
Weighted Linear Mixed-Effects Models

Developed by Paul Bailey∗†

February 14, 2018

Introduction

The WeMix package aims to fit a linear mixed model where units are nested inside groups,which may themselves
be nested in groups,a model specified by Rabe-Hesketh and Skrondal (2006) and Rabe-Hesketh, Skrondal,
and Pickles (2002) for the GLLAMM software. The advantage of fitting the model in nested levels is that
survey sampling weights can be incorporated; the pseudo-likelihood,1 at the top level, is an integral that
sums across the top-level groups, weighting each group or unit (in a two-level model) according to sampling
weights.

At the highest level, the likelihood (L) is a function of the parameters for the random-effect covariance matrix
(θ), the fixed-effect estimates (β), and the outcomes y. This equation relates the overall likelihood [L(θ, β; y)]

to the integral of the likelihoods of the integrals of the top-level units [L
(L)
j (θ, β; y|u(L)), indexed by j]; the

top-level unit likelihoods have a superscript (L) to indicate they are for the Lth (top) level. Here we omit
reference to the fixed-effect design matrix X and the random-effect design matrix Z, but the likelihood is
conditional on those terms as well.

L(θ, β; y) =

∫
g(L)(u(L); θ(L))

∏

j

[
L

(L)
j (θ, β; y|u(L))

]w
(L)
j

du(L) (1)

where the u terms are the random effects, which are marginalized by integrating over them;2 the g function
plays a role similar to a prior, but has its variance (or covariance matrix) fit using covariance parameter vector
θ, while j represents the indexes of all the top-level units, which have their likelihood raised to the power of

their weight w
(L)
j . Because u may be a vector—for example, if there is a random slope and intercept—the

covariance matrix between the u terms (Σ(L)) may be diagonal (no covariance) or dense. In any case, the
covariance matrix is parameterized by a vector of values θ; at the Lth level, the relevant elements are denoted
by θ(L).

The conditional likelihood at each level from L to two—those above the first, or lowest level—is then

recursively defined, for the jth unit, at level l (L
(l)
j ; Rabe-Hesketh et al., 2002, eq. 3) as:

L
(l)
j (θ, β; y|U (l+1)) =

∫
g(l)(u(l); θ(l))

∏

j′

[
L

(l−1)
j′ (θ, β; y|U (l))

]w
(l−1)

j′

du(l) l = 2, . . . , L − 1 (2)

∗This publication was prepared for NCES (National Center for Education Statistics) under Contract No. ED-IES-12-D-
0002 with American Institutes for Research. Mention of trade names, commercial products, or organizations does not imply
endorsement by the U.S. government.

†The authors would like to thank Mike Cohen for reviewing this document.
1For inverse probability of selection survey data, the likelihood is an estimated population likelihood and not an observed

likelihood; the typical phrase for this is pseudo-likelihood, which applies to every likelihood in this document.
2The u terms are integrated out and so they are not, strictly speaking, estimated. Because of this, we do not call them

empirical Bayes estimates. However, the ‘WeMix’ package does provide a value for them and, because the variance of the
distribution that acts as a prior is estimated, these values could reasonably be regarded as an empirical Bayes estimate of the
random effects.
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where the subscript j′ that the product is indexed over indicates that the likelihood L
(l−1)
j′ (·) is for the units

of level l − 1 nested in unit j, and U (l) is all of the random effects at or above level l, so that U (l) includes{
u(l), u(l+1), . . . , u(L)

}
. This equation reflects the nested nature of the data; a group (e.g., school), annotated

as j, has an individual likelihood that is the product of the likelihoods of the units or groups (e.g., students
or classrooms, annotated as j′) nested inside of it.

In the case of a Gaussian residual, the likelihood (L(1)) at the individual unit level is given by the equation

L
(1)
i (θ, β; y, U (2)) =

1

σ
φ

(
ê

(1)
i

σ

)
(3)

where the subscript i is used to indicate that this is the likelihood of the ith individual, the superscript (1) on

ê
(1)
i is used to indicate that it is an unpenalized residual—where the penalized residual will be introduced in

the next section—φ(·) is the standard normal density function and σ is the residual variance (a scalar), and

the residuals vector ê(1) represents the residuals ê
(1)
i for each individual and is given, in vector form, by

ê(1) = y − Xβ̂ −

L∑

l=2

Z(l)û(l) (4)

When solved with the above integrals (as in Rabe-Hesketh et al., 2002), σ is fit as a parameter and there is
no direct equation for it.

This document describes how WeMix uses symbolic integration that relies on a mix of both Bates and Pinheiro
(1998) and the lme4 package (Bates, Maechler, Bolker, and Walker, 2015), obviating the need for numerical
integration in a weighted, nested model.

The basic model in lme4 is of the form (Bates et al., 2015, eqs. 2 and 3):

(y|U = u) ∼ N(Xβ + Zu, σ2W −1) (5)

U ∼ N(0, Σ(θ)) (6)

where N(·, ·) is the multivariate normal distribution, and Σ(θ) is positive semidefinite—allowing, for example,
a variance parameter to be exactly zero—that is parameterized by a vector of parameters θ.

The likelihood is maximized by integrating (symbolically) over U (Bates et al., 2015, eqs. 20, 21, 22, and 24):

fy(y; β, θ) =

∫
fy|U=u (y; β, θ, u) · fU (u)du (7)

where the fU term is analogous to g(u(l)) in the Rabe-Hesketh et al. (2006) formulation but is intentionally
represented in a non-nested structure to allow for crossed terms.

