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1 WIiSE Bootstrap Model Selection

Wild Scale-Enhanced (WiSE) bootstrap is a variant of the wild bootstrap
where the model residuals are multiplied by an additional scaling factor. The-
oretical details of the general WiSE bootstrap methodology may be found in
(Chatterjee, 2015). This package is an implementation of the WiSE boot-
strap for a specific case of the partial linear model. Namely, given an equally-
spaced time series of length 7' = 27, J € I+, we assume that a partial linear
model adequately describes the time series.

Y (t) =70l +nt + p(t) +e(t) (1)

Y € RT is the observed data, t is a vector time indices, and p(t) is a general
function (with some additional assumptions) in time. The nonparametric
component, p(t), may contain the interesting cycles or signals within the
data, so it is of interest to estimate. However, current methodology does not
provide the ability to fully estimate this function. Thus, it is proposed that
this function be approximated by a fixed basis. If W is a T'— row matrix of a
fixed wavelet basis for the discrete wavelet transform (DWT), and ~y contains
the scaling and filter wavelet coefficients, then our approximate model is

Y (t) = vl +nt+ W+ e(t) (2)

Note, in many cases of the DWT, especially those implemented within wavethresh,
the scaling coefficient is equivalent to 9. Thus, only the scaling coefficient
or 7 should be estimated in any models where this occurs.
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We propose that models of this type are useful descriptors of various time
series, including climate model output. The quantity W+ is the approxi-
mation of p(t), which hypothetically contains ‘interesting’ signal within the
data. Thus, the estimates of v are of relevance to us. The parametric, linear
component (791 +71t), would necessarily change by data application, but we
claim it is adequate in the examples presented here. This parametric compo-
nent is important to estimate, but may not contain interesting information
for our application. Thus, in this approximation of the partial linear model,
the set of population parameters 7y, 1 and - are estimated.

Estimating the full vector of wavelet coefficients, =, is problematic with cur-
rent methodologies. However, it is typical that the wavelet filter coefficients
are sparse, containing many zero or nearly zero-valued entries. The proposed
methodology takes advantage of the sparsity and chooses a strong threshold
criteria for the coefficients. With data of length 27, filter wavelet coefficients
exist for levels 0, 1, ..., J — 1. Call Jy the threshold. Then all coefficients
occuring at levels greater than Jy are set to 0. Essentially, our models assume
all fine-level filter coefficients are 0-valued in expectation. Thresholding -~
in this fashion decreases the number of parameters to estimate which im-
plies consistent estimation is possible. Of course, this is subject to certain
assumptions and conditions on the data and model, which are not discussed
here.

Assume fixing the threshold, Jy, provides an adequate model. Then, we
may estimate the population parameters 7y, 71 and ~ consistently. Using
least squares estimation, 4y and #; are obtained and residuals are defined
as 7(t) = Y (t) — Y1 — ut. The DWT is performed on r(t) to find a
length-T" vector of wavelet coefficients. The threshold is then applied and ~
is estimated by 4,,. Wavelet residauls are defined by 7, (t) = r(t) — W#,,.

The discussion thus far has concerned parameter estimation. It is usually
of interest to also estimate the error associated with the parameters in the
model so that inference is possible. Although all of the assumptions of
have not been stated in this document, it is important to note that the
following bootstrap methodology does not require that the errors, e(t), be
homoscedastic or come from a normal distribution. The WiSE bootstrap
is an excellent tool for estimation in situations where the typical, strong
assumptions over models do not hold. Not only do we obtain consistent



estimates of the parameters, but also their errors.

To perform the WiSE bootstrap for model [2] with set threshold J,, create
bootstrap series for b= 1,2, ..., B

%(t) = ’A)/o]. + ’A}/lt + Wﬁ’]o + TUb’l"w(t) (3)

where 7 is a scaling parameter such that 72/T — 0 and 7 — oo. Define
Uy = diag(uy, ug, ...,ur) for b =1,..., B. The u;,i = 1,2,...,T are indepen-
dent, mean 0, variance 1, finite 8" moment random variables, which are also
independent across each bootstrap sample. The Y,(t) are used to find the
bootstrap estimates 4oy, Y15, and 4 5. The set of B parameter estimates
allows the user to examine the variability in each parameter. The WiSE
bootstrap also allows for estimation of the variance associated with the er-
rors, but this is not implemented within WiSEBoot. All details of theoretical
conditions and consistency results are contained in (Chatterjee, 2015).

