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1 Introduction

Credibility models are actuarial tools to distribute premiums fairly among a
heterogeneous group of policyholders (henceforth called entities). More gen-
erally, they can be seen as prediction methods applicable in any setting where
repeated measures are made for subjects with different risk levels.

The credibility theory features of actuar consist of matrix hachemeister
containing the famous data set of Hachemeister (1975) and function cm to fit
hierarchical (including Bühlmann, Bühlmann-Straub), regression and linear
Bayes credibility models. Furthermore, function rcomphierarc can simulate
portfolios of data satisfying the assumptions of the aforementioned credibility
models; see the "simulation" vignette for details.

2 Hachemeister data set

The data set of Hachemeister (1975) consists of private passenger bodily injury
insurance average claim amounts, and the corresponding number of claims,
for five U.S. states over 12 quarters between July 1970 and June 1973. The
data set is included in the package in the form of a matrix with 5 rows and
25 columns. The first column contains a state index, columns 2–13 contain the
claim averages and columns 14–25 contain the claim numbers:
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> data(hachemeister)
> hachemeister

state ratio.1 ratio.2 ratio.3 ratio.4 ratio.5
[1,] 1 1738 1642 1794 2051 2079
[2,] 2 1364 1408 1597 1444 1342
[3,] 3 1759 1685 1479 1763 1674
[4,] 4 1223 1146 1010 1257 1426
[5,] 5 1456 1499 1609 1741 1482

ratio.6 ratio.7 ratio.8 ratio.9 ratio.10 ratio.11
[1,] 2234 2032 2035 2115 2262 2267
[2,] 1675 1470 1448 1464 1831 1612
[3,] 2103 1502 1622 1828 2155 2233
[4,] 1532 1953 1123 1343 1243 1762
[5,] 1572 1606 1735 1607 1573 1613

ratio.12 weight.1 weight.2 weight.3 weight.4
[1,] 2517 7861 9251 8706 8575
[2,] 1471 1622 1742 1523 1515
[3,] 2059 1147 1357 1329 1204
[4,] 1306 407 396 348 341
[5,] 1690 2902 3172 3046 3068

weight.5 weight.6 weight.7 weight.8 weight.9
[1,] 7917 8263 9456 8003 7365
[2,] 1622 1602 1964 1515 1527
[3,] 998 1077 1277 1218 896
[4,] 315 328 352 331 287
[5,] 2693 2910 3275 2697 2663

weight.10 weight.11 weight.12
[1,] 7832 7849 9077
[2,] 1748 1654 1861
[3,] 1003 1108 1121
[4,] 384 321 342
[5,] 3017 3242 3425

3 Hierarchical credibility model

The linear model fitting function of R is lm. Since credibility models are very
close in many respects to linear models, and since the credibility model fit-
ting function of actuar borrows much of its interface from lm, we named the
credibility function cm.

Function cm acts as a unified interface for all credibility models supported
by the package. Currently, these are: the unidimensional models of Bühlmann
(1969) and Bühlmann and Straub (1970); the hierarchical model of Jewell
(1975) (of which the first two are special cases); the regression model of
Hachemeister (1975), optionally with the intercept at the barycenter of time
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(Bühlmann and Gisler, 2005, Section 8.4); linear Bayes models. The modular
design of cm makes it easy to add new models if desired.

This section concentrates on usage of cm for hierarchical models.
There are some variations in the formulas of the hierarchical model in the

literature. We compute the credibility premiums as given in Bühlmann and
Jewell (1987) or Bühlmann and Gisler (2005), supporting three types of esti-
mators of the between variance structure parameters: the unbiased estimators
of Bühlmann and Gisler (2005) (the default), the slightly different version of
Ohlsson (2005) and the iterative pseudo-estimators as found in Goovaerts and
Hoogstad (1987) or Goulet (1998).