In this document we show how WeMix uses a derivation similar to that in Bates et al. (2015) and Bates
and Pinheiro (1998) to fit a sample-weighted mixed model, avoiding the integration necessary in GLLAMM.
Comparing WeMix to lmer, the latter is more general in the sense of allowing crossed terms, while WeMix

allows for sampling weights; unweighted, the models should agree.

Generally, the Rabe-Hesketh et al. (2006) model can be rewritten in a form very similar to lme4 as

(y|U = u) ∼ T ω(1)

1 (8)

U ∼ T ω(2)

2 ∗ T ω(3)

3 ∗ · · · ∗ T ω(L)

L (9)

where T k represents the convolution of k instances of T and ∗ represents the convolution of two distributions,
with a likelihood that is their product; w(l) are the weights assigned to units (l = 1) or groups (l > 1) that are
ideally3 the inverse (unconditional) probability of selecting the unit or group; and the T s have distribution

T1 ∼ N(Xβ + Zu, σ2I) (10)

Tl ∼ N(0, Σll) l = 2, · · · , L (11)

3This weight is only ideally this because of how weights are adjusted for total nonresponse (see Gelman 2007).
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where Σ is block diagonal, disallowing nonzero prior correlations across levels, with the lth block being
written Σll.

The next section follows Bates et al. (2015) and shows the lme4 and WeMix model without weights—the only
case where they are identical. The subsequent section then shows the adaptations to the likelihood for the
sample weighted case. Notably, lme4 has unit-level weights, but they are precision weights and not level-1
sample weights, so even when only the level-1 weights are nontrivial, the models disagree. The final section
describes the application of the profile likelihood (again, following lme4) used to estimate linear models in
WeMix.

Unweighted Case

Following the logic of Bates et al. (2015), the unweighted (unit weight) case simplifies eqs. 8 and 9 to

(y|U = u) ∼ T1 (12)

U ∼ T2 ∗ T3 ∗ · · · ∗ TL (13)

where eqs. 10 and 11 are simplified to

T1 ∼ N(Xβ + Zu, σ2I) (14)

Tl ∼ N(0, Σll) l = 2, · · · , L (15)

the random-effect vector U is rewritten as the product of a square root-covariance matrix Λ and an iid

normal vector υ:

U = Λυ (16)

υ ∼ N(0, σ2I) (17)

When Λ is a square root matrix of Σ, meaning

1

σ2
Σ =

1

σ2
ΛT Λ (18)

it follows that U has the distribution shown in eq. 15, but the equations can use the much easier to work
with υ. Note that eq. 18 implies

Σ =




Σ11 0 · · · 0

0 Σ22 0
...

...
...

. . .
...

0 · · · 0 ΣLL




(19)

=




ΛT
11 0 · · · 0

0 ΛT
22 0

...
...

...
. . .

...
0 · · · 0 ΛT

LL







Λ11 0 · · · 0

0 Λ22 0
...

...
...

. . .
...

0 · · · 0 ΛLL




(20)

= ΛT Λ (21)

Note that Λ (and thus Σ) will be parameterized by a set of parameters θ, so eq. 18 could be written

1

σ2
Σ(θ) =

1

σ2
(Λ(θ))

T
Λ(θ) (22)

and will be written this way to keep track of the parameters involved. These parameters vary by model. For
a two-level model with a random intercept and nothing else, θ would be a scalar with the relative precision
of the random effect. The matrix Λ(θ) would then be diagonal and of the form Λ(θ) = θI, with I being
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an identity matrix with the same number of rows and columns as there are groups (random effects). For a
two-level model with a random slope and intercept, the θ would have length three and would parameterize the

three elements of a covariance matrix. In this special case, the parameterization could be Λ(θ) =

[
θ1I θ2I

0 θ3I

]
;

a block matrix that allows the slope and intercept term to covary with each other, within a group.

Then, the residual (penalized) sum of squares is (Bates et al., 2015, eqs. 14 and 15)

r2(θ, β, υ) = ||y − Xβ − ZΛ(θ)υ||2 + ||υ||2 (23)

where ||v||2 is the sum of squares for the vector v; as an equation, ||v||2 =
∑

v2
i .

Notice that the penalty function (||υ||2) and the residual both are assumed to be independent identically
distributed normal distributions with variance σ2; this allows for both the regression and the random effects
to be estimated in one regression where the pseudo-data outcome for the random effects is a vector of zeros
(Bates et al., 2015, eq. 16). This rewrites r as a sum of squares, adding a vector of zeros below y—the
pseudo-data:

r2(θ, β, υ) =

∣∣∣∣
∣∣∣∣
[
y

0

]
−

[
ZΛ(θ) X

I 0

] [
υ

β

]∣∣∣∣
∣∣∣∣
2

(24)

Unlike Bates et al. (2015, eq. 16), we proceed by taking a QR decomposition (Trefethen and Bau, 1997) of

A ≡

[
ZΛ(θ) X

I 0

]
(25)

Plugging eq. 25 into eq. 24 and finding the least squares solution (denoted with a hat: û and β̂)

A

[
υ̂

β̂

]
=

[
y

0

]
(26)

using the QR decomposition on A, which rewrites A = QR for an orthogonal matrix Q (So, QT Q = I) and
an upper triangular matrix R,

QR

[
υ̂

β̂

]
=

[
y

0

]
(27)

where R can be written in block form as

R =

[
R11 R12

0 R22

]
(28)

in which R11 is also upper triangular, square, and conformable with υ, and R22 is similarly upper triangular,
square, and conformable with β, while R12 is rectangular and (potentially) dense.

