
Package ‘admixturegraph’
December 13, 2016

Type Package

Title Admixture Graph Manipulation and Fitting

Version 1.0.2

Date 2016-12-12

Description Implements tools for building and visualising admixture graphs
and for extracting equations from them. These equations can be compared to f-
statistics obtained from data to test the consistency of a graph against data --
for example by comparing the sign of f_4-statistics with the signs predicted by
the graph -- and graph parameters (edge lengths and admixture proportions) can
be fitted to observed statistics.

License GPL-2

Depends R (>= 3.2.2)

Imports doParallel, dplyr, foreach, ggplot2, graphics, MASS, methods,
neldermead, parallel, pracma, stats, utils, grDevices

Suggests knitr, rmarkdown, testthat

URL https://github.com/mailund/admixture_graph

BugReports https://github.com/mailund/admixture_graph/issues

VignetteBuilder knitr

LazyData true

RoxygenNote 5.0.1

NeedsCompilation no

Author Thomas Mailund [cre, aut],
Kalle Leppala [aut],
Svend Nielsen [aut]

Maintainer Thomas Mailund <mailund@birc.au.dk>

Repository CRAN

Date/Publication 2016-12-13 15:33:28

1

https://github.com/mailund/admixture_graph
https://github.com/mailund/admixture_graph/issues

2 R topics documented:

R topics documented:
admixturegraph-package . 4
add_an_admixture . 5
add_an_admixture2 . 7
add_a_leaf . 8
add_graph_f4 . 9
add_graph_f4_sign . 10
admixture_edge . 10
admixture_proportions . 11
admix_props . 11
agraph . 12
agraph_children . 13
agraph_parents . 13
agraph_weights . 14
all_graphs . 14
all_paths . 15
all_path_overlaps . 15
bears . 16
build_edge_optimisation_matrix . 16
burn_in . 17
calculate_concentration . 17
canonise_expression . 18
canonise_graph . 18
coef.agraph_fit . 19
cost_function . 19
edge . 20
edge_optimisation_function . 21
eight_leaves_trees . 22
evaluate_f4 . 23
examine_edge_optimisation_matrix . 23
extract_admixture_proportion_parameters . 24
extract_graph_parameters . 25
extract_trees . 25
f2 . 26
f3 . 26
f4 . 27
f4stats . 27
fast_fit . 28
fast_plot . 30
filter_on_leaves . 31
fitted.agraph_fit . 31
fit_graph . 32
fit_graph_list . 34
fit_permutations_and_graphs . 35
five_leaves_graphs . 36
format_path . 37
four_leaves_graphs . 38

R topics documented: 3

get_graph_f4_sign . 39
graphs_2_0 . 39
graphs_3_0 . 40
graphs_3_1 . 40
graphs_4_0 . 41
graphs_4_1 . 41
graphs_4_2 . 42
graphs_5_0 . 42
graphs_5_1 . 43
graphs_5_2 . 43
graphs_6_0 . 44
graphs_6_1 . 44
graphs_6_2 . 45
graphs_7_0 . 45
graphs_7_1 . 46
graphs_8_0 . 46
graph_environment . 47
graph_to_vector . 47
is_descendant_of . 48
is_negative . 48
is_positive . 49
is_unknown . 49
is_zero . 49
log_likelihood . 50
log_sum_of_logs . 51
make_an_outgroup . 51
make_mcmc_model . 52
make_permutations . 53
model_bayes_factor_n . 54
model_likelihood . 55
model_likelihood_n . 55
mynonneg . 56
no_admixture_events . 57
no_admixture_events.agraph . 57
no_admixture_events.agraph_fit . 58
no_admixture_events.agraph_fit_list . 58
no_poor_fits . 59
no_poor_fits.agraph_fit . 59
no_poor_fits.agraph_fit_list . 60
overlaps_sign . 60
parent_edges . 61
path_overlap . 61
plot.agraph . 62
plot.agraph_fit . 64
plot.f4stats . 65
plot_fit_1 . 65
plot_fit_2 . 66
poor_fits . 67

4 admixturegraph-package

poor_fits.agraph_fit . 67
poor_fits.agraph_fit_list . 68
print.agraph_fit . 68
project_to_population . 69
remove_duplicates . 69
rename_nodes . 70
residuals.agraph_fit . 70
run_metropolis_hasting . 71
seven_leaves_graphs . 72
seven_leaves_trees . 73
sf2 . 73
sf3 . 74
sf4 . 74
six_leaves_graphs . 75
split_population . 76
split_population.agraph_fit . 76
split_population.data.frame . 77
summary.agraph_fit . 77
sum_of_squared_errors . 78
sum_of_squared_errors.agraph_fit . 78
sum_of_squared_errors.agraph_fit_list . 79
thinning . 79
vector_to_graph . 80

Index 81

admixturegraph-package

admixturegraph: Visualising and analysing admixture graphs.

Description

The package provides functionality to analyse and test admixture graphs against the f statistics
described in the paper Ancient Admixture in Human History, Patterson et al., Genetics, Vol. 192,
1065–1093, 2012.

Details

The f statistics – f2, f3, and f4 – extract information about correlations between gene frequencies in
different populations (or single diploid genome samples), which can be informative about patterns
of gene flow between these populations in form of admixture events. If a graph is constructed as a
hypothesis for the relationship between the populations, equations for the expected values of the f
statistics can be extracted, as functions of edge lengths – representing genetic drift – and admixture
proportions.

This package provides functions for extracting these equations and for fitting them against computed
f statistics. It does not currently provide functions for computing the f statistics – for that we refer
to the ADMIXTOOLS software package.

https://github.com/DReichLab/AdmixTools

add_an_admixture 5

add_an_admixture Adds a new admixture event to a graph.

Description

Given an admixture graph, selects a child edge and a parent edges and adds a new edge from the
parent edge to the child edge with an admixture event, if possible. Thus, the resulting graph is an
extension of the input graph in the sense that erasing one of the admixture edges (the new one) we
get the original admixture graph. However, we know that in practice when fitting data to admixture
graphs, the best graph with k admixture events is not always an extension like that from the best
graph with k − 1 admixture events. For a more relaxed way of adding a new admixture event, try
add_an_admixture2.

Usage

add_an_admixture(graph, admixture_variable_name, labels_matter = FALSE,
outgroup = "")

Arguments

graph An admixture graph.
admixture_variable_name

A name for the new admixture proportion.

labels_matter When FALSE (the default value), we consider two admixture graphs similar when
they have the same topology but permuted admixture proportion names. When
TRUE, the already existing admixture events and the edges leading to them are
considered labeled.

outgroup An optional parameter for the preferred outgroup.

Value

A list of graphs made by adding a new admixture event to the input graph. The list has no duplicate
elements (what that means depends on the value of labels_matter).

See Also

all_graphs

fit_permutations_and_graphs

fit_graph_list

add_a_leaf

add_an_admixture2

make_an_outgroup

6 add_an_admixture

Examples

To illustrate what the parameter labels_matter does, consider the following graph:

leaves <- c("A", "B", "C")
inner_nodes <- c("R", "x", "y", "M")
edges <- parent_edges(c(edge("x", "R"),

edge("y", "R"),
edge("A", "x"),
edge("B", "M"),
edge("C", "y"),
admixture_edge("M", "x", "y")))

admixtures <- admixture_proportions(c(admix_props("M", "x", "y", "p")))
graph <- agraph(leaves, inner_nodes, edges, admixtures)
plot(graph, show_admixture_labels = TRUE, title = "graph")

There are 15 ways this graph can be extended to a graph with two admixture events by
adding an admixture edge, as can be seeing by having the program explicitly construct
all the cases:

short_list <- add_an_admixture(graph, "q")
print(length(short_list))

However, maybe we already have a specific historical event in mind corresponding to the
original admixture event in graph, or a fixed value for the admixture proportion p.
Then, for example, it makes a difference to us whether we consider the possibility of
another admixture event occurring before that event,

leaves <- c("A", "B", "C")
inner_nodes <- c("R", "x", "y", "z", "M", "N")
edges <- parent_edges(c(edge("x", "R"),

edge("z", "R"),
edge("y", "z"),
edge("A", "x"),
edge("B", "M"),
edge("C", "y"),
admixture_edge("N", "x", "z"),
admixture_edge("M", "N", "y")))

admixtures <- admixture_proportions(c(admix_props("N", "x", "z", "q"),
admix_props("M", "N", "y", "p")))

example1 <- agraph(leaves, inner_nodes, edges, admixtures)
plot(example1, show_admixture_labels = TRUE, title = "example 1")

or after that event,

leaves <- c("A", "B", "C")
inner_nodes <- c("R", "x", "y", "z", "M", "N")
edges <- parent_edges(c(edge("x", "R"),

edge("y", "R"),
edge("z", "y"),
edge("A", "x"),
edge("B", "N"),

add_an_admixture2 7

edge("C", "z"),
admixture_edge("M", "x", "y"),
admixture_edge("N", "M", "z")))

admixtures <- admixture_proportions(c(admix_props("M", "x", "y", "p"),
admix_props("N", "M", "z", "q")))

example2 <- agraph(leaves, inner_nodes, edges, admixtures)
plot(example2, show_admixture_labels = TRUE, title = "example 2")

even though as (acyclic) directed graphs with labeled leaves example 1
and example 2 are isomorphic.
Counting cases like that dirrerent, we get 21 possible extensions:

long_list <- add_an_admixture(graph, "q", labels_matter = TRUE)
print(length(long_list))

add_an_admixture2 Adds a new admixture event to a graph.

Description

Given an admixture graph, selects a child edge and two parent edges, disconnects the child edge
from its original parent node and connects it to the two parent edges with an admixture event, if
possible. Thus, contrary to add_an_admixture, the resulting graph need not be an extension of the
input graph in the sense that erasing one of the admixture edges we get the original admixture graph.
In practice, we know that when fitting data to admixture graphs, the best graph with k admixture
events is not always an extension like that from the best graph with k − 1 admixture events. Most
likely it doesn’t need to be an extension like this (the two new admixture edges can both go where
ever) either.

Usage

add_an_admixture2(graph, admixture_variable_name, outgroup = "")

Arguments

graph An admixture graph.
admixture_variable_name

A name for the new admixture proportion.

outgroup An optional parameter for the preferred outgroup.

Value

A list of graphs made by adding a new admixture event to the input graph. The list contains duplicate
elements, and may even contain graphs with eyes (two inner nodes with the property that all the
paths between any two leaves visits both or neither of them).

8 add_a_leaf

See Also

all_graphs

fit_permutations_and_graphs

fit_graph_list

add_a_leaf

add_an_admixture

make_an_outgroup

add_a_leaf Adds a new leaf to a graph.

Description

Given an admixture graph, selects an edge and branches off a new edge ending at a new leaf.

Usage

add_a_leaf(graph, leaf_name, outgroup = "")

Arguments

graph An admixture graph.

leaf_name A name for the new leaf.

outgroup An optional parameter for the preferred outgroup, which can be the new leaf.

Value

A list of graphs made by adding a new leaf to the input graph. The list has no duplicate elements.

