the issues discussed here are given in

Bolker (2015) and Snijders and Bosker (2012). An even more powerful class of models

than discussed here, generalized additive mixed models (GAMMs), is described in

Baayen, Vasishth, Kliegl, and Bates (2017).
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