This WiSE bootstrap re-sampling technique is novel, as it allows for a model
selection while concurrently providing (asymptotically) consistent estimates
of the model parameters (Chatterjee, 2015). All prior description sets the
threshold level, Jy, at a fixed level. The WiSEBoot package provides an auto-
matic process to select the wavelet coefficient threshold level. The choice of
the threshold determines the number of wavelet coefficients to be estimated,
and thus, a model selection. Technically, speaking the models considered for
selection follow a sieve selection scheme (i.e. estimate ALL wavelet coeffi-
cients at any levels less than or equal to Jy).

The model selection process is conducted as follows. For a data series
of length 27, a WiSE bootstrap sample is created for thresholds of J, €
{0,1,...,J — 2} as well as setting all filter wavelet coefficients to 0. The
selected model minimizes the mean of the mean squared-error between the
bootstrap estimated model and the provided data. That is, for any .Jy, we
calculate the mean of the mean-squared error

B
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where < x,y > is defined as the inner product of vectors  and y. The
selected wavelet coefficient threshold in the model is Jj where

MSEJE; = HIIDMSEJ
J
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2 WIiSE Bootstrap Model Selection: Simula-
tion Example

To demonstrate the wavelet coefficient threshold selection, this example uses
some simulated wavelet signals. What may be considered as a population-
level signal is contained in SimulatedSmoothSeries, which is a matrix.

data(SimulatedSmoothSeries)
dim(SimulatedSmoothSeries)

## [1] 1024 9
SimulatedSmoothSeries([1:3, ]

## JO.0 JO.1 J0.2 JO.3 JO.4
## [1,] -0.009340405 0.01674716 0.004249168 0.04902028 -0.02750788
## [2,] -0.009343208 0.01676378 0.003836796 0.04871207 -0.02514671
## [3,] -0.009345534 0.01677582 0.003428975 0.04834426 -0.02252105
## JO.5 JO.6 JO.7 JO.8
## [1,] -0.050660410 0.1438138 0.2153899 0.40223065
## [2,] -0.028013936 0.1572082 0.2122281 0.34668205
## [3,] -0.005142542 0.1555804 0.1611787 0.09866474

All signals in this matrix were generated using the wavethresh package with
a "DaubLeAsymm" (Daubechies Least Asymmetric) wavelet with 8 vanish-
ing moments and a "periodic" boundary condition. The column names of
SimulatedSmoothSeries indicate the true wavelet coefficient threshold level.
Let’s consider the 4" column. The wavelet coefficients were thresholded at
the Jy = 3 level. Thus, all finer-level coefficients (levels 4,5,6,7,8, and 9) were
set to 0, to create this smooth signal.



Here is a plot of the signal in the 4* column:
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If data were observed from a population signal such as this, the data would
be noisy. The matrices SimulatedSNR6Series, SimulatedSNR9Series,
SimulatedSNR15Series, and SimulatedSNR25Series contain data series
with population signals from SimulatedSmoothSeries and varying levels
of added noise. For data of length 27 and a signal, p(t), with threshold Jy,
the signal-to-noise ratio (SNR) is defined as

_ < p(d), p(@) > /20 1)
SNR = (27)02/(27 — 27041 4 1) (4)

when o2 is the variance of the noise. Our SNR is similar to an F-ratio, and
in other contexts, the user may wish to take the square-root of the SNR in
discussion. The provided data matrices contain series with SNR=5, 9, 15 and
25. It seems reasonable to assume that the signal would be more apparent
in the SNR=25 series than the SNR=5 series.



Here is a look at the moisy data’:
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We can see that the true signal is somewhat hidden in each of these data
series, but the lower SNR series are noisier. Typically, the analyst would
not know the true signal threshold level. The smoothTimeSeries function
allows for a quick visualization of all possible wavelet coefficient threshold
levels. This is especially useful if the analyst would like to manually choose a
wavelet coefficient threshold level. Using the SNR=15 series, we can demon-
strate this capability. Note, the wavelet settings for these smooths generated
below exactly match the true signals from SimulatedSmoothSeries. The
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user could change the wavelet family, filter, and boundary.

smoothPlot <- smoothTimeSeries(SimulatedSNR15Series[ ,4], plot="all")
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Without knowing the truth, an analyst may guess that the wavelet threshold
level could be any of Jy € {3,4,5}. We can use the WiSEBoot function to
remove the guess-work and automatically choose a wavelet threshold. As
discussed in Section |1, the model which achieves the minimum of the mean-
squared error is selected. Let’s leave the default wavelet settings again (which
exactly match the true signal wavelet here) and look at the MSE criteria for
B=R=10 bootstrap samples. Typically, a larger number of bootstrap samples
is used, as these may be generated in parallel. We choose a lower number in
the vignette for the sake of time.