See Also

all_graphs

fit_permutations_and_graphs

fit_graph_list

add_an_admixture

add_an_admixture2

make_an_outgroup

add_graph_f4 9

Examples

Take a look at how much trees there are:
leaves <- c("1", "2")
inner_nodes <- c("R")
edges <- parent_edges(c(edge("1", "R"), edge("2", "R")))
admixtures <- NULL
Lambda <- agraph(leaves, inner_nodes, edges, admixtures)
set <- list(Lambda)
for (i in seq(1, 6)) {

new_set <- list()
for (tree in set) {
new_set <- c(new_set, add_a_leaf(tree, paste(i + 2)))

}
set <- new_set
cat("There are ")
cat(length(set))
cat(" different trees with ")
cat(i + 2)
cat(" labeled leaves.")
cat("\n")

}
In general, there are 1*3*5*...*(2n - 5) different trees with n labeled leaves
(A001147 in the online encyclopedia of integer sequences).
Exhaustive search through the graph space is hard!

add_graph_f4 Evalutes the f_4 statistics for all rows in a data frame and extends the
data frame with the graph f_4.

Description

The data frame, data, must contain columns W, X, Y, and Z. The function then computes the
f4(W,X;Y,Z) statistics (also known as the D statistics) for all rows and adds these as a column,
graph_f4, to the data frame.

Usage

add_graph_f4(data, graph, env)

Arguments

data The data frame to get the labels to compute the f4 statistics from.

graph The admixture graph.

env The environment to evaluate the f4 statistics in.

10 admixture_edge

Value

A data frame identical to data except with an additional column, graph_f4, containing the f4
values as determined by the graph and the environment.

add_graph_f4_sign Extend a data frame with f_4 statistics predicted by a graph.

Description

Extracts the sign for the f4 statistics predicted by the graph for all rows in a data frame and extends
the data frame with the graph f4.

Usage

add_graph_f4_sign(data, graph)

Arguments

data The data frame to get the labels to compute the f4 statistics from.

graph The admixture graph.

Details

The data frame, data, must contain columns W, X, Y, and Z. The function then computes the sign of
the f4(W,X;Y,Z) statistics for all rows and adds these as a column, graph_f4_sign, to the data
frame.

Value

A data frame identical to data except with an additional column, graph_f4_sign, containing the
sign of the f4 statistics as determined by the graph.

admixture_edge Create an admixture edge from a child to two parents.

Description

Syntactic suggar for constructing edges in an admixture graph.

Usage

admixture_edge(child, parent1, parent2, prop = NA)

admixture_proportions 11

Arguments

child The name of the child node.

parent1 The name of the parent node.

parent2 The name of the parent node.

prop Admixture proportions from parent1 to child. If this parameter is not pro-
vided, you must explicitly specify the admixture proportion parameters in the
agraph function call.

admixture_proportions Create the list of admixture proportions for an admixture graph.

Description

Syntactic suggar for constructing edges in an admixture graph.

Usage

admixture_proportions(admix_props)

Arguments

admix_props The admixture proportions.

admix_props Specify the proportions in an admixture event.

Description

Syntactic suggar for constructing edges in an admixture graph.

Usage

admix_props(child, parent1, parent2, prop)

Arguments

child The child node.

parent1 The first parent.

parent2 The second parent.

prop The admixture proportions coming from the first parent.

12 agraph

agraph Create an admixture graph object.

Description

Create an admixture graph object, an acyclic directed graph.

Usage

agraph(leaves, inner_nodes, parent_edges,
admixture_proportions = extract_admixture_proportion_parameters(parent_edges))

Arguments

leaves The names of the leaves in the admixture graph. Do not use (,) or a single R.

inner_nodes The name of the inner nodes in the admxture graph. Do not use (,) or a single
R except for the root if you wish.

parent_edges The list of edges in the graph, created by parent_edges.
admixture_proportions

The list of admixture proportions; created by admixture_proportions. Do not
use +, -, *, (,).

Value

An admixture graph object.

See Also

edge

admixture_edge

admix_props

parent_edges

admixture_proportions

plot.agraph

Examples

leaves <- c("A", "B", "C", "D")
inner_nodes <- c("ab", "b", "bc", "abc", "abcd")
edges <- parent_edges(c(edge("A", "ab"),

edge("B", "b"),
edge("C", "bc"),
edge("D", "abcd"),
edge("ab", "abc"),
edge("bc", "abc"),
edge("abc", "abcd"),

agraph_children 13

admixture_edge("b", "ab", "bc")))
admixtures <- admixture_proportions(c(admix_props("b", "ab", "bc", "x")))

graph <- agraph(leaves, inner_nodes, edges, admixtures)

agraph_children Build the child incidene matrix from an parent edge list.

Description

Build the child incidene matrix from an parent edge list.

Usage

agraph_children(nodes, parent_edges)

Arguments

nodes Nodes in the admxture graph.

parent_edges An n × 2 matrix where the first column is the child node and the second is the
parent.

Value

An incidence matrix for the child structure of an admixture graph.

See Also

agraph_parents

agraph_parents Build the parent incidence matrix from an edge list.

Description

Build the parent incidence matrix from an edge list.

Usage

agraph_parents(nodes, parent_edges)

Arguments

nodes Nodes in the admxture graph.

parent_edges An n × 2 matrix where the first column is the child node and the second is the
parent.

14 all_graphs

Value

An incidence matrix for the parent structure of an admixture graph.

See Also

agraph_children

agraph_weights Build the matrix of admixture proportions from an edge list.

Description

Build the matrix of admixture proportions from an edge list.

Usage

agraph_weights(nodes, admixture_weights, parents)

Arguments

nodes The name of the nodes in the admxture graph.
admixture_weights

An n×3 matrix where the first column is the child node, the second isthe parent
and the third is the admixture weight on that edge.

parents The parent edge list. Used for checking graph consistency.

Value

A matrix containing the admixture weights.

all_graphs All graphs.

Description

Gives a list of all the graphs with at most a given number of admixture events. No duplicates.

Usage

all_graphs(populations, admixture_events)

Arguments

populations A vector of populations (leaf names).
admixture_events

The maximum number of admixture events allowed.

all_paths 15

Value

A list of admixture graphs.

See Also

fit_graph_list

all_paths Compute all paths from one leaf to another.

Description

Computes all paths from one leaf to another.

Usage

all_paths(graph, src, dst)

Arguments

graph The admixture graph.
src The starting leaf.
dst The destination leaf.

Value

A list containing all the paths from src to dst.

all_path_overlaps Get the list of overlaps of all paths.

Description

Gets the list of overlaps of all paths.

Usage

all_path_overlaps(paths1, paths2)

Arguments

paths1 Paths between one pair of leaves.
paths2 Paths between another pair of leaves.

Value

A list of the overlaps of all combinations of paths from paths1 and paths2.

16 build_edge_optimisation_matrix

bears Statistics for populations of bears

Description

Computed f_4(W,X;Y,Z) statistics for different populations of bears.

Usage

bears

Format

A data frame with 18 rows and 6 variables:

W The W population

X The X population

Y The Y population

Z The Z population

D The D (f_4(W,X;Y,Z)) statistics

Z.value The blocked jacknife Z values

Source

http://onlinelibrary.wiley.com/doi/10.1111/mec.13038/abstract

build_edge_optimisation_matrix

Build a matrix coding the linear system of edges once the admix vari-
ables have been fixed.

Description

The elements are characters containing numbers, admix variable names, parenthesis and arithmeti-
cal operations. (Transform into expressions with parse and then evaluate with eval). The default
column names are the edge names from extract_graph_parameters, the rows have no names.

Usage

build_edge_optimisation_matrix(data, graph,
parameters = extract_graph_parameters(graph))

http://onlinelibrary.wiley.com/doi/10.1111/mec.13038/abstract

burn_in 17

Arguments

data The data set.
graph The admixture graph.
parameters In case one wants to tweak something in the graph.

Value

A list containing the full matrix (full), a version with zero columns removed (column_reduced)
and parameters to pass forward (parameters).

burn_in Removes the first k rows from a trace.

Description

Removes the first k rows from a trace.

Usage

burn_in(trace, k)

Arguments

trace A trace from an MCMC run.
k Number of rows to discard as burn-in.

calculate_concentration

Building a proxy concentration matrix.

Description

If we don’t have the true concentration matrix of the data rows calculated, but at least have the Z
scores of individual rows, (unrealistically) assuming independence and calculating the concentra-
tion matrix from those is still better than nothing (i. e. the identity matrix).

Usage

calculate_concentration(data, Z.value)

Arguments

data The data containing at least the expected values of f statistics (column D) and
possibly also products of expected values and f statistics divided by standard
deviations of (the Z scores, column Z.value).

Z.value Tells whether theZ scores are available or should we just use the identity matrix.

18 canonise_graph

Value

The Cholesky decomposition of the inverted covariance matrix.

canonise_expression Used to recognize similar expressions and to possibly simplify them.

Description

It’s best to simplify algebraic expression a little before evaluating.

Usage

canonise_expression(x)

Arguments

x The input is assumed to be a character consisting of one or more terms. Each
term starts with either + or - and after that contains one or more factors separated
by *. Each factor is either an admix variable, a number or a clause (1 - x)
(mind the spaces, this is how the function f4 outputs), where x is again either an
admix variable or a number. Everything is pretty much ruined if variable names
are numbers or contain forbidden symbols +, -, *, (,).

Value

A polynomial in a canonical form with no parenthesis or spaces and the monomials in lexicograph-
ical order. If everything is cancelled out then +0.

canonise_graph Canonise graph.

Description

Given a graph builds a unique logical vector depending only on the leaf names and the graph topol-
ogy (not the inner node names, root position or the input order of edges or inner nodes). Can be used
to detect graph isomorphism, that is, to weed out duplicates from a graph list. Only for comparison
of graphs with the same leaf set!

Usage

canonise_graph(graph)

Arguments

graph An admixture graph.

coef.agraph_fit 19

Value

A logical vector coding the parental matrix of a canonised version of the input graph.

coef.agraph_fit Parameters for the fitted graph.

Description

Extracts the graph parameters for the graph fitted to data. Note that the optimal parameters are
generally not unique.

Usage

S3 method for class 'agraph_fit'
coef(object, ...)

Arguments

object The fitted object.

... Additional parameters.

See Also

link{summary.agraph_fit}

cost_function The cost function fed to Nelder-Mead.

Description

We want Nelder-Mead to run fast so the cost function operates with the column reduced edge
optimisation matrix and does not give any extra information about the fit. For the details, use
edge_optimisation_function instead.

Usage

cost_function(data, concentration, matrix, graph,
parameters = extract_graph_parameters(graph), iteration_multiplier = 3)

20 edge

Arguments

data The data set.

concentration The Cholesky decomposition of the inverted covariance matrix.

matrix A column reduced edge optimisation matrix (typically given by the function
build_edge_optimisation_matrix).

graph The admixture graph.

parameters In case one wants to tweak something in the graph.

iteration_multiplier

Given to mynonneg.

Value

Given an input vector of admix variables, returns the smallest error regarding the edge variables.

See Also

mynonneg

edge_optimisation_function

log_likelihood

edge Create an edge from a child to a parent.

Description

Syntactic suggar for constructing edges in an admixture graph.

Usage

edge(child, parent)

Arguments

child The name of the child node.

parent The name of the parent node.

edge_optimisation_function 21

edge_optimisation_function

More detailed edge fitting than mere cost_function.