Consider an insurance portfolio where entities are classified into cohorts. In
our terminology, this is a two-level hierarchical classification structure. The
observations are claim amounts Sijt, where index i = 1, . . . , I identifies the
cohort, index j = 1, . . . , Ji identifies the entity within the cohort and index t =
1, . . . , nij identifies the period (usually a year). To each data point corresponds
a weight — or volume — wijt. Then, the best linear prediction for the next
period outcome of a entity based on ratios Xijt = Sijt/wijt is

π̂ij = zijXijw + (1− zij)π̂i

π̂i = ziXizw + (1− zi)m,
(1)

with the credibility factors

zij =
wijΣ

wijΣ + s2/a
, wijΣ =

nij

∑
t=1

wijt

zi =
ziΣ

ziΣ + a/b
, ziΣ =

Ji

∑
j=1

zij

and the weighted averages

Xijw =

nij

∑
t=1

wijt

wijΣ
Xijt

Xizw =
Ji

∑
j=1

zij

ziΣ
Xijw.

The estimator of s2 is

ŝ2 =
1

∑I
i=1 ∑Ji

j=1(nij − 1)

I

∑
i=1

Ji

∑
j=1

nij

∑
t=1

wijt(Xijt − Xijw)
2. (2)

The three types of estimators for the variance components a and b are the
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following. First, let

Ai =
Ji

∑
j=1

wijΣ(Xijw − Xiww)
2 − (Ji − 1)s2 ci = wiΣΣ −

Ji

∑
j=1

w2
ijΣ

wiΣΣ

B =
I

∑
i=1

ziΣ(Xizw − X̄zzw)
2 − (I − 1)a d = zΣΣ −

I

∑
i=1

z2
iΣ

zΣΣ
,

with

X̄zzw =
I

∑
i=1

ziΣ
zΣΣ

Xizw. (3)

(Hence, E[Ai] = cia and E[B] = db.) Then, the Bühlmann–Gisler estimators
are

â =
1
I

I

∑
i=1

max
(

Ai
ci

, 0
)

(4)

b̂ = max
(

B
d

, 0
)

, (5)

the Ohlsson estimators are

â′ = ∑I
i=1 Ai

∑I
i=1 ci

(6)

b̂′ =
B
d

(7)

and the iterative (pseudo-)estimators are

ã =
1

∑I
i=1(Ji − 1)

I

∑
i=1

Ji

∑
j=1

zij(Xijw − Xizw)
2 (8)

b̃ =
1

I − 1

I

∑
i=1

zi(Xizw − Xzzw)
2, (9)

where

Xzzw =
I

∑
i=1

zi
zΣ

Xizw. (10)

Note the difference between the two weighted averages (3) and (10). See Bel-
hadj et al. (2009) for further discussion on this topic.

Finally, the estimator of the collective mean m is m̂ = Xzzw.
The credibility modeling function cm assumes that data is available in the

format most practical applications would use, namely a rectangular array (ma-
trix or data frame) with entity observations in the rows and with one or more
classification index columns (numeric or character). One will recognize the
output format of rcomphierarc and its summary methods.
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Then, function cm works much the same as lm. It takes in argument: a
formula of the form ˜ terms describing the hierarchical interactions in a data
set; the data set containing the variables referenced in the formula; the names
of the columns where the ratios and the weights are to be found in the data
set. The latter should contain at least two nodes in each level and more than
one period of experience for at least one entity. Missing values are represented
by NAs. There can be entities with no experience (complete lines of NAs).

In order to give an easily reproducible example, we group states 1 and 3 of
the Hachemeister data set into one cohort and states 2, 4 and 5 into another.
This shows that data does not have to be sorted by level. The fitted model
below uses the iterative estimators of the variance components.

> X <- cbind(cohort = c(1, 2, 1, 2, 2), hachemeister)
> fit <- cm(~cohort + cohort:state, data = X,
+ ratios = ratio.1:ratio.12,
+ weights = weight.1:weight.12,
+ method = "iterative")
> fit

Call:
cm(formula = ~cohort + cohort:state, data = X, ratios = ratio.1:ratio.12,

weights = weight.1:weight.12, method = "iterative")

Structure Parameters Estimators

Collective premium: 1746

Between cohort variance: 88981
Within cohort/Between state variance: 10952
Within state variance: 139120026

The function returns a fitted model object of class "cm" containing the
estimators of the structure parameters. To compute the credibility premiums,
one calls a method of predict for this class.

> predict(fit)

$cohort
[1] 1949 1543

$state
[1] 2048 1524 1875 1497 1585

One can also obtain a nicely formatted view of the most important results
with a call to summary.