set.seed(1414)
SNR15Boot <- WiSEBoot (SimulatedSNR15Series[ ,4], R=10)
SNR15Boot$MSECriteria

## JOplusOne meanO0fMSE
## [1,] 9 0.02247101
##  [2,] 8 0.02082697
##  [3,] 7 0.01697414
#  [4,] 6 0.01387268
##  [5,] 5 0.01176293
##  [6,] 4 0.01120335
##  [7,] 3 0.01182277
## [8,] 2 0.01246284
#  [9,] 1 0.01264591
## [10,] 0 0.01271920

Even in this small bootstrap sample, the correct model was selected. We
can see at Jy + 1 = 4 the mean of the MSE is minimized with a value of
0.0112. The reader should keep in mind that this is a simulation example,
so a desirable result is not surprising.

Now, we have an automatically selected model with threshold Jy = 3. The
output WiSEBoot object, called SNR15Boot, contains not only the model se-
lection, but also the estimated parameters from each bootstrap sample in the
selected model. Thus, the distributions of the 7y, 71 and v parameters may
be examined by visualizing the bootstrap estimates.

The boxplots below show the empirical distributions of the parametric linear
parameter estimates (Y, J15). Because the data was simulated, the popula-
tion parameters are known to be 79 = 0,7, = 0.
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par (mfrow=c(1,2))

boxplot (SNR15Boot$BootIntercept,
main=expression(paste("R=10 Bootstrap Estimates of ", gamma[0])),
ylab=expression(hat (gamma) [0] [b]))

abline(h=0, col="red")

boxplot (SNR15Boot$BootSlope,
main=expression(paste("R=10 Bootstrap Estimates of ", gamma[1])),

ylab=expression(hat (gamma) [1] [b]))
abline(h=0, col="red")
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As always in any type of bootstrap, the bootstrap distribution will be cen-
tered around the original estimate from the data. We can see that these
boxplots aren’t exactly centered at 0 because of this centering issue asso-
ciated with the bootstrap. (Keep in mind there are only R=10 bootstrap
samples too.)

Likewise, any individual non-thresholded filter wavelet coefficient may be
visualized. Below are the bootstrap distributions of the level=1 filter coeffi-
cients.

par (mfrow=c(1,2))

boxplot (SNR15Boot$BootWavelet[,3],
main=expression(paste("R=10 Boot. Est. of lvl=1, coef=1, ", gamma)),
ylab=expression(hat (gamma) [b]))



boxplot (SNR15Boot$BootWavelet[,4],
main=expression(paste("R=10 Boot. Est. of 1lvl=1, coef=2, ", gamma)),
ylab=expression(hat (gamma) [b]))
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3 WIiSE Bootstrap Hypothesis Test

Next we provide a brief introduction to a hypothesis test of the wavelet coef-
ficients from two data series of equal lengths. This methodology is discussed
in detail in (Braverman, 2015). Here, the theoretical discussion is meant to
give users of the WiSEHypothesisTest and WiSEConfidenceRegion a general
idea of what mathematics are running in the background.

Consider two equally-spaced data series of length 7' = 27, J € I". Each data
series may be modeled by eqn. [1| and approximated by eqn. [2l That is,

Y (t) = vyl +yut + Wey, + e(t),

Notice, the same wavelet basis, W, is used in each approximation, but sep-
arate parameters are allowed. Users of the WiSEHypothesisTest function
may wish compare the ‘interesting’ signals within these two series. Recalling
the discussion from Section[l], we may decide that the ‘interesting’ signals are
pn(t), and p(t),. With the wavelet basis approximation, the user tests the
linear relationship between the two sets of wavelet coefficients: v, = al+p87,.
The null hypothesis in WiSEHypothesisTest is

Hy:a=m,6=n, mnéeR

In (Braverman, 2015), values of m = 0 and n = 1 are tested. If the null
hypothesis in this specific scenario is not rejected, then we may say that there
is not sufficient evidence to conclude that the signal within the climate model
output does not match the observed climate. The algorithm to generate the
WiSE bootstrap sample changes slightly so that we are sampling under the
null hypothesis. Please see (Braverman, 2015) for the details.
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4 WiSE Bootstrap for Hypothesis Testing:
Climate Model Signals