Description

Returning the cost, an example edge solution of an optimal fit, and linear relations describing the
set of all edge solutions. Operating with the full edge optimisation matrix, not the column reduced
one.

Usage

edge_optimisation_function(data, concentration, matrix, graph,
parameters = extract_graph_parameters(graph), iteration_multiplier = 3)

Arguments

data The data set.

concentration The Cholesky decomposition of the inverted covariance matrix.

matrix A full edge optimisation matrix (typically given by the function build_edge_optimisation_matrix).

graph The admixture graph.

parameters In case one wants to tweak something in the graph.

iteration_multiplier

Given to mynonneg.

Value

Given an input vector of admix variables, returns a list containing the minimal error (cost), the
graph-f4 statistics (approximation), an example solution (edge_fit), linear relations describ-
ing all the solutions (homogeneous) and one way to choose the free (free_edges) and bounded
(bounded_edges) edge variables.

See Also

mynonneg

cost_function

log_likelihood

22 eight_leaves_trees

eight_leaves_trees Eight leaves trees.

Description

Kind of obsolete since the introduction of all_graphs. A comprehensive listing of all the four
unrooted trees with eight leaves. The position of the root can be moved later with the function
make_an_outgroup.

Usage

eight_leaves_trees

Format

A list of functions on eight leaves. The outputs of these functions are agraph objects.

See Also

all_graphs

make_permutations

fit_permutations_and_graphs

fit_graph_list

add_a_leaf

add_an_admixture

add_an_admixture2

make_an_outgroup

Other graphs: five_leaves_graphs, four_leaves_graphs, seven_leaves_graphs, six_leaves_graphs

Examples

While the usage of this function is pretty self-explanatory, let's plot all the graphs
just for browsing.
for (i in seq(1, length(eight_leaves_trees))) {

graph <- eight_leaves_trees[[i]](c("A", "B", "C", "D", "E", "F", "G", "H"))
This is how you include quotation marks in strings by the way:
title <- paste("eight_leaves_trees[[", i,

"]](c(\"A\", \"B\", \"C\", \"D\", \"E\", \"F\", \"G\", \"H\"))", sep = "")
plot(graph, color = "brown", title = title)

}

evaluate_f4 23

evaluate_f4 Evaluates an f_4 statistics in a given environment.

Description

Evaluates an f4 statistics in a given environment.

Usage

evaluate_f4(graph, env, W, X, Y, Z)

Arguments

graph The admixture graph.

env The environment containing the graph parameters.

W First population/sample.

X Second population/sample.

Y Third population/sample.

Z Fourth population/sample.

Value

The f4 value specified by the graph and the environment.

examine_edge_optimisation_matrix

Examine the edge optimisation matrix to detect unfitted admix vari-
ables.

Description

If the essential number of equations is not higher than the essential number of edge variables, the
quality of edge optimisation will not depend on the admix variables (expect possibly in isolated
special cases where the quality can be worse), and a complaint will be given. Note: The admix
variable not being fitted does not mean that there is no evidence of an admix event! Isolated values
of the admix variables, possibly 0 or 1, might give significantly worse fit than a typical value (but
not the other way around).

Usage

examine_edge_optimisation_matrix(matrix, tol = 1e-08)

24 extract_admixture_proportion_parameters

Arguments

matrix Not really a matrix but two (should be an output of build_edge_optimisation_matrix).

tol Calulating the rank with qr.solve sometimes crashes. Default 10−8.

Value

An indicator of warning (complaint), coding all the possibilities in a way that is interpreted else-
where (in summary.agraph_fit).

See Also

qr.solve

extract_admixture_proportion_parameters

Extract the admixture proportion parameter from edge specifications.

Description

This function is simply selecting the edges with admixture proportion specifications so these can be
handled when building a graph using agraph. It is not a function you would need to call explicitly,
rather it is there to allow people not to use it to provide admixture proportions explicitly (which we
normally wouldn’t recommend).

Usage

extract_admixture_proportion_parameters(parent_edges)

Arguments

parent_edges Matrix created with the agraph_parents function.

Value

The parents edges reduced to the rows with admixture proportions.

extract_graph_parameters 25

extract_graph_parameters

Extract all the parameters a graph contains.

Description

The graph is parameterized by edge lengths and admixture proportions. This function extracts these
parameters.

Usage

extract_graph_parameters(graph)

Arguments

graph The admixture graph.

Value

A list containing two values: edges, a vector of edges and admix_prop, a vector containing admix-
ture proportions.

extract_trees Extract trees

Description

Extracts all the trees embedded in an agraph object

Usage

extract_trees(graph)

Arguments

graph An agraph object

Value

A list of trees

26 f3

f2 Calculate the f_2(A, B) statistics.

Description

Calculate the f2(A,B) statistics.

Usage

f2(graph, A, B)

Arguments

graph The admixture graph.

A A leaf node.

B A leaf node.

Value

A symbolic representation of the equation for the f2 statistics given by the admixture graph.

f3 Calculate the f_3(A; B, C) statistics.

Description

Calculate the f3(A;B,C) statistics.

Usage

f3(graph, A, B, C)

Arguments

graph The admixture graph.

A A leaf node.

B A leaf node.

C A leaf node.

Value

A symbolic representation of the equation for the f3 statistics given by the admixture graph.

f4 27

f4 Calculate the f_4(W, X; Y, Z) statistics.

Description

Calculate the f4(W,X;Y,Z) statistics.

Usage

f4(graph, W, X, Y, Z)

Arguments

graph The admixture graph.

W A leaf node.

X A leaf node.

Y A leaf node.

Z A leaf node.

Value

The overlaps between paths from W to X and paths from Y to Z.

f4stats Make a data frame an f_4 statistics object.

Description

This is mostly just a convinience function to set the class of a data frame such that we plot data as
error bars in a meaningful way for statistics for admixture graphs.

Usage

f4stats(x)

Arguments

x Data frame with observed D (f4) statistics.

Value

Something about classes.

28 fast_fit

fast_fit A fast version of graph fitting.

Description

Given a table of observed f statistics and a graph, uses Nelder-Mead algorithm to find the graph
parameters (edge lengths and admixture proportions) that minimize the value of cost_function, i.
e. maximizes the likelihood of a graph with parameters given the observed data. Like fit_graph
but dropping most of the analysis on the result. Intended for use in big iteration loops.

Usage

fast_fit(data, graph, point = list(rep(1e-05,
length(extract_graph_parameters(graph)$admix_prop)), rep(1 - 1e-05,
length(extract_graph_parameters(graph)$admix_prop))), Z.value = TRUE,
concentration = calculate_concentration(data, Z.value),
optimisation_options = NULL, parameters = extract_graph_parameters(graph),
iteration_multiplier = 3)

Arguments

data The data table, must contain columns W, X, Y, Z for sample names and D for the
observed f4(W,X;Y,Z). May contain an optional column Z.value for the Z
scores (the f statistics divided by the standard deviations).

graph The admixture graph (an agraph object).

point If the user wants to restrict the admixture proportions somehow, like to fix some
of them. A list of two vectors: the lower and the upper bounds. As a default the
bounds are just it little bit more than zero and less than one; this is because some-
times the infimum of the values of cost function is at a point of non-continuity,
and zero and one have reasons to be problematic values in this respect.

Z.value Whether we calculate the default concentration fromZ scores (the default option
TRUE) or just use the identity matrix.

concentration The Cholesky decomposition of the inverted covariance matrix. Default matrix
determined by the parameter Z.value.

optimisation_options

Options to the Nelder-Mead algorithm.

parameters In case one wants to tweak something in the graph.
iteration_multiplier

Given to mynonneg.

Value

A list containing only the essentials about the fit: graph is the graph input, best_error is the
minimal value of cost_function, obtained when the admixture proportions are best_fit.

fast_fit 29

See Also

cost_function

agraph

calculate_concentration

optimset

fit_graph

Examples

For example, let's fit the following two admixture graph to an example data on bears:

data(bears)
print(bears)

leaves <- c("BLK", "PB", "Bar", "Chi1", "Chi2", "Adm1", "Adm2", "Denali", "Kenai", "Sweden")
inner_nodes <- c("R", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "M", "N")
edges <- parent_edges(c(edge("BLK", "R"),

edge("PB", "v"),
edge("Bar", "x"),
edge("Chi1", "y"),
edge("Chi2", "y"),
edge("Adm1", "z"),
edge("Adm2", "z"),
edge("Denali", "t"),
edge("Kenai", "s"),
edge("Sweden", "r"),
edge("q", "R"),
edge("r", "q"),
edge("s", "r"),
edge("t", "s"),
edge("u", "q"),
edge("v", "u"),
edge("w", "M"),
edge("x", "N"),
edge("y", "x"),
edge("z", "w"),
admixture_edge("M", "u", "t"),
admixture_edge("N", "v", "w")))

admixtures <- admixture_proportions(c(admix_props("M", "u", "t", "a"),
admix_props("N", "v", "w", "b")))

bears_graph <- agraph(leaves, inner_nodes, edges, admixtures)
plot(bears_graph, show_admixture_labels = TRUE)

fit <- fast_fit(bears, bears_graph)
print(fit$best_error)

The result is just the minimal value of the cost function and the values of admixture proportions
where it's obtained, no deeper analysis of the fit.

30 fast_plot

fast_plot Fast version of graph plotting.

Description

This is a fast, deterministic and stand-alone function for visualizing the admixture graph. Has the
bad habit if sometimes drawing several nodes at the exact same coordinates; for clearer reasults
try plot.agraph (which, on the other hand, relies on numerical optimising of a compicated cost
function and might be unpredictable).

Usage

fast_plot(x, ordered_leaves = NULL, show_admixture_labels = FALSE,
show_inner_node_labels = FALSE, ...)

Arguments

x The admixture graph.

ordered_leaves The leaf-nodes in the left to right order they should be drawn.
show_admixture_labels

A flag determining if the plot should include the names of admixture propor-
tions.

show_inner_node_labels

A flag determining if the plot should include the names of inner nodes.

... Additional plotting options.

Value

A plot.

See Also

plot.agraph

Examples

taken from the collection of all the admixture graphs with four leaves and at
most two admixture events:

fast_plot(four_leaves_graphs[[24]](c("A", "B", "C", "D")))

To be fair, here is a graph that looks all right:

fast_plot(four_leaves_graphs[[25]](c("A", "B", "C", "D")))

filter_on_leaves 31

filter_on_leaves Filter data so all W, X, Y and Z are leaves in the graph.

Description

Filter data so all W, X, Y and Z are leaves in the graph.

Usage

filter_on_leaves(data, graph)

Arguments

data Data frame (or similar) object containing columns W, X, Y, and Z.

graph Admixture graph.

Value

Data frame with rows where W, X, Y, or Z are not leaves are removed.

fitted.agraph_fit Predicted f statistics for the fitted graph.

Description

Gets the predicted f statistics F for the fitted graph.

Usage

S3 method for class 'agraph_fit'
fitted(object, ...)

Arguments

object The fitted object.

... Additional parameters.

See Also

link{summary.agraph_fit}

32 fit_graph

fit_graph Fit the graph parameters to a data set.

Description

Given a table of observed f statistics and a graph, uses Nelder-Mead algorithm to find the graph
parameters (edge lengths and admixture proportions) that minimize the value of cost_function,
i. e. maximizes the likelihood of a graph with parameters given the observed data. Like fast_fit
but outputs a more detailed analysis on the results.