> summary(fit)

Call:
cm(formula = ~cohort + cohort:state, data = X, ratios = ratio.1:ratio.12,

weights = weight.1:weight.12, method = "iterative")
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Structure Parameters Estimators

Collective premium: 1746

Between cohort variance: 88981
Within cohort/Between state variance: 10952
Within state variance: 139120026

Detailed premiums

Level: cohort
cohort Indiv. mean Weight Cred. factor Cred. premium
1 1967 1.407 0.9196 1949
2 1528 1.596 0.9284 1543

Level: state
cohort state Indiv. mean Weight Cred. factor
1 1 2061 100155 0.8874
2 2 1511 19895 0.6103
1 3 1806 13735 0.5195
2 4 1353 4152 0.2463
2 5 1600 36110 0.7398
Cred. premium
2048
1524
1875
1497
1585

The methods of predict and summary can both report for a subset of the
levels by means of an argument levels.

> summary(fit, levels = "cohort")

Call:
cm(formula = ~cohort + cohort:state, data = X, ratios = ratio.1:ratio.12,

weights = weight.1:weight.12, method = "iterative")

Structure Parameters Estimators

Collective premium: 1746

Between cohort variance: 88981
Within cohort variance: 10952

Detailed premiums
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cohort Indiv. mean Weight Cred. factor Cred. premium
1 1967 1.407 0.9196 1949
2 1528 1.596 0.9284 1543

> predict(fit, levels = "cohort")

$cohort
[1] 1949 1543

4 Bühlmann and Bühlmann–Straub models

As mentioned above, the Bühlmann and Bühlmann–Straub models are simply
one-level hierarchical models. In this case, the Bühlmann–Gisler and Ohlsson
estimators of the between variance parameters are both identical to the usual
Bühlmann and Straub (1970) estimator

â =
wΣΣ

w2
ΣΣ −∑I

i=1 w2
iΣ

(
I

∑
i=1

wiΣ(Xiw − Xww)
2 − (I − 1)ŝ2

)
, (11)

and the iterative estimator

ã =
1

I − 1

I

∑
i=1

zi(Xiw − Xzw)
2 (12)

is better known as the Bichsel–Straub estimator.
To fit the Bühlmann model using cm, one simply does not specify any

weights.

> cm(~state, hachemeister, ratios = ratio.1:ratio.12)

Call:
cm(formula = ~state, data = hachemeister, ratios = ratio.1:ratio.12)

Structure Parameters Estimators

Collective premium: 1671

Between state variance: 72310
Within state variance: 46040

When weights are specified together with a one-level model, cm automat-
ically fits the Bühlmann–Straub model to the data. In the example below, we
use the Bichsel–Straub estimator for the between variance.

> cm(~state, hachemeister, ratios = ratio.1:ratio.12,
+ weights = weight.1:weight.12)

Call:
cm(formula = ~state, data = hachemeister, ratios = ratio.1:ratio.12,

weights = weight.1:weight.12)
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Structure Parameters Estimators

Collective premium: 1684

Between state variance: 89639
Within state variance: 139120026

5 Regression model of Hachemeister

The credibility regression model of Hachemeister (1975) is a generalization
of the Bühlmann–Straub model. If data shows a systematic trend, the latter
model will typically under- or over-estimate the true premium of an entity.
The idea of Hachemeister was to fit to the data a regression model where
the parameters are a credibility weighted average of an entity’s regression
parameters and the group’s parameters.

In order to use cm to fit a credibility regression model to a data set, one
simply has to supply as additional arguments regformula and regdata. The
first one is a formula of the form ˜ terms describing the regression model,
and the second is a data frame of regressors. That is, arguments regformula
and regdata are in every respect equivalent to arguments formula and data
of lm, with the minor difference that regformula does not need to have a left
hand side (and is ignored if present). Below, we fit the model

Xit = β0 + β1t + εt, t = 1, . . . , 12

to the original data set of Hachemeister (1975).

> fit <- cm(~state, hachemeister, regformula = ~ time,
+ regdata = data.frame(time = 1:12),
+ ratios = ratio.1:ratio.12,
+ weights = weight.1:weight.12)
> fit

Call:
cm(formula = ~state, data = hachemeister, ratios = ratio.1:ratio.12,

weights = weight.1:weight.12, regformula = ~time, regdata = data.frame(time = 1:12))

Structure Parameters Estimators

Collective premium: 1469 32.05

Between state variance: 24154 2700.0
2700 301.8

Within state variance: 49870187

To compute the credibility premiums, one has to provide the “future” val-
ues of the regressors as in predict.lm.
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Figure 1: Collective, individual and credibility regression lines for State 4 of
the Hachemeister data set. The point indicates the credibility premium.