Rewriting r2 as a deviation from the least squares solution, eq. 24 becomes

r2(θ, β, υ) =

∣∣∣∣
∣∣∣∣
[
y

0

]
− A

[
υ

β

]∣∣∣∣
∣∣∣∣
2

(29)

=

∣∣∣∣
∣∣∣∣
[
y

0

]
− A

[
υ − υ̂ + υ̂

β − β̂ + β̂

]∣∣∣∣
∣∣∣∣
2

(30)

=

∣∣∣∣
∣∣∣∣
[
y

0

]
− A

[
υ̂

β̂

]
− A

[
υ − υ̂

β − β̂

]∣∣∣∣
∣∣∣∣
2

(31)

Using the identity that for any vector v the sum of squares is also just the inner product, so ||v||2 = vT v,

r2(θ, β, υ) =

[[
y

0

]
− A

[
υ̂

β̂

]
− A

[
υ − υ̂

β − β̂

]]T [[
y

0

]
− A

[
υ̂

β̂

]
− A

[
υ − υ̂

β − β̂

]]
(32)
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Defining ê to be the penalized least squares residual,

ê ≡

[
y

0

]
− A

[
υ̂

β̂

]
(33)

then eq. 32 can be rewritten

r2(θ, β, υ) =

[
ê − A

[
υ − υ̂

β − β̂

]]T [
ê − A

[
υ − υ̂

β − β̂

]]
(34)

= êT ê − 2êT

[
A

[
υ − υ̂

β − β̂

]]
+

[
A

[
υ − υ̂

β − β̂

]]T [
A

[
υ − υ̂

β − β̂

]]
(35)

Since ê, the uniquely minimized residuals to the least squares problem is in the null of A, while Ax is in the

span of A for any vector x, then êT Ax = 0 for any x. Thus, êT

[
A

[
υ − υ̂

β − β̂

]]
= 0 and eq. 35 becomes

r2(θ, β, υ) = êT ê +

[
υ − υ̂

β − β̂

]T

AT A

[
υ − υ̂

β − β̂

]
(36)

= êT ê +

[
υ − υ̂

β − β̂

]T

[QR]
T

[QR]

[
υ − υ̂

β − β̂

]
(37)

= êT ê +

[
υ − υ̂

β − β̂

]T

RT QT QR

[
υ − υ̂

β − β̂

]
(38)

Then, because Q is orthonormal, QT = Q−1 and

r2(θ, β, υ) = êT ê +

[
υ − υ̂

β − β̂

]T

RT R

[
υ − υ̂

β − β̂

]
(39)

= êT ê +

∣∣∣∣
∣∣∣∣R
[
υ − υ̂

β − β̂

]∣∣∣∣
∣∣∣∣
2

(40)

Notice that êT ê is the value of r2 evaluated at the least squares solution (denoted by adding hats to β and
υ), so that

r2(θ, β̂, υ̂) = êT ê (41)

Plugging eqs. 41 and 28 into eq. 40 (Bates et al., 2015, eq. 19),

r2(θ, β, υ) = r2(θ, β̂, υ̂) +

∣∣∣∣
∣∣∣∣
[
R11 R12

0 R22

] [
υ − υ̂

β − β̂

]∣∣∣∣
∣∣∣∣
2

(42)

= r2(θ, β̂, υ̂) +
∣∣∣
∣∣∣R11(υ − υ̂) + R12(β − β̂)

∣∣∣
∣∣∣
2

+
∣∣∣
∣∣∣R22(β − β̂)

∣∣∣
∣∣∣
2

(43)

From the joint distribution of y and υ (Bates et al., 2015, eqs. 20, 21, and 22),

(y, υ) ∼ N(y − Xβ − Zυ, σ2Inx
) ∗ N(υ, σ2Inz

) (44)

and the probability density function of the joint distribution of y and υ is

fy,υ

(
y, υ, β, θ, σ2

)
=

1

(2πσ2)
nx
2

exp

[
−r2(θ, β, υ) + ||υ||2

2σ2

]
·

1

(2πσ2)
nz
2

exp

[
−||υ||2

2σ2

]
(45)

=
1

(2πσ2)
nx+nz

2

exp

[
−r2(θ, β, υ)

2σ2

]
(46)
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This can then be integrated over υ to get the likelihood of the model (Bates et al., 2015, eqs. 25 and 26):

L
(
β, θ, σ2; y

)
=

∫
fy,υ (y, υ, β, θ) dυ (47)

=

∫
1

(2πσ2)
nx+nz

2

exp
−r2(θ, β, υ)

2σ2
dυ (48)

=
1

(2πσ2)
nx+nz

2

exp
−r2(θ, β̂, υ̂) −

∣∣∣
∣∣∣R22(β − β̂)

∣∣∣
∣∣∣
2

2σ2

∫
exp

−
∣∣∣
∣∣∣R11(υ − υ̂) + R12(β − β̂)

∣∣∣
∣∣∣
2

2σ2
dυ

(49)

This can be solved with a change of variables (Bates et al., 2015, eq. 27):

γ = R11(υ − υ̂) + R12(β − β̂) (50)

dγ

dυ
= R11 (51)

Using the change of variables formula,4 we add the inverse determinant of R11 when plugging eq. 50 into 49,
and using eq. 51 (Bates et al., 2015, eq. 28):