Usage

fit_graph(data, graph, point = list(rep(1e-05,
length(extract_graph_parameters(graph)$admix_prop)), rep(1 - 1e-05,
length(extract_graph_parameters(graph)$admix_prop))), Z.value = TRUE,
concentration = calculate_concentration(data, Z.value),
optimisation_options = NULL, parameters = extract_graph_parameters(graph),
iteration_multiplier = 3, qr_tol = 1e-08)

Arguments

data The data table, must contain columns W, X, Y, Z for sample names and D for the
observed f4(W,X;Y,Z). May contain an optional column Z.value for the Z
scores (the f statistics divided by the standard deviations).

graph The admixture graph (an agraph object).

point If the user wants to restrict the admixture proportions somehow, like to fix some
of them. A list of two vectors: the lower and the upper bounds. As a default the
bounds are just it little bit more than zero and less than one; this is because some-
times the infimum of the values of cost function is at a point of non-continuity,
and zero and one have reasons to be problematic values in this respect.

Z.value Whether we calculate the default concentration fromZ scores (the default option
TRUE) or just use the identity matrix.

concentration The Cholesky decomposition of the inverted covariance matrix. Default matrix
determined by the parameter Z.value.

optimisation_options

Options to the Nelder-Mead algorithm.

parameters In case one wants to tweak something in the graph.

iteration_multiplier

Given to mynonneg.

qr_tol Given to examine_edge_optimisation_matrix.

fit_graph 33

Value

A class agraph_fit list containing a lot of information about the fit:
data is the input data,
graph is the input graph,
matrix is the output of build_edge_optimisation_matrix, containing the full matrix, the
column_reduced matrix without zero columns, and graph parameters,
complaint coding wchich subsets of admixture proportions are trurly fitted,
best_fit is the optimal admixture proportions (might not be unique if they are not trurly fitted),
best_edge_fit is an example of optimal edge lengths,
homogeneous is the reduced row echelon form of the matrix describing when a vector of edge
lengths have no effect on the prediced statistics F ,
free_edges is one way to choose a subset of edge lengths in such a vector as free variables,
bounded_edges is how we calculate the reamining edge lengths from the free ones,
best_error is the minimum value of the cost_function,
approximation is the predicted statistics F with the optimal graph parameters,
parameters is jsut a shortcut for the graph parameters.
See summary.agraph_fit for the interpretation of some of these results.

See Also

cost_function

agraph

calculate_concentration

optimset

fast_fit

Examples

For example, let's fit the following two admixture graph to an example data on bears:

data(bears)
print(bears)

leaves <- c("BLK", "PB", "Bar", "Chi1", "Chi2", "Adm1", "Adm2", "Denali", "Kenai", "Sweden")
inner_nodes <- c("R", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "M", "N")
edges <- parent_edges(c(edge("BLK", "R"),

edge("PB", "v"),
edge("Bar", "x"),
edge("Chi1", "y"),
edge("Chi2", "y"),
edge("Adm1", "z"),
edge("Adm2", "z"),
edge("Denali", "t"),
edge("Kenai", "s"),
edge("Sweden", "r"),
edge("q", "R"),
edge("r", "q"),
edge("s", "r"),

34 fit_graph_list

edge("t", "s"),
edge("u", "q"),
edge("v", "u"),
edge("w", "M"),
edge("x", "N"),
edge("y", "x"),
edge("z", "w"),
admixture_edge("M", "u", "t"),
admixture_edge("N", "v", "w")))

admixtures <- admixture_proportions(c(admix_props("M", "u", "t", "a"),
admix_props("N", "v", "w", "b")))

bears_graph <- agraph(leaves, inner_nodes, edges, admixtures)
plot(bears_graph, show_admixture_labels = TRUE)

fit <- fit_graph(bears, bears_graph)
summary(fit)

It turned out the values of admixture proportions had no effect on the cost function. This is not
too surprising because the huge graph contains a lot of edge variables compared to the tiny
amount of data we used! Note however that the mere existence of the admixture event with non-
trivial (not zero or one) admixture proportion might still decrease the cost function.

fit_graph_list Fit lots of graphs to data.

Description

Fits a list of graphs to given data using parallel computation. This function needs doParallel,
foreach and parallel installed.

Usage

fit_graph_list(data, graphs, cores)

Arguments

data The data table.
graphs List of graphs.
cores Number of cores used.

Value

A list of fast_fit results.

See Also

all_graphs

fit_permutations_and_graphs

fit_permutations_and_graphs 35

fit_permutations_and_graphs

Fit lots of graphs to data.

Description

Combines a list of (population) permutations and a list of graph topologies to a big list of graphs,
then fits those graphs to given data using parallel computation. This function needs doParallel,
foreach and parallel installed.

Usage

fit_permutations_and_graphs(data, permutations, graphs, cores)

Arguments

data The data table.

permutations List of population permutations.

graphs List of functions for producing graphs.

cores Number of cores used.

Value

A list of fast_fit results.

See Also

make_permutations

four_leaves_graphs

five_leaves_graphs

six_leaves_graphs

seven_leaves_graphs

eight_leaves_trees

fit_graph_list

Examples

Let's experiment by fitting all the graphs with five leaves and at most one admixture
event to a five population subset of the bear data. Note that with three data rows only
we do wisely by not concluding too much about the actual bear family tree; this is to
illustrate the function usage only!

data(bears)
data <- bears[16:18,]

36 five_leaves_graphs

print(data)
permutations <- make_permutations(c("PB", "BLK", "Sweden", "Denali", "Kenai"))
graphs <- five_leaves_graphs

We go with one core only as I don't know what kind of machine you are using.

fitted_graphs <- fit_permutations_and_graphs(data, permutations, graphs, 1)

Now sort the fitted objects by best_error and see how the best graph looks like.

errors <- sapply(fitted_graphs, function(x) x$best_error)
best_graphs <- fitted_graphs[order(errors)]
plot(best_graphs[[1]]$graph, color = "goldenrod", title = best_graphs[[1]]$best_error)

The same value for best_error actually occurs in the list 152 times because of our
unsufficient data.

five_leaves_graphs Five leaves graphs.

Description

Kind of obsolete since the introduction of all_graphs. A comprehensive listing of all the 132
admixture graphs with five leaves and at most two admixture events. Our convention is that the
position of the root does not matter (as long as it’s not after an admixture event) and that graphs that
have eyes, two inner nodes with the property that all the paths between any two leaves visits both
or neither of them, are excluded. The reason is that the f statistics can’t detect the exact position of
the root or distinguish between an eye and a simple branch. The position of the root can be moved
later with the function make_an_outgroup.

Usage

five_leaves_graphs

Format

A list of functions on five leaves and a parameter permutations which is FALSE by default. The
outputs of these functions are either single agraph objects with the input vector as leaves, or if
permutations is TRUE, lists of all the possible agraph objects with that leaf set up to symmetry.

See Also

all_graphs

make_permutations

fit_permutations_and_graphs

fit_graph_list

format_path 37

add_a_leaf

add_an_admixture

add_an_admixture2

make_an_outgroup

Other graphs: eight_leaves_trees, four_leaves_graphs, seven_leaves_graphs, six_leaves_graphs

Examples

While the usage of this function is pretty self-explanatory, let's plot all the graphs
just for browsing.
for (i in seq(1, length(five_leaves_graphs))) {

graph <- five_leaves_graphs[[i]](c("A", "B", "C", "D", "E"))
This is how you include quotation marks in strings by the way:
title <- paste("five_leaves_graphs[[", i, "]](c(\"A\", \"B\", \"C\", \"D\", \"E\"))",

sep = "")
plot(graph, color = "purple", title = title)

}

format_path Create a path data frame from a list of nodes.

Description

Creates a path data frame from a list of nodes.

Usage

format_path(graph, nodes)

Arguments

graph The admixture graph the path is in.

nodes A list of nodes on a path.

Value

A data frame capturing the path and the probabilities/weights on the edges.

38 four_leaves_graphs

four_leaves_graphs Four leaves graphs.

Description

Kind of obsolete since the introduction of all_graphs. A comprehensive listing of all the 37
admixture graphs with four leaves and at most two admixture events. Our convention is that the
position of the root does not matter (as long as it’s not after an admixture event) and that graphs that
have eyes, two inner nodes with the property that all the paths between any two leaves visits both
or neither of them, are excluded. The reason is that the f statistics can’t detect the exact position of
the root or distinguish between an eye and a simple branch. The position of the root can be moved
later with the function make_an_outgroup.

Usage

four_leaves_graphs

Format

A list of functions on four leaves and a parameter permutations which is FALSE by default. The
outputs of these functions are either single agraph objects with the input vector as leaves, or if
permutations is TRUE, lists of all the possible agraph objects with that leaf set up to symmetry.

See Also

all_graphs

make_permutations

fit_permutations_and_graphs

fit_graph_list

add_a_leaf

add_an_admixture

add_an_admixture2

make_an_outgroup

Other graphs: eight_leaves_trees, five_leaves_graphs, seven_leaves_graphs, six_leaves_graphs

Examples

While the usage of this function is pretty self-explanatory, let's plot all the graphs
just for browsing.
for (i in seq(1, length(four_leaves_graphs))) {

graph <- four_leaves_graphs[[i]](c("A", "B", "C", "D"))
This is how you include quotation marks in strings by the way:
title <- paste("four_leaves_graphs[[", i, "]](c(\"A\", \"B\", \"C\", \"D\"))", sep = "")
plot(graph, color = "tomato3", title = title)

get_graph_f4_sign 39

}

get_graph_f4_sign Extracts the sign for the f_4 statistics predicted by the graph.

Description

Extracts the sign for the f4 statistics predicted by the graph.

Usage

get_graph_f4_sign(graph, W, X, Y, Z)

Arguments

graph The admixture graph.
W First population/sample.
X Second population/sample.
Y Third population/sample.
Z Fourth population/sample.

Value

The sign of the f4 specified by the graph (or NA when it cannot be determined without knowing the
graph parameters).

graphs_2_0 Admixture graphs of 2 leaves and 0 admixture events compressed into
vectors

Description

Use vector_to_graph on the n:th row to access the n:th graph as an agraph object.

Usage

graphs_2_0

Format

A data frame with 1 row and 9 variables.

Source

Calculated using all_graphs and graph_to_vector.

40 graphs_3_1

graphs_3_0 Admixture graphs of 3 leaves and 0 admixture events compressed into
vectors

Description

Use vector_to_graph on the n:th row to access the n:th graph as an agraph object.

Usage

graphs_3_0

Format

A data frame with 1 row and 25 variables.

Source

Calculated using all_graphs and graph_to_vector.

graphs_3_1 Admixture graphs of 3 leaves and 1 admixture event compressed into
vectors

Description

Use vector_to_graph on the n:th row to access the n:th graph as an agraph object.

Usage

graphs_3_1

Format

A data frame with 3 rows and 49 variables.

Source

Calculated using all_graphs and graph_to_vector.

graphs_4_0 41

graphs_4_0 Admixture graphs of 4 leaves and 0 admixture events compressed into
vectors

Description

Use vector_to_graph on the n:th row to access the n:th graph as an agraph object.

Usage

graphs_4_0

Format

A data frame with 3 rows and 49 variables.