> predict(fit, newdata = data.frame(time = 13))

[1] 2437 1651 2073 1507 1759

It is well known that the basic regression model has a major drawback:
there is no guarantee that the credibility regression line will lie between the
collective and individual ones. This may lead to grossly inadequate premi-
ums, as Figure 1 shows.

The solution proposed by Bühlmann and Gisler (1997) is simply to po-
sition the intercept not at time origin, but instead at the barycenter of time
(see also Bühlmann and Gisler, 2005, Section 8.4). In mathematical terms, this
essentially amounts to using an orthogonal design matrix. By setting the argu-
ment adj.intercept to TRUE in the call, cm will automatically fit the credibility
regression model with the intercept at the barycenter of time. The resulting
regression coefficients have little meaning, but the predictions are sensible.

> fit2 <- cm(~state, hachemeister, regformula = ~ time,
+ regdata = data.frame(time = 1:12),
+ adj.intercept = TRUE,
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+ ratios = ratio.1:ratio.12,
+ weights = weight.1:weight.12)
> summary(fit2, newdata = data.frame(time = 13))

Call:
cm(formula = ~state, data = hachemeister, ratios = ratio.1:ratio.12,

weights = weight.1:weight.12, regformula = ~time, regdata = data.frame(time = 1:12),
adj.intercept = TRUE)

Structure Parameters Estimators

Collective premium: -1675 117.1

Between state variance: 93783 0
0 8046

Within state variance: 49870187

Detailed premiums

state Indiv. coef. Cred. matrix Adj. coef.
1 -2062.46 0.9947 0.0000 -2060.41

216.97 0.0000 0.9413 211.10
2 -1509.28 0.9740 0.0000 -1513.59

59.60 0.0000 0.7630 73.23
3 -1813.41 0.9627 0.0000 -1808.25

150.60 0.0000 0.6885 140.16
4 -1356.75 0.8865 0.0000 -1392.88

96.70 0.0000 0.4080 108.77
5 -1598.79 0.9855 0.0000 -1599.89

41.29 0.0000 0.8559 52.22
Cred. premium
2457

1651

2071

1597

1698

Figure 2 shows the beneficient effect of the intercept adjustment on the
premium of State 4.
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Figure 2: Collective, individual and credibility regression lines for State 4 of
the Hachemeister data set when the intercept is positioned at the barycenter
of time. The point indicates the credibility premium.

6 Linear Bayes model

In the pure bayesian approach to the ratemaking problem, we assume that
the observations Xt, t = 1, . . . , n, of an entity depend on its risk level θ, and
that this risk level is a realization of an unobservable random variable Θ. The
best (in the mean square sense) approximation to the unknown risk premium
µ(θ) = E[Xt|Θ = θ] based on observations X1, . . . , Xn is the Bayesian premium

Bn+1 = E[µ(Θ)|X1, . . . , Xn].

It is then well known (Bühlmann and Gisler, 2005; Klugman et al., 2012) that
for some combinaisons of distributions, the Bayesian premium is linear and
can written as a credibility premium

Bn+1 = zX̄ + (1− z)m,

where m = E[µ(Θ)] and z = n/(n + K) for some constant K.
The combinations of distributions yielding a linear Bayes premium involve
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members of the univariate exponential family for the distribution of X|Θ = θ
and their natural conjugate for the distribution of Θ:

• X|Θ = θ ∼ Poisson(θ), Θ ∼ Gamma(α, λ);

• X|Θ = θ ∼ Exponential(θ), Θ ∼ Gamma(α, λ);

• X|Θ = θ ∼ Normal(θ, σ2
2 ), Θ ∼ Normal(µ, σ2

1 );

• X|Θ = θ ∼ Bernoulli(θ), Θ ∼ Beta(a, b);

• X|Θ = θ ∼ Geometric(θ), Θ ∼ Beta(a, b);

and the convolutions

• X|Θ = θ ∼ Gamma(τ, θ), Θ ∼ Gamma(α, λ);

• X|Θ = θ ∼ Binomial(ν, θ), Θ ∼ Beta(a, b);

• X|Θ = θ ∼ Negative Binomial(r, θ) and Θ ∼ Beta(a, b).