L
(
β, θ, σ2; y

)
=

1

(2πσ2)
nx+nz

2

exp
−r2(θ, β̂, υ̂) −

∣∣∣
∣∣∣R22(β − β̂)

∣∣∣
∣∣∣
2

2σ2

∫
exp

− ||γ||
2

2σ2
|det(R11)|−1dγ (52)

=
1

|det(R11)| (2πσ2)
nx
2

exp
−r2(θ, β̂, υ̂) −

∣∣∣
∣∣∣R22(β − β̂)

∣∣∣
∣∣∣
2

2σ2

{
1

(2πσ2)
nz
2

∫
exp

− ||γ||
2

2σ2
dγ

}

(53)

and because the term in curly braces is now of a probability density function, it integrates to 1:

L
(
β, θ, σ2; y

)
=

1

|det(R11)| (2πσ2)
nx
2

exp
−r2(θ, β̂, υ̂) −

∣∣∣
∣∣∣R22(β − β̂)

∣∣∣
∣∣∣
2

2σ2
(54)

Having solved the integral symbolically, this expression for the likelihood no longer has an explicit integral
and has been calculated exactly, without use of numerical quadrature. This derivation is incredibly close to
Bates et al. (2015), with the only modification being that we use the QR decomposition of A where they
used the Cholesky decomposition of AT A.

This makes a deviance function, defined relative to the log-likelihood (ℓ), so that D(·) = −2ℓ(·),

D
(
β, θ, σ2; y

)
= 2 ln|det(R11)| + nxln

(
2πσ2

)
+

r2(θ, β̂, υ̂) +
∣∣∣
∣∣∣R22(β − β̂)

∣∣∣
∣∣∣
2

σ2
(55)

Using the profile likelihood, the deviance is minimized when β = β̂ because β only appears inside of a sum of
squares that can be minimized (set to zero) using β = β̂ (Bates et al., 2015, eqs. 30 and 31). The profile
deviance then becomes

D
(
θ, σ2; y

)
= 2 ln|det(R11)| + nxln

(
2πσ2

)
+

r2(θ, β̂, υ̂)

σ2
(56)

Similarly, the value of σ2 can be found by taking the derivative of the profile deviance with respect to σ2 and
setting it equal to zero. This yields

σ̂2 =
r2(θ, β̂, υ̂)

nx

(57)

4See the section, “Substitution for Multiple Variables” in “Integration by Substitution” (Wikipedia, n.d.).
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giving a profile deviance that is a function only of the parameter θ:

D (θ; y) = 2 ln|det(R11)| + nx

(
ln
(

2πσ̂2
)

+ 1
)

(58)

Weighted Case

The purpose of WeMix is to estimate the likelihood of the weighted model (eqs. 8 and 9). In this section we
derive the weighted estimator that is analogous to the estimator used by lme4 and is similar to Henderson
(1982) but we include a deviance (and likelihood), which Henderson omits.

The first difference is in the penalized sum of squares, which now weights the residuals by the unit-level
weights (Ω) and the random-effect penalties by the group-level weights (Ψ):

r2(θ, β, υ) =

∣∣∣∣∣

∣∣∣∣∣Ω
1
2

(
y − Xβ −

L∑

l=1

ZlΛll(θ)υl

)∣∣∣∣∣

∣∣∣∣∣

2

+

L∑

l=2

∣∣∣
∣∣∣(Ψll)

1
2 υl

∣∣∣
∣∣∣
2

(59)

where Ω and Ψll are diagonal matrices with unconditional inverse probability of selection for each unit (Ω)
or group (Ψll) along its diagonal. The unconditional probability that a unit or group was selected can be
readily calculated as the product of a probability of its own probability of selection and the unconditional
probability of the group to which it belongs.

Then, the weighted pseudo-data notation combines the two terms in eq. 59, adding a vector of pseudo-data

to the end of the y vector:

r2(θ, β, υ) =

∣∣∣∣
∣∣∣∣
[
Ω

1
2 y

0

]
−

[
Ω

1
2 ZΛ(θ) Ω

1
2 X

Ψ
1
2 0

] [
υ

β

]∣∣∣∣
∣∣∣∣
2

(60)

=
∣∣∣
∣∣∣Ω 1

2 (y − ZΛ(θ)υ − X)
∣∣∣
∣∣∣
2

+
∣∣∣
∣∣∣Ψ 1

2 υ
∣∣∣
∣∣∣
2

(61)

where Z is now a block matrix that incorporates all of the Z matrices for the various levels:

Z =
[
Z1 Z2 · · · ZL

]
(62)

Λ(θ) is a block diagonal matrix with elements Λll(θ), Ψ is a block diagonal matrix with elements Ψll, and

υ =




υ1

υ2

...
υL


 (63)

The likelihood of y, conditional on υ is then

fy|υ=υ(y, υ) =

nx∏

i=1

[
1

(2πσ2)
1
2

exp

[
−

||yi − Xiβ − ZiΛ(θ)υ||
2

2σ2

)]Ωii

(64)

=

nx∏

i=1

1

(2πσ2)
Ωii

2

exp


−

∣∣∣
∣∣∣Ω

1
2
ii (yi − Xiβ − ZiΛ(θ)υ)

∣∣∣
∣∣∣
2

2σ2


 (65)

=
1

(2πσ2)