Source

Calculated using all_graphs and graph_to_vector.

graphs_4_1 Admixture graphs of 4 leaves and 1 admixture event compressed into
vectors

Description

Use vector_to_graph on the n:th row to access the n:th graph as an agraph object.

Usage

graphs_4_1

Format

A data frame with 30 rows and 81 variables.

Source

Calculated using all_graphs and graph_to_vector.

42 graphs_5_0

graphs_4_2 Admixture graphs of 4 leaves and 2 admixture events compressed into
vectors

Description

Use vector_to_graph on the n:th row to access the n:th graph as an agraph object.

Usage

graphs_4_2

Format

A data frame with 486 rows and 121 variables.

Source

Calculated using all_graphs and graph_to_vector.

graphs_5_0 Admixture graphs of 5 leaves and 0 admixture events compressed into
vectors

Description

Use vector_to_graph on the n:th row to access the n:th graph as an agraph object.

Usage

graphs_5_0

Format

A data frame with 15 rows and 81 variables.

Source

Calculated using all_graphs and graph_to_vector.

graphs_5_1 43

graphs_5_1 Admixture graphs of 5 leaves and 1 admixture event compressed into
vectors

Description

Use vector_to_graph on the n:th row to access the n:th graph as an agraph object.

Usage

graphs_5_1

Format

A data frame with 315 rows and 121 variables.

Source

Calculated using all_graphs and graph_to_vector.

graphs_5_2 Admixture graphs of 5 leaves and 2 admixture events compressed into
vectors

Description

Use vector_to_graph on the n:th row to access the n:th graph as an agraph object.

Usage

graphs_5_2

Format

A data frame with 7710 rows and 169 variables.

Source

Calculated using all_graphs and graph_to_vector.

44 graphs_6_1

graphs_6_0 Admixture graphs of 6 leaves and 0 admixture events compressed into
vectors

Description

Use vector_to_graph on the n:th row to access the n:th graph as an agraph object.

Usage

graphs_6_0

Format

A data frame with 105 rows and 121 variables.

Source

Calculated using all_graphs and graph_to_vector.

graphs_6_1 Admixture graphs of 6 leaves and 1 admixture event compressed into
vectors

Description

Use vector_to_graph on the n:th row to access the n:th graph as an agraph object.

Usage

graphs_6_1

Format

A data frame with 3780 rows and 169 variables.

Source

Calculated using all_graphs and graph_to_vector.

graphs_6_2 45

graphs_6_2 Admixture graphs of 6 leaves and 2 admixture events compressed into
vectors

Description

Use vector_to_graph on the n:th row to access the n:th graph as an agraph object.

Usage

graphs_6_2

Format

A data frame with 131400 rows and 225 variables.

Source

Calculated using all_graphs and graph_to_vector.

graphs_7_0 Admixture graphs of 7 leaves and 0 admixture events compressed into
vectors

Description

Use vector_to_graph on the n:th row to access the n:th graph as an agraph object.

Usage

graphs_7_0

Format

A data frame with 945 rows and 169 variables.

Source

Calculated using all_graphs and graph_to_vector.

46 graphs_8_0

graphs_7_1 Admixture graphs of 7 leaves and 1 admixture event compressed into
vectors

Description

Use vector_to_graph on the n:th row to access the n:th graph as an agraph object.

Usage

graphs_7_1

Format

A data frame with 51975 rows and 225 variables.

Source

Calculated using all_graphs and graph_to_vector.

graphs_8_0 Admixture graphs of 8 leaves and 0 admixture events compressed into
vectors

Description

Use vector_to_graph on the n:th row to access the n:th graph as an agraph object.

Usage

graphs_8_0

Format

A data frame with 10395 rows and 225 variables.

Source

Calculated using all_graphs and graph_to_vector.

graph_environment 47

graph_environment Build an environment in which f statistics can be evaluated.

Description

Constructs an environment in which the f statistics for a graph can be evaluted, based on the pa-
rameters in a graph and values for edge lengths and admixture proportions (with defaults if not
specified).

Usage

graph_environment(parameters, edge_lengths = NULL, admix_prop = NULL)

Arguments

parameters The parameters of a graph as returned by extract_graph_parameters.

edge_lengths If specified, a vector of edge lengths. Otherwise defaults are used.

admix_prop If specified, a vector of admixture proportions. Otherwise defaults are used.

Value

A list containing two values: edges, a vector of edges and admix_prop, a vector containing admix-
ture proportions.

graph_to_vector Graph to vector.

Description

Encodes an agraph object into a logical vector for saving memory. The admixture proportion names
will be lost.

Usage

graph_to_vector(graph)

Arguments

graph A graph.

Value

The logical vector representing the graph.

48 is_negative

is_descendant_of Is descendant of.

Description

Tells whether a given node is descendant of another given node in a graph.

Usage

is_descendant_of(graph, offspring, ancestor)

Arguments

graph A graph.

offspring Potential offspring.

ancestor Potential ancestor.

Value

A truth value.

is_negative All overlaps are either empty or have a negative weight.

Description

All overlaps are either empty or have a negative weight.

Usage

is_negative(overlaps)

Arguments

overlaps Data frame representing path overlaps, typically generated by all_path_overlaps.

is_positive 49

is_positive All overlaps are either empty or have a positive weight.

Description

All overlaps are either empty or have a positive weight.

Usage

is_positive(overlaps)

Arguments

overlaps Data frame representing path overlaps, typically generated by all_path_overlaps.

is_unknown Overlapping edges have both positive and negative contributions.

Description

Overlapping edges have both positive and negative contributions.

Usage

is_unknown(overlaps)

Arguments

overlaps Data frame representing path overlaps, typically generated by all_path_overlaps.

is_zero All overlaps are empty.

Description

All overlaps are empty.

Usage

is_zero(overlaps)

Arguments

overlaps Data frame representing path overlaps, typically generated by all_path_overlaps.

50 log_likelihood

log_likelihood Calculate (essentially) the log likelihood of a graph with parameters,
given the observation.

Description

Or the log likelihood of the observation, given graph with parameters, depending how things are
modeled. Basically this is just cost_function that doesn’t optimize the edge variables but has
them as an argument instead.

Usage

log_likelihood(f, concentration, matrix, graph,
parameters = extract_graph_parameters(graph))

Arguments

f The observed f statistics (the column D from data).

concentration The Cholesky decomposition of the inverted covariance matrix. So if S is the
covariance matrix, this is C = chol(S−1) satisfying S−1 = CtC.

matrix A column reduced edge optimisation matrix (typically given by the function
build_edge_optimisation_matrix).

graph The admixture graph. Here to give default value for:

parameters Just because we need to know variable names.

Value

The output is a function. Given admixture proportions x and edge lengths e, the graph topology T
implies an estimate F for the statistics f . This output function calculates

l = (F − f)tS−1(F − f)

from x and e. Up to a constant error and multiplier that is a log likelihood function, as

det(2πS)−1/2e−l/2

can be seen as a likelihood of a graph with parameters, given the observation, or the other way
around (possibly up to a normalization constant).

See Also

cost_function

edge_optimisation_function

calculate_concentration

log_sum_of_logs 51

log_sum_of_logs Computes the log of a sum of numbers all given in log-space.

Description

Given a sequence of numbers [log(x1), log(x2), ..., log(xn)], computes log(
∑n

i=1 xi). For adding
two numbers that are given in log space we use the expression max(x, y) + log1p(exp(-abs(x - y)))
which is a good approximation if x and y are of the same order of magnitude, but if they are of very
different sizes just returns the maximum of the two. To prevent adding numbers of very different
magnitude we iteratively add the numbers pairwise. Because of numerical issues with doing this,
the order of the input values can affect the result.

Usage

log_sum_of_logs(log_values)

Arguments

log_values Sequence of numbers in log space [log(x1), log(x2), ..., log(xn)].

Value

log(
∑n

i=1 xi).

make_an_outgroup Make an outgroup.

Description

Given a graph and a leaf, tries to put the root of the graph on the edge leading to the leaf. If not
possible (i. e. if the leaf has admixture in its ancestry), puts the root somewhere else.

Usage

make_an_outgroup(graph, outgroup = "", all_neutral = FALSE)

Arguments

graph An admixture graph.

outgroup A leaf we want to be the outgroup.

all_neutral For when other functions need to root graphs in a neutral way.

Value

An admixture graph with the given leaf as an outgroup, if possible.

52 make_mcmc_model

See Also

make_permutations

four_leaves_graphs

five_leaves_graphs

six_leaves_graphs

seven_leaves_graphs

eight_leaves_trees

fit_permutations_and_graphs

fit_graph_list

add_a_leaf

add_an_admixture

add_an_admixture2

Examples

Here is a little family tree of some dinosaur-like animals.

species <- c("triceratops", "crocodile", "diplodocus", "tyrannosaurus", "chicken")
graph <- five_leaves_graphs[[1]](species)
plot(graph)

Of course we know that while this is correct as an undirected graph, "crocodile"
should really be the outgroup.

graph <- make_an_outgroup(graph, "crocodile")
plot(graph)

Strictly speaking the graph is still a little misleading because unfortunately
the (non-bird) dinosaurs are extinct :-(

make_mcmc_model Collect the information about a graph and a data set needed to run an
MCMC on it.

Description

Collect the information about a graph and a data set needed to run an MCMC on it.

Usage

make_mcmc_model(graph, data)

make_permutations 53

Arguments

graph The admixture graph to analyse.

data The data set to compute the posterior over.

Value

A model object wrapping functions and data needed to sample from the MCMC.

make_permutations List of permutations.

Description

List of permutations of given elements.

Usage

make_permutations(populations)

Arguments

populations A vector (of populations for example) of length between 4 and 8.

Value

A list of different permutations of the elements of x.

See Also

four_leaves_graphs

five_leaves_graphs

six_leaves_graphs

seven_leaves_trees

eight_leaves_trees

fit_permutations_and_graphs

add_a_leaf

add_an_admixture

add_an_admixture2

54 model_bayes_factor_n

Examples

The number of permutations of n elements is n!. Take 0! = 1, 1! = 1, 2! = 2
and 3! = 6 for granted. Now we can estimate e:
FOUR <- length(make_permutations(c(1, 2, 3, 4)))
FIVE <- length(make_permutations(c(1, 2, 3, 4, 5)))
SIX <- length(make_permutations(c(1, 2, 3, 4, 5, 6)))
SEVEN <- length(make_permutations(c(1, 2, 3, 4, 5, 6, 7)))
EIGHT <- length(make_permutations(c(1, 2, 3, 4, 5, 6, 7, 8)))
1/1 + 1/1 + 1/2 + 1/6 + 1/FOUR + 1/FIVE + 1/SIX + 1/SEVEN + 1/EIGHT
Hey that was pretty close!

model_bayes_factor_n Computes the Bayes factor between two models from samples from
their posterior distributions.

Description

The likelihood of a graph can be computed by integrating over all the graph parameters (with ap-
propriate priors). Doing this by sampling from priors is very inefficient, so we use samples from
the posteriors to importance sample the likelihood. Given two graphs, and samples from their pos-
teriors, we can estimate the Bayes factor between them.

Usage

model_bayes_factor_n(logL1, logL2, no_samples = 100)

Arguments

logL1 Samples of log likelihoods from the posterior distribution of the first graph.

logL2 Samples of log likelihoods from the posterior distribution of the second graph.

no_samples Number of permutations to sample when computing the result.