Appendix A provides the complete formulas for the above combinations of
distributions.

In addition, Bühlmann and Gisler (2005, section 2.6) show that if X|Θ =
θ ∼ Single Parameter Pareto(θ, x0) and Θ ∼ Gamma(α, λ), then the Bayesian
estimator of parameter θ — not of the risk premium! — is

Θ̂ = ηθ̂MLE + (1− η)
α

λ
,

where
θ̂MLE =

n
∑n

i=1 ln(Xi/x0)

is the maximum likelihood estimator of θ and

η =
∑n

i=1 ln(Xi/x0)

λ + ∑n
i=1 ln(Xi/x0)

is a weight not restricted to (0, 1). (See the "distributions" package vignette
for details on the Single Parameter Pareto distribution.)

When argument formula is "bayes", function cm computes pure Bayesian
premiums — or estimator in the Pareto/Gamma case — for the combinations
of distributions above. We identify which by means of argument likelihood
that must be one of "poisson", "exponential", "gamma", "normal", "bernoulli",
"binomial", "geometric", "negative binomial" or "pareto". The parameters
of the distribution of X|Θ = θ, if any, and those of the distribution of Θ are
specified using the argument names (and default values) of dgamma, dnorm,
dbeta, dbinom, dnbinom or dpareto1, as appropriate.

Consider the case where

X|Θ = θ ∼ Poisson(θ)
Θ ∼ Gamma(α, λ).
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The posterior distribution of Θ is

Θ|X1, . . . , Xn ∼ Gamma

(
α +

n

∑
t=1

Xt, λ + n

)
.

Therefore, the Bayesian premium is

Bn+1 = E[µ(Θ)|X1, . . . , Xn]

= E[Θ|X1, . . . , Xn]

=
α + ∑n

t=1 Xt

λ + n

=
n

n + λ
X̄ +

λ

n + λ

α

λ

= zX̄ + (1− z)m,

with m = E[µ(Θ)] = E[Θ] = α/λ and

z =
n

n + K
, K = λ.

One may easily check that if α = λ = 3 and X1 = 5, X2 = 3, X3 = 0, X4 =
1, X5 = 1, then B6 = 1.625. We obtain the same result using cm.

> x <- c(5, 3, 0, 1, 1)
> fit <- cm("bayes", x, likelihood = "poisson",
+ shape = 3, rate = 3)
> fit

Call:
cm(formula = "bayes", data = x, likelihood = "poisson", shape = 3,

rate = 3)

Structure Parameters Estimators

Collective premium: 1

Between variance: 0.3333
Within variance: 1

> predict(fit)

[1] 1.625

> summary(fit)

Call:
cm(formula = "bayes", data = x, likelihood = "poisson", shape = 3,

rate = 3)

Structure Parameters Estimators
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Collective premium: 1

Between variance: 0.3333
Within variance: 1

Detailed premiums

Indiv. mean Weight Cred. factor Bayes premium
2 5 0.625 1.625

A Linear Bayes formulas

This appendix provides the main linear Bayes credibility results for combi-
nations of a likelihood function member of the univariate exponential family
with its natural conjugate. For each combination, we provide, other than the
names of the distributions of X|Θ = θ and Θ:

• the posterior distribution Θ|X1 = x1, . . . , Xn = xn, always of the same
type as the prior, only with updated parameters;

• the risk premium µ(θ) = E[X|Θ = θ];

• the collective premium m = E[µ(Θ)];

• the Bayesian premium Bn+1 = E[µ(Θ)|X1, . . . , Xn], always equal to the
collective premium evaluated at the parameters of the posterior distri-
bution;

• the credibility factor when the Bayesian premium is expressed as a cred-
ibility premium.