∑
i

Ωii

2

exp


−

∣∣∣
∣∣∣Ω 1

2 (y − Xβ − ZΛ(θ)υ)
∣∣∣
∣∣∣
2

2σ2


 (66)
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And the unconditional density of υ is

fυ(υ) =

nz∏

j=1

[
1

(2πσ2)
1
2

exp

[
−

||υj ||
2

2σ2

]]Ψjj

(67)

=

nz∏

j=1

1

(2πσ2)
Ψjj

2

exp


−

∣∣∣
∣∣∣Ψ

1
2
jjυj

∣∣∣
∣∣∣
2

2σ2


 (68)

=
1

(2πσ2)

∑
j

Ψjj

2

exp


−

∣∣∣
∣∣∣Ψ 1

2 υ
∣∣∣
∣∣∣
2

2σ2


 (69)

where
∑

Ψjj is the sum of the terms in the diagonal matrix Ψ.

The joint distribution of υ and y is then the product of eqs. 66 and 69:

fy,υ

(
y, υ, β, θ, σ2

)
= fy|υ=υ(y, υ) · fυ(υ) (70)

=
1

(2πσ2)

∑
i

Ωii

2

exp


−

∣∣∣
∣∣∣Ω 1

2 (y − Xβ − ZΛ(θ)υ)
∣∣∣
∣∣∣
2

2σ2


 ·

1

(2πσ2)

∑
j

Ψjj

2

exp


−

∣∣∣
∣∣∣Ψ 1

2 υ
∣∣∣
∣∣∣
2

2σ2




(71)

=
1

(2πσ2)

∑
i

Ωii+
∑

j
Ψjj

2

exp


−

∣∣∣
∣∣∣Ω 1

2 (y − Xβ − ZΛ(θ)υ)
∣∣∣
∣∣∣
2

+
∣∣∣
∣∣∣Ψ 1

2 υ
∣∣∣
∣∣∣
2

2σ2


 (72)

=
1

(2πσ2)

∑
i

Ωii+
∑

j
Ψjj

2

exp

[
−

r2(θ, β, υ)

2σ2

]
(73)

Using the same logic for the results in eq. 43, r2 can be written as a sum of the value at the optimum (β̂ and
υ̂) and deviations from that:

fy,υ

(
y, υ, β, θ, σ2

)
=

1

(2πσ2)

∑
i

Ωii+
∑

j
Ψjj

2

exp


−

r2(θ, β̂, υ̂) −
∣∣∣
∣∣∣R22(β − β̂)

∣∣∣
∣∣∣
2

−
∣∣∣
∣∣∣R11(υ − υ̂) + R12(β − β̂)

∣∣∣
∣∣∣
2

2σ2




(74)

Now, finding the integral of this over υ,

L(β, θ, σ2; y) =

∫
fy,υ

(
y, υ, β, θ, σ2

)
dυ (75)

=

∫
1

(2πσ2)

∑
i

Ωii+
∑

j
Ψjj

2

exp


−

r2(θ, β̂, υ̂) −
∣∣∣
∣∣∣R22(β − β̂)

∣∣∣
∣∣∣
2

−
∣∣∣
∣∣∣R11(υ − υ̂) + R12(β − β̂)

∣∣∣
∣∣∣
2

2σ2


 dυ

(76)

=
1

(2πσ2)

∑
i

Ωii+
∑

j
Ψjj

2

exp


−

r2(θ, β̂, υ̂) −
∣∣∣
∣∣∣R22(β − β̂)

∣∣∣
∣∣∣
2

2σ2



∫

exp


−

∣∣∣
∣∣∣R11(υ − υ̂) + R12(β − β̂)

∣∣∣
∣∣∣
2

2σ2


 dυ

(77)
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Notice that while the unweighted integral has nz dimensions, this weighted integral has
∑

j Ψjj dimensions—
the number of (population) individuals values to integrate out.

L(β, θ, σ2; y) =
1

(2πσ2)

∑
i

Ωii

2

exp


−

r2(θ, β̂, υ̂) −
∣∣∣
∣∣∣R22(β − β̂)

∣∣∣
∣∣∣
2

2σ2


 (78)





1

(2πσ2)

∑
j

Ψjj

2

∫
exp


−

∣∣∣
∣∣∣R11(υ − υ̂) + R12(β − β̂)

∣∣∣
∣∣∣
2

2σ2


 dυ





(79)

However, while we know there are
∑

j Ψjj dimensions to integrate out (the number of population cases), a
change of variables must maintain the dimensionality of the integration, so it is not clear how to proceed.
Instead, we name the term inside the integral α and use a different methodology to derive its value. Then,

L(β, θ, σ2; y) = α(θ; Ω, Ψ)
1

(2πσ2)

∑
i

Ωii

2

exp


−

r2(θ, β̂, υ̂) −
∣∣∣
∣∣∣R22(β − β̂)

∣∣∣
∣∣∣
2

2σ2


 (80)

where α is a constant for a fixed θ and set of weights Ω and Ψ.

While these formulas allow for estimation of a likelihood function that allows for estimation of β̂ and σ̂2 via
profiling, they do not depend on α because θ appears as a parameter of α; optimizing the log-likelihood with
respect to θ requires all of the terms in the log-likelihood to be calculated, including α.

Calculation of α

Bates and Pinheiro (1998) offer an unweighted method of calculating α that we extend here to admit weighting.
The essential insight of Bates and Pinheiro is that the variables must be remapped, per group, using an
orthogonal transform that separates out the ql random effects associated with group g at level l. In what
follows we describe a three-level case, but the methods readily generalize to the L-level case.