Details

The numerical issues with adding a lot of numbers in log space is unstable so we get a better estimate
by doing it several times on different permutations of the data. This function calculates the mean of
the Bayes factors over different permutations of the input and estimates the standard deviation.

Value

The Bayes factor between the two graphs given as the mean and standard deviation over no_samples
different permutations of the input.

model_likelihood 55

model_likelihood Computes the likelihood of a model from samples from its posterior
distribution.

Description

The likelihood of a graph can be computed by integrating over all the graph parameters (with ap-
propriate priors). Doing this by sampling from priors is very inefficient, so we use samples from
the posteriors to importance sample the likelihood.

Usage

model_likelihood(log_likelihoods)

Arguments

log_likelihoods

Samples of log likelihoods from the posterior distribution of the graph.

Value

The likelihood of a graph where graph parameters are integrated out.

model_likelihood_n Computes the likelihood of a model from samples from its posterior
distribution.

Description

The likelihood of a graph can be computed by integrating over all the graph parameters (with ap-
propriate priors). Doing this by sampling from priors is very inefficient, so we use samples from
the posteriors to importance sample the likelihood.

Usage

model_likelihood_n(log_likelihoods, no_samples = 100)

Arguments

log_likelihoods

Samples of log likelihoods from the posterior distribution of the graph.

no_samples Number of permutations to sample when computing the result.

56 mynonneg

Details

The numerical issues with adding a lot of numbers in log space is unstable so we get a better estimate
by doing it several times on different permutations of the data.This function calculates the mean of
the likelihoods over different permutations of the input and estimates the standard devition.

Value

The likelihood of a graph where graph parameters are integrated out given as the mean and standard
deviation over no_samples different permutations of the input.

mynonneg Non negative least square solution.

Description

This is the function lsqnonneg from the package pracma, I just changed qr.solve into using
Moore-Penrose inverse instead (ginv from MASS) as qr.solve crashes for some singular inputs.
Now it won’t crash but it’s sometimes running for very long time (forever?), presumably with those
problematic inputs. After too many steps the function halts and lies that the fit was terrible. I don’t
think this will cause problems.

Usage

mynonneg(C, d, iteration_multiplier = 3)

Arguments

C The matrix.

d The vector.
iteration_multiplier

The definition of "too many steps". Default value is 3 (times 10 times the matrix
height).

Value

A vector (x) and the error (resid.norm).

See Also

lsqnonneg

qr.solve

ginv

no_admixture_events 57

no_admixture_events Get the number of admixture events in a graph.

Description

Get the number of admixture events in a graph.

Usage

no_admixture_events(x)

Arguments

x The graph.

Value

Number of admixture events in the graph.

no_admixture_events.agraph

Get the number of admixture events in a graph.

Description

Get the number of admixture events in a graph.

Usage

S3 method for class 'agraph'
no_admixture_events(x)

Arguments

x The graph.

Value

Number of admixture events in the graph.

58 no_admixture_events.agraph_fit_list

no_admixture_events.agraph_fit

Get the number of admixture events in a fitted graph.

Description

Get the number of admixture events in a fitted graph.

Usage

S3 method for class 'agraph_fit'
no_admixture_events(x)

Arguments

x The fitted graph.

Value

Number of admixture events in the graph.

no_admixture_events.agraph_fit_list

Get the number of admixture events in a list of fitted graph.

Description

Get the number of admixture events in a list of fitted graph.

Usage

S3 method for class 'agraph_fit_list'
no_admixture_events(x)

Arguments

x The graphs.

Value

Number of admixture events in the graphs.

no_poor_fits 59

no_poor_fits Get the number of tests in the fit where the predictions fall outside of
the error bars.

Description

Get the number of tests in the fit where the predictions fall outside of the error bars.

Usage

no_poor_fits(fit, sigma = 6)

Arguments

fit The fitted graph.

sigma The width of the error bars.

Value

The poorly fitted tests.

no_poor_fits.agraph_fit

Get the number of tests in the fit where the predictions fall outside of
the error bars.

Description

Get the number of tests in the fit where the predictions fall outside of the error bars.

Usage

S3 method for class 'agraph_fit'
no_poor_fits(fit, sigma = 6)

Arguments

fit The fitted graph.

sigma The width of the error bars.

Value

The poorly fitted tests.

60 overlaps_sign

no_poor_fits.agraph_fit_list

Get the number of tests in the fit where the predictions fall outside of
the error bars.

Description

Get the number of tests in the fit where the predictions fall outside of the error bars.

Usage

S3 method for class 'agraph_fit_list'
no_poor_fits(fit, sigma = 6)

Arguments

fit The fitted graph.

sigma The width of the error bars.

Value

The poorly fitted tests.

overlaps_sign Get the sign of overlapping paths.

Description

Get the sign of overlapping paths.

Usage

overlaps_sign(overlaps)

Arguments

overlaps Data frame representing path overlaps, typically generated by all_path_overlaps.

parent_edges 61

parent_edges Create the list of edges for an admixture graph.

Description

Syntactic suggar for constructing edges in an admixture graph.

Usage

parent_edges(edges)

Arguments

edges List of edges.

path_overlap Collect the postive and negative overlap between two paths.

Description

Collects the postive and negative overlap between two paths.

Usage

path_overlap(path1, path2)

Arguments

path1 The first path.

path2 The second path.

Value

The (admixture) probability of seeing the two paths together with the positive and negative edges
in the overlap.

62 plot.agraph

plot.agraph Plot an admixture graph.

Description

This is a basic drawing routine for visualising the graph. Uses Nelder-Mead algorithm and compli-
cated heuristic approach to find aestethic node coordinates, but due to bad luck or an oversight in the
heuristics, especially with larger graphs, might sometimes produce a weird looking result. Usually
plotting again helps and if not, use the optional parameters to help the algorithm or try the faster
and deterministic function fast_plot (which unfortunately is not very good at handling multiple
admixture events).

Usage

S3 method for class 'agraph'
plot(x, show_leaf_labels = TRUE, draw_leaves = TRUE,
color = "yellowgreen", show_inner_node_labels = FALSE,
draw_inner_nodes = FALSE, inner_node_color = color,
show_admixture_labels = FALSE, parent_order = list(),
child_order = list(), leaf_order = NULL, fix = list(), platform = 1,
title = NULL, ...)

Arguments

x The admixture graph.
show_leaf_labels

A flag determining if leaf names are shown.
draw_leaves A flag determining if leaf nodes are drawn as little circles.
color Color of all drawn nodes unless overriden by inner_node_color.
show_inner_node_labels

A flag determining if the plot should include the names of inner nodes.
draw_inner_nodes

A flag determining if inner nodes are drawn as little circles.
inner_node_color

Color of inner node circles, if drawn.
show_admixture_labels

A flag determining if the plot should include the names of admixture propor-
tions.

parent_order An optional list of instuctions on which order from left to right to draw the
parents of nodes. The list should contain character vectors of parents with the
name of the child, e.g. child = c("left_parent", "right_parent"). Using
automated heuristics for nodes not specified.

child_order An optional list of instuctions on which order from left to right to draw the
children of nodes. The list should contain character vectors of children with the
name of the parent, e.g. parent = c("left_child", "right_child"). Using
automated heuristics for nodes not specified.

plot.agraph 63

leaf_order An optional vector describing in which order should the leaves be drawn. Us-
ing automated heuristic depending on parent_order and child_order if not
specified. Accepts both a character vector of the leaves or a numeric vector
interpreted as a permutation of the default order.

fix If nothing else helps, the list fix can be used to correct the inner node coordi-
nates given by the heuristics. Should contain numeric vectors of length 2 with
the name of an inner node, e.g. inner_node = c(0, 10), moving inner_node
to the right 10 units where 100 is the plot width. Non-specified inner nodes are
left in peace.

platform By default admixture nodes are drawn with a horizontal platform for proportion
labels, the width of which is half the distance between any two leaves. The
number platform tells how many default platform widths should the platforms
be wide, i. e. zero means no platform.

title Optional title for the plot.

... Additional plotting options.

Value

A plot.

See Also

agraph

fast_plot

Examples

leaves <- c("salmon", "sea horse", "mermaid", "horse", "human", "lobster")
inner_nodes <- c("R", "s", "t", "u", "v", "w", "x", "y", "z")
edges <- parent_edges(c(edge("salmon", "t"),

edge("sea horse", "y"),
edge("mermaid", "z"),
edge("horse", "w"),
edge("human", "x"),
edge("lobster", "R"),
edge("s", "R"),
edge("t", "s"),
edge("u", "t"),
edge("v", "s"),
edge("w", "v"),
edge("x", "v"),
admixture_edge("y", "u", "w"),
admixture_edge("z", "u", "x")))

admixtures <- admixture_proportions(c(admix_props("y", "u", "w", "a"),
admix_props("z", "u", "x", "b")))

graph <- agraph(leaves, inner_nodes, edges, admixtures)
plot(graph, show_inner_node_labels = TRUE)

64 plot.agraph_fit

Suppose now that we prefer to have the outgroup "lobster" on the right side.
This is achieved by telling the algorithm that the children of "R" should be in
the order ("s", "lobster"), from left to right:

plot(graph, child_order = list(R = c("s", "lobster")))

Suppose further that we prefer to have "mermaid" and "human" next to each other,
as well as "sea horse" and "horse". This is easily achieved by rearranging the leaf
order proposed by the algorithm. We can also fine-tune by moving "y" a little bit
to the right, make the admixture platforms a bit shorter, color the nodes, show the
admixture proportions and give the plot a title:

plot(graph, child_order = list(R = c("s", "lobster")), leaf_order = c(1, 2, 4, 3, 5, 6),
fix = list(y = c(5, 0)), platform = 0.8, color = "deepskyblue",
inner_node_color = "skyblue", show_admixture_labels = TRUE,
title = "Evolution of fish/mammal hybrids")

plot.agraph_fit Plot the fit of a graph to data.

Description

Plot the fit of a graph to data.

Usage

S3 method for class 'agraph_fit'
plot(x, sigma = 6, grayscale = FALSE, ...)

Arguments

x Fitted graph object.

sigma How many standard deviations the error bars should be wide.

grayscale Should the plot be in black and white?

... Additional parameters.

plot.f4stats 65

plot.f4stats Plot the fit of a graph to data.

Description

Plot the fit of a graph to data.

Usage

S3 method for class 'f4stats'
plot(x, sigma = 6, ...)

Arguments

x Data frame with observed D (f4) statistics

sigma How many sigmas the error bars should be wide.

... Additional parameters.

plot_fit_1 A plot of the cost function or number of fitted statistics.

Description

A plot of the cost function with respect to one admix variable specified by the user. Sorry about the
name, all the good ones were taken and the fact that the word "graph" means two different things
doesn’t help any.

Usage

plot_fit_1(object, X, resolution = 100, show_fit = FALSE, sigma = 6, ...)

Arguments

object The fitted object.

X An admix variable name (remember quotation marks).

resolution How densely is the function evaluated.

show_fit Should the function plot the number of statistics where the graph fits the data
instead of the cost_function?

sigma If show_fit is TRUE then each statistic is considered fitted if the difference be-
tween a prediction and the observation statistics is no more than D ∗ σ/(2 ∗Z).
Notice that even when plotting the number of fitted statistics, we have no guar-
antee that the chosen variables maximize this number as the fitting function still
optimizes cost_function.