An example analysis of climate model data is presented here. The full analy-
sis of the climate models at some specific grid-cells is available in (Braverman,
2015). Within the WiSEBoot package, two sets of climate model outputs and
observed climate are available. Here, we will look at the data in CM20N20S60E.

data (CM20N20S60E)
CM20N20S60E[1:3,]

## AIRS IPSLRunl IPSLRun? IPSLRun3 IPSLRun4

## 2002-10-01 0.001764203 0.001844154 0.002112894 0.0006225206 0.001579949

## 2002-10-02 0.001498882 0.001700833 0.001708422 0.0006596091 0.001716239

## 2002-10-03 0.001522536 0.001539518 0.001419565 0.0008227325 0.001948907

## MIROC5Runl1 MIROC5Run?2 MIROC5Run3 MIROCS5Run4 MIROC5Runb5
## 2002-10-01 0.001653560 0.0017041005 0.0010692392 0.001497587 0.000984715
## 2002-10-02 0.001490860 0.0011596567 0.0010018310 0.001331268 0.001106074
## 2002-10-03 0.001315217 0.0008881064 0.0008363572 0.001092815 0.001381810
#it MIROC5Run6é

## 2002-10-01 0.001133758

## 2002-10-02 0.001047236

## 2002-10-03 0.001029497

This data matrix contains data from AIRS (what we call ‘observed climate’),
4 runs of the IPSL model, and 6 runs of the MIROC5 model. Each of the
model runs is obtained by choosing different starting parameters. Specifically,
this matrix contains a set of specific humidity observations/outputs between
20N and 20S at 60E and an altitude of 500 hPa. Observations are daily, from
October 1, 2002 to December 29, 2010.

In this analysis, we’ll compare the signals in AIRS and MIROCS5, run 5. Here
are some plots of the raw data.

par (mfrow=c(2,1))
plot.ts(CM20N20S60E[,1], main="AIRS", ylab="0bs. Climate")
plot.ts(CM20N20S60E[,10], main="MIROC5, run 5", ylab="Model Climate")
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Before it is possible to use the WiSE bootstrap methodology with a wavelet
basis approximation, the data must be of length 7" = 2 for a positive integer,
J. The raw data contains 3012 observations. Thus, we begin by using the
padMatrix function to lengthen each series simultaneously. Conversely, the
user could truncate the data to the closest power of 2 in length, which may
be more highly recommended when it is OK to exclude some of the data.
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pad60E <- padMatrix(CM20N20S60E)
dim(pad60E$xPad)

## [1] 4096 11

The code above uses the default options within padMatrix of padding at both
sides of the data series by reflecting. The linear trend is not replaced (default)
to the padded data matrix because we may easily input the estimated linear
(parametric) parameters to the hypothesis testing function. This data is now
of length 212,

The hypothesis testing function requires that the user choose a wavelet co-
efficient threshold level. This may be done automatically with the WiSEBoot
function first, by inputting both series as a 4096 x 2 matrix. Here, we choose
to just set a threshold of Jy = 5, as this corresponds to a cycle of 128 days.

Now that the data is of correct length, we may test the hypothesis
Hy:a=0,=1

(i.e. the climate model signal matches the observed climate). Our ‘X’ series
is AIRS and the Y’ series is MIROCS5, run 5. For demonstration purposes,
we will choose to take R=10 bootstrap samples. A higher number of samples
is generally recommended.

hypObj <- WiSEHypothesisTest(pad60E$xPad[,1], pad60E$xPad[,10], R=10, JO=5,

XParam=pad60E$linearParam[,1],
YParam=pad60E$linearParam[,10])
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Bootstrap Parameter Estimates (under Null), p-value= 0
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The function calculates two p-values. The asymptotic p-value is based upon
the distribution of Hotelling’s T? and the test statistic utilizes the variance-
covariance matrix from the bootstrap sample. The bootstrap p-value com-
putes a Hotelling’s T? test statistic for each bootstrap sample, and the quan-
tile of the data-based Hotelling’s T? is computed from the bootstrap sample.
A plot of the bootstrap sample and observed data parameter estimates is
also generated optionally.

We can see that both the asymptotic and bootstrap p-values indicate that
the null hypothesis should be rejected. This is not surprising, especially after
examining the generated plot. The & and /3 estimated from the data (red
point) is clearly outside of the cloud of bootstrap sample points (black). The
gray vertical and horizontal lines represent the parameter values under the
null hypothesis.
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