The integral is slightly re-expressed using u instead of υ, but instead of using Λ it uses the ∆ matrix, which
is an individual block of Λ, so ∆ is defined, implicitly, by

Λ(θ) = ∆(θ) ⊗ I (81)

where ⊗ is the Kronecker product.

Using this notation, the likelihood is then given by

L =

∫ ∏

g

[∫
fy|U (y, θ, u2g, · · · , υLg)fU (θ, u2g)du2g

]
fU (θ, u3g)du3g (82)

∝

∫ ∏

g

[∫
exp

[∣∣∣
∣∣∣Ω

1
2
gg(yg − Xgβ − Zgu)

∣∣∣
∣∣∣
2

+
∣∣∣∣uT

2g∆T ∆u2g

∣∣∣∣2
]

du2g

]
fU (θ, u3g)du3g (83)

and iteratively rewritten to symbolically integrate out the lowest level random effects, starting with level 2
and increasing until there are no remaining integrals. When this is done, we will note the change of variable
associated with a weighted model and use that for α in eq. 80. Because of that, the portions unrelated to the
change of variable were dropped from relation 83. Thus, notice that this goal is just for units in a particular
group (g) at level 2. These results of several integrals have to be combined to solve the integral across all
groups and calculate α. The value of α will be calculated by level and then summed; for a three-level model:

α = α2 + α3 (84)
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While the residual sum of squares (r2) has been, up until now, treated for the entire data set, the notion is
to think of the residual sum of squares for just group g (at level l). Bates and Pinheiro (1998) also use the
notion of r2

g , or the r2 contribution for group g, which is defined as

r2
g(θ, β, υ) =

∣∣∣∣∣

∣∣∣∣∣

[
Ω

1
2
ggyg

0

]
−

[
Ω

1
2
ggZg Ω

1
2
ggXg

∆′
l 0

] [
ug

β

]∣∣∣∣∣

∣∣∣∣∣

2

(85)

where yg, υg, Xg, Zg, and Ωgg are the rows of the y vector, the υ vector, X matrix, Z matrix, and Ω matrix
that are associated with group g, respectively; while Λ(θ) is the full Λ(θ) matrix, ∆′

l is a block matrix:

∆′
l ≡

[
∆l 0

]
(86)

where ∆l is the portion of ∆ associated with level l, and the 0 matrix is entirely zeros and conforms to the
portion of ug that is associated with level 3 of the model.

Expanding Zg gives

r2
g(θ, β, υ) =

∣∣∣∣∣∣

∣∣∣∣∣∣

[
Ω

1
2
ggyg

0

]
−

[
Ω

1
2
ggZ2g Ω

1
2
ggZ3g Ω

1
2
ggXg

∆2 0 0

]


υ2g

υ3g

β



∣∣∣∣∣∣

∣∣∣∣∣∣

2

(87)

Starting at level 2, a change of variables is chosen via the (full) QR decomposition,

[
Ω

1
2
ggZ2g

∆2

]
= Q2g

[
R12g

0

]
(88)

where the subscript on R12g indicates that it is the top submatrix (1), at level 2, and for group g. Notice that
the blocks are different shapes on the left- and right-hand sides of eq. 88; on the left-hand side, the top block

(Ω
1
2
ggZ2g) has as many rows as there are observations in group g and the bottom block (∆2) has as many

rows as there are random effects at level 2, while the right-hand side is flipped. The top block (R12g) has as
many rows as there are random effects at level 2, while the bottom block (0) has as many rows as there are
observations in group g. The reason for this is that the change makes the top block on the right-hand side a
square, upper triangular matrix, which will allow the change of variables to proceed.

Because Q2g is orthogonal by construction, QT
2gQ2g = I, one can freely premultiply the inside of the sum of

squares in eq. 87 by QT
2g without changing the sum of squares:5

r2
g(θ, β, υ) =

∣∣∣∣∣∣

∣∣∣∣∣∣
QT

2g





[
Ω

1
2
ggyg

0

]
−

[
Ω

1
2
ggZ2g Ω

1
2
ggZ3g Ω

1
2
ggXg

∆2 0 0

]


υ2g

υ3g

β







∣∣∣∣∣∣

∣∣∣∣∣∣

2

(89)

Then, defining

QT
2g

[
Ω

1
2
ggyg

0

]
≡

[
R1yg

R2yg

]
QT

2g

[
Ω

1
2
ggZ3g

0

]
≡

[
R13g

R23g

]
QT

2g

[
Ω

1
2
ggXg

0

]
≡

[
R1Xg

R2Xg

]
(90)

similar to eq. 88, and with the same dimensions, the blocks are of different shapes on the left and right of the
equation.