... Additional parameters.

66 plot_fit_2

Value

Values for optimal cost function for values of X between zero and one, plotted.

See Also

plot_fit_2

plot_fit_2 A contour plot of the cost function.

Description

A contour plot of the cost function with respect to two admix variables specified by the user.

Usage

plot_fit_2(object, X, Y, resolution = 10, show_fit = FALSE, sigma = 6,
grayscale = FALSE, ...)

Arguments

object The fitted object.

X An admix variable name (remember quotation marks).

Y An admix variable name (remember quotation marks).

resolution How densely is the function evaluated.

show_fit Should the function plot the number of statistics where the graph fits the data
instead of the cost_function?

sigma If show_fit is TRUE then each statistic is considered fitted if the difference be-
tween a prediction and the observation statistics is no more than D ∗ σ/(2 ∗Z).
Notice that even when plotting the number of fitted statistics, we have no guar-
antee that the chosen variables maximize this number as the fitting function still
optimizes cost_function.

grayscale Should the figure be plotted in grayscale or in colour?

... Additional parameters passed to the plotting function contour.

Value

The matrix of values computed and plotted.

See Also

contour

plot_fit_1

poor_fits 67

poor_fits Get the tests in the fit where the predictions fall outside of the error
bars.

Description

Get the tests in the fit where the predictions fall outside of the error bars.

Usage

poor_fits(fit, sigma = 6)

Arguments

fit The fitted graph.

sigma The width of the error bars.

Value

The poorly fitted tests.

poor_fits.agraph_fit Get the tests in the fit where the predictions fall outside of the error
bars.

Description

Get the tests in the fit where the predictions fall outside of the error bars.

Usage

S3 method for class 'agraph_fit'
poor_fits(fit, sigma = 6)

Arguments

fit The fitted graph.

sigma The width of the error bars.

Value

The poorly fitted tests.

68 print.agraph_fit

poor_fits.agraph_fit_list

Get the tests in the fit where the predictions fall outside of the error
bars.

Description

Get the tests in the fit where the predictions fall outside of the error bars.

Usage

S3 method for class 'agraph_fit_list'
poor_fits(fit, sigma = 6)

Arguments

fit The fitted graphs.

sigma The width of the error bars.

Value

The poorly fitted tests.

print.agraph_fit Print function for the fitted graph.

Description

Prints the value of cost_function of the fitted graph, and complains if some or all of the admixture
proportions aren’t trurly fitted. Note: the admixture proportion not being trurly fitted does not
necessarily mean that there is no evidence of an admix event!

Usage

S3 method for class 'agraph_fit'
print(x, ...)

Arguments

x The fitted object.

... Additional parameters.

See Also

link{summary.agraph_fit}

project_to_population 69

project_to_population Map sample names to population names.

Description

Map sample names to population names.

Usage

project_to_population(data, f)

Arguments

data The data frame to modify.

f Function mapping sample names to population names.

Details

This function maps the sample names in W, X, Y, and Z to population names (typically what an
admixture graph has for leaves) and stores the original sample names so we can map them back
again after using the graph for making predictions.

remove_duplicates Remove duplicate graphs from a list.

Description

Using canonise_graph to calculate unique characteristic logical vector for each graph in a given
list of graphs, then sorts the list according to this attribute and remove repeated graphs. Leaf names
count so that graphs with permuted leaves are considered different. Also organises similar graphs
next to each other if organise is TRUE, but this is extremely slow.

Usage

remove_duplicates(graph_list, organise = FALSE, return_piles = FALSE)

Arguments

graph_list A list of graphs with the same leaf set.

organise If TRUE also organises isomorphic graphs (now disregarding leaf names) next to
each other.

return_piles If TRUE and organise is also TRUE, the output will be a list of lists of isomorphic
graphs instead of one big list.

70 residuals.agraph_fit

Value

A list of graphs that are all different (or a list of lists of graphs if both organise and return_piles
are TRUE).

rename_nodes Rename nodes.

Description

Changes the names of the nodes of a graph. Capable of giving new standard names to the inner
nodes in a way that only depends on the graph topology (without the root) and the leaf names. This
is necessary when detecting when graphs are identical up to inner node and admixture proportion
names, see canonise_graph and remove_duplicates.

Usage

rename_nodes(graph, newnames = list())

Arguments

graph The graph to be renamed.

newnames A list of new names, given in the form list(old = "new"). Nodes not listed
will keep their old name, unless no list is given at all, in which case the leaves
keep their old names while the inner nodes get new standardised names.

Value

A graph with new node names.

residuals.agraph_fit Errors of prediction in the fitted graph

Description

Gets f −F , the difference between predicted and observed statistics, for each data point used in the
fit.

Usage

S3 method for class 'agraph_fit'
residuals(object, ...)

Arguments

object The fitted object.

... Additional parameters.

run_metropolis_hasting 71

See Also

link{summary.agraph_fit}

run_metropolis_hasting

Run a Metropolis-Hasting MCMC to sample graph parameters.

Description

The MCMC performs a random walk in transformed parameter space (edge lengths are log trans-
formed and admixture proportions inverse Normal distribution transformed) and from this explores
the posterior distribution of graph parameters.

Usage

run_metropolis_hasting(model, initial_state, iterations, no_temperatures = 1,
cores = 1, no_flips = 1, max_tmp = 100, verbose = TRUE)

Arguments

model Object constructed with make_mcmc_model.
initial_state The initial set of graph parameters.
iterations Number of iterations to sample.
no_temperatures

Number of chains in the MC3 procedure.
cores Number of cores to spread the chains across. Best performance is when cores = no_temperatures.
no_flips Mean number of times a flip between two chains should be proposed after each

step.
max_tmp The highest temperature.
verbose Logical value determining if a progress bar should be shown during the run.

Details

Using the posterior distribution of parameters is one approach to getting parameter estimates and a
sense of their variability. Credibility intervals can directly be obtained from sampled parameters; to
get confidence intervals from the likelihood maximisation approach requires either estimating the
Hessian matrix for the likelihood or a boot-strapping approach to the data.

From sampling the likelihood values for each sample from the posterior we can also compute the
model likelihood (the probability of the data when integrating over all the model parameters). This
gives us a direct way of comparing graphs since the ratio of likelihoods is the Bayes factor between
the models. Comparing models using maximum likelihood estimtates is more problematic since
usually graphs are not nested models.

Value

A matrix containing the trace of the chain with temperature 1.

72 seven_leaves_graphs

seven_leaves_graphs Seven leaves graphs.

Description

Kind of obsolete since the introduction of all_graphs. A comprehensive listing of all the 48
admixture graphs with seven leaves and at most one admixture event. Our convention is that the
position of the root does not matter (as long as it’s not after an admixture event) and that graphs that
have eyes, two inner nodes with the property that all the paths between any two leaves visits both
or neither of them, are excluded. The reason is that the f statistics can’t detect the exact position of
the root or distinguish between an eye and a simple branch. The position of the root can be moved
later with the function make_an_outgroup.

Usage

seven_leaves_graphs

Format

A list of functions on seven leaves and a parameter permutations which is FALSE by default. The
outputs of these functions are either single agraph objects with the input vector as leaves, or if
permutations is TRUE, lists of all the possible agraph objects with that leaf set up to symmetry.

See Also

all_graphs

make_permutations

fit_permutations_and_graphs

fit_graph_list

add_a_leaf

add_an_admixture

add_an_admixture2

make_an_outgroup

Other graphs: eight_leaves_trees, five_leaves_graphs, four_leaves_graphs, six_leaves_graphs

Examples

While the usage of this function is pretty self-explanatory, let's plot all the graphs
just for browsing.
for (i in seq(1, length(seven_leaves_graphs))) {

graph <- seven_leaves_graphs[[i]](c("A", "B", "C", "D", "E", "F", "G"))
This is how you include quotation marks in strings by the way:
title <- paste("seven_leaves_graphs[[", i,

"]](c(\"A\", \"B\", \"C\", \"D\", \"E\", \"F\", \"G\"))", sep = "")

seven_leaves_trees 73

plot(graph, color = "seagreen", title = title)
}

seven_leaves_trees Seven leaves trees.

Description

The function seven_leaves_graphs is better than this as it also contains graphs with one admix-
ture. (This function is only kept for legacy reasons.) Even more obsolete since the introduction of
all_graphs.

Usage

seven_leaves_trees

Format

A list of functions on seven leaves. The outputs of these functions are agraph objects.

sf2 Calculate the f_2(A, B) statistics.

Description

Calculate the f2(A,B) statistics.

Usage

sf2(graph, A, B)

Arguments

graph The admixture graph.

A A leaf node.

B A leaf node.

Value

A symbolic representation of the equation for the f2 statistics given by the admixture graph.

74 sf4

sf3 Calculate the f_3(A; B, C) statistics.

Description

Calculate the f3(A;B,C) statistics.

Usage

sf3(graph, A, B, C)

Arguments

graph The admixture graph.

A A leaf node.

B A leaf node.

C A leaf node.

Value

A symbolic representation of the equation for the f3 statistics given by the admixture graph.

sf4 Calculate the f_4(W, X; Y, Z) statistics.

Description

Calculate the f4(W,X;Y,Z) statistics.

Usage

sf4(graph, W, X, Y, Z)

Arguments

graph The admixture graph.

W A leaf node.

X A leaf node.

Y A leaf node.

Z A leaf node.

Value

A symbolic representation of the equation for the f4 statistics given by the admixture graph.

six_leaves_graphs 75

six_leaves_graphs Six leaves graphs.

Description

Kind of obsolete since the introduction of all_graphs. A comprehensive listing of all the 21
admixture graphs with six leaves and at most one admixture event. Our convention is that the
position of the root does not matter (as long as it’s not after an admixture event) and that graphs that
have eyes, two inner nodes with the property that all the paths between any two leaves visits both
or neither of them, are excluded. The reason is that the f statistics can’t detect the exact position of
the root or distinguish between an eye and a simple branch. The position of the root can be moved
later with the function make_an_outgroup.

Usage

six_leaves_graphs

Format

A list of functions on six leaves and a parameter permutations which is FALSE by default. The
outputs of these functions are either single agraph objects with the input vector as leaves, or if
permutations is TRUE, lists of all the possible agraph objects with that leaf set up to symmetry.

See Also

all_graphs

make_permutations

fit_permutations_and_graphs

fit_graph_list

add_a_leaf

add_an_admixture

add_an_admixture2

make_an_outgroup

Other graphs: eight_leaves_trees, five_leaves_graphs, four_leaves_graphs, seven_leaves_graphs

Examples

While the usage of this function is pretty self-explanatory, let's plot all the graphs
just for browsing.
for (i in seq(1, length(six_leaves_graphs))) {

graph <- six_leaves_graphs[[i]](c("A", "B", "C", "D", "E", "F"))
This is how you include quotation marks in strings by the way:
title <- paste("six_leaves_graphs[[", i,

"]](c(\"A\", \"B\", \"C\", \"D\", \"E\", \"F\"))", sep = "")

76 split_population.agraph_fit

plot(graph, color = "yellow4", title = title)
}

split_population Reverse a projection of samples to populations.