A.1 Bernoulli/beta case

X|Θ = θ ∼ Bernoulli(θ)
Θ ∼ Beta(a, b)
Θ|X1 = x1, . . . , Xn = xn ∼ Beta(ã, b̃)

ã = a +
n

∑
t=1

xt

b̃ = b + n−
n

∑
t=1

xt

Risk premium
µ(θ) = θ
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Collective premium

m =
a

a + b
Bayesian premium

Bn+1 =
a + ∑n

t=1 Xt

a + b + n
Credibility factor

z =
n

n + a + b

A.2 Binomial/beta case

X|Θ = θ ∼ Binomial(ν, θ)
Θ ∼ Beta(a, b)
Θ|X1 = x1, . . . , Xn = xn ∼ Beta(ã, b̃)

ã = a +
n

∑
t=1

xt

b̃ = b + nν−
n

∑
t=1

xt

Risk premium
µ(θ) = νθ

Collective premium

m =
νa

a + b
Bayesian premium

Bn+1 =
ν(a + ∑n

t=1 Xt)

a + b + nν

Credibility factor

z =
n

n + (a + b)/ν

A.3 Geometric/Beta case

X|Θ = θ ∼ Geometric(θ)
Θ ∼ Beta(a, b)
Θ|X1 = x1, . . . , Xn = xn ∼ Beta(ã, b̃)

ã = a + n

b̃ = b +
n

∑
t=1

xt

Risk premium

µ(θ) =
1− θ

θ
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Collective premium

m =
b

a− 1
Bayesian premium

Bn+1 =
b + ∑n

t=1 Xt

a + n− 1
Credibility factor

z =
n

n + a− 1

A.4 Negative binomial/Beta case

X|Θ = θ ∼ Negative binomial(r, θ)
Θ ∼ Beta(a, b)
Θ|X1 = x1, . . . , Xn = xn ∼ Beta(ã, b̃)

ã = a + nr

b̃ = b +
n

∑
t=1

xt

Risk premium

µ(θ) =
r(1− θ)

θ

Collective premium

m =
rb

a− 1
Bayesian premium

Bn+1 =
r(b + ∑n

t=1 Xt)

a + nr− 1
Credibility factor

z =
n

n + (a− 1)/r

A.5 Poisson/Gamma case

X|Θ = θ ∼ Poisson(θ)
Θ ∼ Gamma(α, λ)
Θ|X1 = x1, . . . , Xn = xn ∼ Gamma(α̃, λ̃)

α̃ = α +
n

∑
t=1

xt

λ̃ = λ + n

Risk premium
µ(θ) = θ
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Collective premium

m =
α

λ

Bayesian premium

Bn+1 =
α + ∑n

t=1 Xt

λ + n
Credibility factor

z =
n

n + λ

A.6 Exponential/Gamma case

X|Θ = θ ∼ Exponential(θ)
Θ ∼ Gamma(α, λ)
Θ|X1 = x1, . . . , Xn = xn ∼ Gamma(α̃, λ̃)

α̃ = α + n

λ̃ = λ +
n

∑
t=1

xt

Risk premium

µ(θ) =
1
θ

Collective premium

m =
λ

α− 1
Bayesian premium

Bn+1 =
λ + ∑n

t=1 Xt

α + n− 1
Credibility factor

z =
n

n + α− 1

A.7 Gamma/Gamma case

X|Θ = θ ∼ Gamma(τ, θ)
Θ ∼ Gamma(α, λ)
Θ|X1 = x1, . . . , Xn = xn ∼ Gamma(α̃, λ̃)

α̃ = α + nτ

λ̃ = λ +
n

∑
t=1

xt

Risk premium

µ(θ) =
τ

θ
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Collective premium

m =
τλ

α− 1
Bayesian premium

Bn+1 =
τ(λ + ∑n

t=1 Xt)

α + nτ − 1
Credibility factor

z =
n

n + (α− 1)/τ

A.8 Normal/Normal case

X|Θ = θ ∼ Normal(θ, σ2
2 )

Θ ∼ Normal(µ, σ2
1 )

Θ|X1 = x1, . . . , Xn = xn ∼ Normal(µ̃, σ̃2
1 )

µ̃ =
σ2

1 ∑n
t=1 xt + σ2

2 µ

nσ2
1 + σ2

2

σ̃2
1 =

σ2
1 σ2

2
nσ2

1 + σ2
2

Risk premium
µ(θ) = θ

Collective premium
m = µ

Bayesian premium

Bn+1 =
σ2

1 ∑n
t=1 Xt + σ2

2 µ

nσ2
1 + σ2

2

Credibility factor

z =
n

n + σ2
2 /σ2

1
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