Multiplying the QT
2g through and plugging the eq. 90 equations into eq. 89,

r2
g(θ, β, u) =

∣∣∣∣∣∣

∣∣∣∣∣∣

[
R1yg

R2yg

]
−

[
R12g R13g R1Xg

0 R23g R2Xg

]


u2g

u3g

β



∣∣∣∣∣∣

∣∣∣∣∣∣

2

(91)

5Recalling ||x||2 = xT x, so that, for orthogonal matrix Q, it is easy to see ||Qx||2 = xT QT Qx = xT x.
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it is now possible to simplify the integral, do a change of variables and integrate out level 2 random effects for
group g, and solve the first integral in eq. 83 symbolically. In particular, this rewriting of the terms means
there are q2 terms with u2g in them and ng − q2 terms that are redefined to be orthogonal to those two terms.
It is this orthogonality that allows the other terms to be removed from the integral. So, since we have just
shown

||Ω
1
2
gg(yg − Xgβ − ZgΛll(θ)u)||2 + ||u||2 =

∣∣∣∣∣∣

∣∣∣∣∣∣

[
R1yg

R2yg

]
−

[
R12g R13g R1Xg

0 R23g R2Xg

]


u2g

u3g

β



∣∣∣∣∣∣

∣∣∣∣∣∣

2

(92)

= ||R1yg − R12gu2g − R13gu3g − R1Xgβg||
2

+ ||R2yg − R23gu3g − R2Xgβg||
2

(93)

which can now be substituted into eq. 83, allowing a change of variables:

γ2g =R1yg − R12gu2g − R13gu3g − R1Xgβg (94)

dγ2g

du2g

=R12g (95)

The value of α2 in the unweighted case is now clear:

α2u =

n2∑

g=1

|det(R12g)|−1 (96)

where α2u is the unweighted alpha. This formula can be weighted simply by applying the replicate weights to
the individual terms:

α2 =

n2∑

g=1

Ψgg|det(R12g)|−1 (97)

However, for the three-level model, the likelihood still has level 3 integrals. The level 3 integral can also be
removed. We cannot restart this process with the original Z and X matrices and other components because
they change with the components inside the level 2 integral. However, the R2∗∗ matrices are the portions of
the higher level u3g that were not integrated out, and they can be used independent of u2g.

We continue on with these remapped variables, starting the unweighted case (only at level 2), and now using
g′ to indicate that this is a different group (at level 3), with ng′ subgroups in it. Each group (labeled i)
contributes an outcomes matrix R2yi, a matrix per level 2 group R23i and a matrix per fixed effects regressor
X2Xi, for i = 1, · · · , ng′ . Combining these, the residual sum of squares at level 3 for the group g′ is

r2
g′(θ, β, υ) =

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣




R2y1

...
R2yng′

0


−




R231 R2X1

...
...

R23ng′
R2Xng′

∆3 0




[
u3g

β

]
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

2

(98)

Following the example at level 2 above, the QR decomposition is then used:




R231

...
R23ng′

∆3


 = Q3g′,u

[
R13g′,u

0

]
(99)

where a subscript u is used to indicate that Q3g′,u and R13g′,u are unweighted. The remaining steps are then
identical to the level 2 case; R13g′,u is used as the change of variables, so that α3u =

∑n2

g′=1 |det(R13g′,u)|−1,
and the other R3∗∗ matrices can be used to integrate out level-4 cases and so on.
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When there are level 2 conditional weights—non-unit probabilities of selection for the groups at level 2,
conditional on the selection of the level 3 unit—each matrix in eq. 98 could be replicated Ψii times.
Equivalently, each matrix can be weighted by the conditional probability of selection, so that eq. 98 becomes

r2
g′(θ, β, υ) =

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣




Ψ
1
2
11R2y1

...

Ψ
1
2

g′g′R2yng′

0




−




Ψ
1
2
11R231 Ψ

1
2
11R2X1

...
...

Ψ
1
2

g′g′R23ng′
Ψ

1
2

g′g′R2Xng′

∆3 0




[
u3g

β

]
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

2

(100)

This change leads to the same QR decomposition as the replicated case:




Ψ
1
2
11R231

...

Ψ
1
2

g′g′R23ng′

∆3




= Q3g′

[
R13g′

0

]
(101)

The weighted value of α3 for the third level is then

α3 =

n3∑

g′=1

Ψg′g′ |R13g′ |
−1

(102)

Implementation Details

The actual implementation of the calculation is slightly different from what is above. First, when the QR
decomposition is taken (eqs. 88 and 101), it is possible to stop the decomposition as is described in Bates
and Pinheiro (1998). It is also possible to continue the QR decomposition for the other levels of Z. Using
the QR on the entire matrix still results in an orthogonal component in the submatrices, and so meets the
goals of the decomposition while obviating the need to form the Q matrix explicitly.

Also note that, in the above, the value of r2 was never used, so the components relating to y and X need not
be formed.

Estimation

Continuing to follow lme4, the estimation uses the profile likelihood. Since β appears only in the final term in
quadratic form, it is immediately evident that the maximum likelihood estimator (MLE) for β is β̂, making
eq. 80 profile to

D
(
θ, σ2; y

)
= 2 ln (α(θ; Ψ, Ω)) +

(∑

i

Ωii

)
ln
(
2πσ2

)
+

r2(θ, β̂, υ̂)

σ2
(103)

Then, the value of σ2 can also be profiled out by taking the derivative of the deviance with respect to σ2 and
setting it equal to zero (Bates et al., 2015, eq. 32):

0 =

∑
i Ωii

σ̂2
−

r2(θ, β̂, υ̂)

σ̂4
(104)

rearranging

σ̂2 =
r2(θ, β̂, υ̂)∑

i Ωii

(105)
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Eq. 105 can then be plugged into eq. 103 to give

D (θ; y) = 2 ln (α(θ; Ψ, Ω)) +

(∑

i

Ωii

)[
ln
(

2πσ̂2
)

+ 1
]

(106)

This function is then minimized numerically with respect to θ, using the profile estimates for β and υ (eq.

60) and σ̂2 (eq. 106).