Description

Reverse a projection of samples to populations.

Usage

split_population(x)

Arguments

x The projected data or a fitted object on projected data.

split_population.agraph_fit

Reverse a projection of samples to populations.

Description

Reverse a projection of samples to populations.

Usage

S3 method for class 'agraph_fit'
split_population(x)

Arguments

x The projected data or a fitted object on projected data.

split_population.data.frame 77

split_population.data.frame

Reverse a projection of samples to populations.

Description

Reverse a projection of samples to populations.

Usage

S3 method for class 'data.frame'
split_population(x)

Arguments

x The projected data or a fitted object on projected data.

summary.agraph_fit Summary for the fitted graph.

Description

Prints:
Optimal admixture proportions and a complaint if some of them are not trurly fitted, i. e. if after
fixing a (possibly empty) subset of them, the rest have typically no effect on the cost function. Here
typically means that some isolated values of the admixture proportions, like 0 or 1, might actually
give a significantly worse fit than the constant fit given by any other values (but not better). Thus,
an admixture proportion not being fitted does not always mean that there is no evidence of an admix
event, as fixing them at 0 or 1 could make the fit worse while the exact value won’t matter otherwise.
The optimal edge lengths give one of the solutions for the best fit. It is generally not unique, as after
fixing the admixture proportions, the best edge lengths are a non-negative least square solution for a
system of linear equations. To get all the solutions one has to add any solution of the corresponding
homogeneous system to the given exaple solution (and exclude possible negative values). The
solutions of the homogeneous system are given as a set of free edge lengths that may obtain any
non-negative value, and bounded edge lengths that linearly depend on the free ones.
Minimal error is the value of the cost_function at the fit.

Usage

S3 method for class 'agraph_fit'
summary(object, ...)

Arguments

object The fitted object.
... Additional parameters.

78 sum_of_squared_errors.agraph_fit

sum_of_squared_errors Get the sum of squared errors for a fitted graph.

Description

Get the sum of squared errors for a fitted graph.

Usage

sum_of_squared_errors(x)

Arguments

x The fitted graph.

Value

SSE for the fit.

sum_of_squared_errors.agraph_fit

Get the sum of squared errors for a fitted graph.

Description

Get the sum of squared errors for a fitted graph.

Usage

S3 method for class 'agraph_fit'
sum_of_squared_errors(x)

Arguments

x The fitted graph.

Value

SSE for the fit.

sum_of_squared_errors.agraph_fit_list 79

sum_of_squared_errors.agraph_fit_list

Get the sum of squared errors for a list of fitted graph.

Description

Get the sum of squared errors for a list of fitted graph.

Usage

S3 method for class 'agraph_fit_list'
sum_of_squared_errors(x)

Arguments

x The fitted graphs.

Value

SSE for the fits.

thinning Thins out an MCMC trace.

Description

Thins out an MCMC trace.

Usage

thinning(trace, k)

Arguments

trace A trace from an MCMC run.

k The number of lines to skip over per retained sample.

80 vector_to_graph

vector_to_graph Vector to graph.

Description

Interprets a logical vector back to an agraph object. The admixture proportion names are now lost.

Usage

vector_to_graph(vector)

Arguments

vector A logical vector.

Value

The graph corresponding to the vector.

Index

∗Topic datasets
bears, 16
eight_leaves_trees, 22
five_leaves_graphs, 36
four_leaves_graphs, 38
graphs_2_0, 39
graphs_3_0, 40
graphs_3_1, 40
graphs_4_0, 41
graphs_4_1, 41
graphs_4_2, 42
graphs_5_0, 42
graphs_5_1, 43
graphs_5_2, 43
graphs_6_0, 44
graphs_6_1, 44
graphs_6_2, 45
graphs_7_0, 45
graphs_7_1, 46
graphs_8_0, 46
seven_leaves_graphs, 72
seven_leaves_trees, 73
six_leaves_graphs, 75

add_a_leaf, 5, 8, 8, 22, 37, 38, 52, 53, 72, 75
add_an_admixture, 5, 7, 8, 22, 37, 38, 52, 53,

72, 75
add_an_admixture2, 5, 7, 8, 22, 37, 38, 52,

53, 72, 75
add_graph_f4, 9
add_graph_f4_sign, 10
admix_props, 11, 12
admixture_edge, 10, 12
admixture_proportions, 11, 12
admixturegraph-package, 4
agraph, 12, 22, 28, 29, 32, 33, 36, 38–47, 63,

72, 73, 75, 80
agraph_children, 13, 14
agraph_parents, 13, 13
agraph_weights, 14

all_graphs, 5, 8, 14, 22, 34, 36, 38–46, 72,
73, 75

all_path_overlaps, 15, 48, 49, 60
all_paths, 15

bears, 16
build_edge_optimisation_matrix, 16, 20,

21, 24, 33, 50
burn_in, 17

calculate_concentration, 17, 29, 33, 50
canonise_expression, 18
canonise_graph, 18, 69, 70
character, 18
coef.agraph_fit, 19
contour, 66
cost_function, 19, 21, 28, 29, 32, 33, 50, 65,

66, 68, 77

edge, 12, 20
edge_optimisation_function, 19, 20, 21,

50
eight_leaves_trees, 22, 35, 37, 38, 52, 53,

72, 75
eval, 16
evaluate_f4, 23
examine_edge_optimisation_matrix, 23,

32
extract_admixture_proportion_parameters,

24
extract_graph_parameters, 16, 25, 47
extract_trees, 25

f2, 26
f3, 26
f4, 18, 27
f4stats, 27
fast_fit, 28, 32–35
fast_plot, 30, 62, 63
filter_on_leaves, 31

81

82 INDEX

fit_graph, 28, 29, 32
fit_graph_list, 5, 8, 15, 22, 34, 35, 36, 38,

52, 72, 75
fit_permutations_and_graphs, 5, 8, 22, 34,

35, 36, 38, 52, 53, 72, 75
fitted.agraph_fit, 31
five_leaves_graphs, 22, 35, 36, 38, 52, 53,

72, 75
format_path, 37
four_leaves_graphs, 22, 35, 37, 38, 52, 53,

72, 75

get_graph_f4_sign, 39
ginv, 56
graph_environment, 47
graph_to_vector, 39–46, 47
graphs_2_0, 39
graphs_3_0, 40
graphs_3_1, 40
graphs_4_0, 41
graphs_4_1, 41
graphs_4_2, 42
graphs_5_0, 42
graphs_5_1, 43
graphs_5_2, 43
graphs_6_0, 44
graphs_6_1, 44
graphs_6_2, 45
graphs_7_0, 45
graphs_7_1, 46
graphs_8_0, 46

is_descendant_of, 48
is_negative, 48
is_positive, 49
is_unknown, 49
is_zero, 49

log_likelihood, 20, 21, 50
log_sum_of_logs, 51
lsqnonneg, 56

make_an_outgroup, 5, 8, 22, 36–38, 51, 72, 75
make_mcmc_model, 52, 71
make_permutations, 22, 35, 36, 38, 52, 53,

72, 75
model_bayes_factor_n, 54
model_likelihood, 55
model_likelihood_n, 55

mynonneg, 20, 21, 28, 32, 56

no_admixture_events, 57
no_admixture_events.agraph, 57
no_admixture_events.agraph_fit, 58
no_admixture_events.agraph_fit_list,

58
no_poor_fits, 59
no_poor_fits.agraph_fit, 59
no_poor_fits.agraph_fit_list, 60

optimset, 29, 33
overlaps_sign, 60

parent_edges, 12, 61
parse, 16
path_overlap, 61
plot.agraph, 12, 30, 62
plot.agraph_fit, 64
plot.f4stats, 65
plot_fit_1, 65, 66
plot_fit_2, 66, 66
poor_fits, 67
poor_fits.agraph_fit, 67
poor_fits.agraph_fit_list, 68
print.agraph_fit, 68
project_to_population, 69

qr.solve, 24, 56

remove_duplicates, 69, 70
rename_nodes, 70
residuals.agraph_fit, 70
run_metropolis_hasting, 71

seven_leaves_graphs, 22, 35, 37, 38, 52, 72,
73, 75

seven_leaves_trees, 53, 73
sf2, 73
sf3, 74
sf4, 74
six_leaves_graphs, 22, 35, 37, 38, 52, 53,

72, 75
split_population, 76
split_population.agraph_fit, 76
split_population.data.frame, 77
sum_of_squared_errors, 78
sum_of_squared_errors.agraph_fit, 78
sum_of_squared_errors.agraph_fit_list,

79

INDEX 83

summary.agraph_fit, 24, 33, 77

thinning, 79

vector_to_graph, 39–46, 80

	admixturegraph-package
	add_an_admixture
	add_an_admixture2
	add_a_leaf
	add_graph_f4
	add_graph_f4_sign
	admixture_edge
	admixture_proportions
	admix_props
	agraph
	agraph_children
	agraph_parents
	agraph_weights
	all_graphs
	all_paths
	all_path_overlaps
	bears
	build_edge_optimisation_matrix
	burn_in
	calculate_concentration
	canonise_expression
	canonise_graph
	coef.agraph_fit
	cost_function
	edge
	edge_optimisation_function
	eight_leaves_trees
	evaluate_f4
	examine_edge_optimisation_matrix
	extract_admixture_proportion_parameters
	extract_graph_parameters
	extract_trees
	f2
	f3
	f4
	f4stats
	fast_fit
	fast_plot
	filter_on_leaves
	fitted.agraph_fit
	fit_graph
	fit_graph_list
	fit_permutations_and_graphs
	five_leaves_graphs
	format_path
	four_leaves_graphs
	get_graph_f4_sign
	graphs_2_0
	graphs_3_0
	graphs_3_1
	graphs_4_0
	graphs_4_1
	graphs_4_2
	graphs_5_0
	graphs_5_1
	graphs_5_2
	graphs_6_0
	graphs_6_1
	graphs_6_2
	graphs_7_0
	graphs_7_1
	graphs_8_0
	graph_environment
	graph_to_vector
	is_descendant_of
	is_negative
	is_positive
	is_unknown
	is_zero
	log_likelihood
	log_sum_of_logs
	make_an_outgroup
	make_mcmc_model
	make_permutations
	model_bayes_factor_n
	model_likelihood
	model_likelihood_n
	mynonneg
	no_admixture_events
	no_admixture_events.agraph
	no_admixture_events.agraph_fit
	no_admixture_events.agraph_fit_list
	no_poor_fits
	no_poor_fits.agraph_fit
	no_poor_fits.agraph_fit_list
	overlaps_sign
	parent_edges
	path_overlap
	plot.agraph
	plot.agraph_fit
	plot.f4stats
	plot_fit_1
	plot_fit_2
	poor_fits
	poor_fits.agraph_fit
	poor_fits.agraph_fit_list
	print.agraph_fit
	project_to_population
	remove_duplicates
	rename_nodes
	residuals.agraph_fit
	run_metropolis_hasting
	seven_leaves_graphs
	seven_leaves_trees
	sf2
	sf3
	sf4
	six_leaves_graphs
	split_population
	split_population.agraph_fit
	split_population.data.frame
	summary.agraph_fit
	sum_of_squared_errors
	sum_of_squared_errors.agraph_fit
	sum_of_squared_errors.agraph_fit_list
	thinning
	vector_to_graph
	Index