The estimated values are then the θ that maximize eq. 106, the σ2 value from eq. 105, and the β values
from solving the system of equations in eq. 60.

Variance Estimation

The inverse Hessian of β is given by (Bates et al., 2015, eq. 54):

V̂ar(β) = σ̂2R−1
22

(
RT

22

)−1
(107)

with R22 coming from eq. 80. This variance estimator assumes that the weights are information weights and
so is inappropriate for survey weights.

A robust (sandwich) variance estimator is given by (Binder, 1983) is appropriate:

(
σ̂2RT

22

)−1

J
(

σ̂2RT
22

)−1

(108)

where J is the sum of outer products of the Jacobian matrix

J =
nL

nL − 1

nL∑

g=1

∂(ℓg)

∂β
(109)

where nL is the number of level-L (top-level) groups, g indexes level-L groups, and ℓg is the log-likelihood for
group g and all groups and units nested inside of g. The log-likelihood of the full model is

ℓ(β, θ, σ2; y) = ln [α(θ; Ω, Ψ)] −

∑
i Ωii

2
ln
(
2πσ2

)
−

r2
(

θ, β̂, υ̂
)

2σ2
−

∣∣∣
∣∣∣R22

(
β̂ − β

)∣∣∣
∣∣∣
2

2σ2
(110)

where we are allowing β and θ to vary but are fixing σ2 at the estimated value of σ̂2. This could have been
annotated by making β̂(θ) because β̂ is the estimated value conditional on θ and appears in the equation
separate from the value of β, but that is not shown here.

While it would be convenient if eq. 110 could be directly broken up into a portion attributable to each group,
and some encouragement appears when the first three terms can be, the final term has dependencies across
multiple groups. A distinct likelihood is needed that depends only on the data in that group. This is achieved
by noting that data for a particular group is also valid data for a mixed model of the same type as the global
mixed model, and so eq. 110 can be used on a single group’s data to get the group log-likelihood; thus a
group log-likelihood can be written using the notion of the fitted value of β in the group (β̂g)

ℓg(β, θ, σ2; yg) = ln [αg(θ; Ω, Ψ)] −

∑
i∈g Ωii

2
ln
(
2πσ2

)
−

r2
(

θ, β̂g, υ̂g

)

2σ2
−

∣∣∣
∣∣∣R22g

(
β̂g − β

)∣∣∣
∣∣∣
2

2σ2
(111)

where αg is the α term for group g and any groups nested in it, the sum for Ω is just over i terms associated

with group g, β̂ and υ̂ are the values fitted only on this group, and R22g is the result of a QR on a version of
A performed on just data (X, Z, y, Ψ, and Ω) associated with group g, while the values of σ2, β, and θ are
the values from the value the function is being evaluated at globally. Then,

ℓ(β, θ, σ2; y) =
∑

g

ℓg(β, θ, σ2; yg) (112)
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A few notes are required at this point on how, exactly, this is calculated in degenerate cases. When the
matrix Ag is singular for a group (e.g., when there is only one unit in the group), then the inestimable

values of βg are set to zero when forming β̂g − β. Similarly, R22g may not have enough rows to form a
upper-triangular matrix. The portion that can be formed (including all columns) is then used—this does not

affect the computation of R22g

(
β̂g − β

)
.

Using these formulas the Jacobian matrix can now be calculated numerically and the robust variance estimator
formed with eq. 108.

So far this section has regarded only β but similar methods apply to the estimation of the variance of the
random effect variance estimates (θ and σ). These variance terms have their variance estimated assuming
that they are uncorrelated with the β terms. At each level the variance is calculated, including a term for σ,
as

Var (θ, σ) = (−H)
−1

Jθ,σ (−H)
−1

(113)

where H is the Hessian of the likelihood (eq. 110) with respect to θ and σ while Jθ,σ is the portion of the
Jacobian that regards θ and σ. The estimated value for the variance of σ from the lowest level group (level 2)
is used to form the standard error of the residual variance.

However, the variance estimates are not simply the values of θ and σ but transformations of that (eq. 18).
To estimate the variances of the variance estimates, the Delta method is used so that

Var
(
Σ, σ2

)
=
[
∇(ΛT Λ)

]T
Var

(
θ, σ2

) [
∇(ΛT Λ)

]
(114)

where the gradient (∇(·)) is taken with respect to the elements of Σ and σ2, and Var
(
θ, σ2

)
is from eq. 113.

Model Evaluation: Wald Test

We can use the a Wald test to test both fixed effects parameters (β) and variance of the random parameters
(Λ).

The Wald test compares estimated parameters with null hypothesis values. In the default case the null
hypothesis is that value of the parameters is 0.

In this default case, if the test fails to reject the null hypothesis, removing the variables from the model will
not substantially harm the fit of that model.

One advantage of the Wald test is that it can be used to test multiple hypotheses about multiple parameters
simultaneously.

To test q hypotheses on p estimated parameters, let P̂ be the vector of estimated coefficients, R be a q

x p hypothesis matrix (this matrix has 1 row per coefficient being tested with a value of 1 in the column
corresponding to that coefficient), V̂ be the estimated covariance matrix for P̂ , and r be the vector of

hypothesized values for β̂.

Then the Wald test statistic for multiple parameters is equal to:

W = (Rβ̂ − r)′(RV̂ R′)−1(Rβ̂ − r)

The resulting test statistic can be tested against a chi-square distribution. For this test, the degrees of
freedom is the number of parameters that are tested.

W ∼ χ2(p)
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