Package 'WRS2'

June 19, 2020

Type Package

Title A Collection of Robust Statistical Methods

Version 1.1-0

Date 2020-06-16

Description A collection of robust statistical methods based on Wilcox' WRS functions. It implements robust t-tests (independent and dependent samples), robust ANOVA (including betweenwithin subject designs), quantile ANOVA, robust correlation, robust mediation, and nonparametric ANCOVA models based on robust location measures.

License GPL-3

URL https://r-forge.r-project.org/projects/psychor/

Imports MASS, reshape, plyr, stats, graphics, grDevices, utils, mc2d

Depends R (>= 3.2.0)

Suggests knitr, car, ggplot2, colorspace, mediation, GGally, codetools

VignetteBuilder knitr

LazyData yes

LazyLoad yes

ByteCompile yes

NeedsCompilation yes

Author Patrick Mair [cre, aut], Rand Wilcox [aut]

Maintainer Patrick Mair <mair@fas.harvard.edu>

Repository CRAN

Date/Publication 2020-06-19 06:38:58 UTC

R topics documented:

ancova	
binband	
bush	

bwtrim	7
chile	9
diet	9
electric	10
essays	11
eurosoccer	12
goggles	12
hangover	13
invisibility	14
Leerkes	15
med1way	15
med2way	16
movie	18
onesampb	18
pbcor	19
picture	21
Pygmalion	22
Qanova	23
rmanova	24
rmanovab	25
runmean	27
spider	28
swimming	29
t1way	30
t1waybt	31
t2way	32
t3way	34
trimse	35
twocor	36
viagra	38
WineTasting	38
yuen	39
yuend	41
ZYmediate	43
	45
	43

Index

ancova

Robust ANCOVA

Description

This function computes robust ANCOVA for 2 independent groups and one covariate. It compares trimmed means. No parametric assumption (e.g. homogeneity) is made about the form of the regression lines. A running interval smoother is used. A bootstrap version which computes confidence intervals using a percentile t-bootstrap is provided as well.

ancova

Usage

```
ancova(formula, data, tr = 0.2, fr1 = 1, fr2 = 1, pts = NA)
```

ancboot(formula, data, tr = 0.2, nboot = 599, fr1 = 1, fr2 = 1, pts = NA)

Arguments

formula	an object of class formula.
data	an optional data frame for the input data.
tr	trim level for the mean.
fr1	values of the span for the first group (1 means unspecified)
fr2	values of the span for the second group (1 means unspecified)
pts	can be used to specify the design points where the regression lines are to be compared; if NA design points are chosen.
nboot	number of bootstrap samples

Value

Returns an object of class ancova containing:

evalpts	covariate values (including points close to these values) where the test statistic is evaluated
n1	number of subjects at evaluation point (first group)
n2	number of subjects at evaluation point (first group)
trDiff	trimmed mean differences
se	standard errors for trimmed mean differences
ci.low	lower confidence limit for trimmed mean differences
ci.hi	upper confidence limit for trimmed mean differences
test	values of the test statistic
crit.vals	critical values
p.vals	p-values
fitted.values	fitted values from interval smoothing
call	function call

References

Wilcox, R. (2012). Introduction to Robust Estimation and Hypothesis Testing (3rd ed.). Elsevier.

See Also

t2way

Examples

```
head(invisibility)
ancova(mischief2 ~ cloak + mischief1, data = invisibility)
## specifying covariate evaluation points
ancova(mischief2 ~ cloak + mischief1, data = invisibility, pts = c(3, 4, 8, 1))
## bootstrap version
ancboot(mischief2 ~ cloak + mischief1, data = invisibility)
```

binband

Comparison of discrete distributions

Description

binband compares two independent variables in terms of their probability function. discANOVA Tests the global hypothesis that for two or more independent groups, the corresponding discrete distributions are identical. That is, test the hypothesis that independent groups have identical multi-nomial distributions. discmcp provides multiple comparisons for J independent groups having discrete distributions. discstep implements the step-down multiple comparison procedure for comparing J independent discrete random variables.

Usage

binband(x, y, KMS = FALSE, alpha = 0.05, ADJ.P = FALSE)
discANOVA(formula, data, nboot = 500)
discmcp(formula, data, alpha = 0.05, nboot = 500)
discstep(formula, data, nboot = 500, alpha = 0.05)

Arguments

х	an numeric vector of data values for group 1.
У	an numeric vector of data values for group 2.
formula	an object of class formula.
data	an optional data frame for the input data.
nboot	number of bootstrap samples.
alpha	alpha level.
KMS	whether the Kulinskaya-Morgenthaler-Staudte method for comparing binomials should be used.
ADJ.P	whether the critical p-value should be adjusted to control FWE when the sample size is small (<50)

binband

Value

discANOVA returns an object of class "med1way" containing:

test	value of the test statistic
crit.val	critical value
p.value	p-value
call	function call

The remaining functions return an object of class "robtab" containing:

partable	parameter table
----------	-----------------

References

Wilcox, R. (2012). Introduction to Robust Estimation and Hypothesis Testing (3rd ed.). Elsevier.

Kulinskaya, E., Morgenthaler, S. and Staudte, R. (2010). Variance stabilizing the difference of two binomial proportions. American Statistician, 64, p. 350-356.

See Also

t1way, Qanova

Examples

```
## Consider a study aimed at comparing two methods for reducing shoulder pain after surgery.
## For the first method, the shoulder pain measures are:
x1 <- c(2, 4, 4, 2, 2, 2, 4, 3, 2, 4, 2, 3, 2, 4, 3, 2, 2, 3, 5, 5, 2, 2)
## and for the second method they are:
x2 <- c(5, 1, 4, 4, 2, 3, 3, 1, 1, 1, 1, 2, 2, 1, 1, 5, 3, 5)
fit1 <- binband(x1, x2)
fit1
fit2 <- binband(x1, x2, KMS = TRUE, alpha = 0.01)
fit2
## More than two groups:
discANOVA(libido ~ dose, viagra, nboot = 200)
## Multiple comparisons:
discmcp(libido ~ dose, viagra)
```

Description

In the TV show "I'm a celebrity, get me out of here" the celebrities had to eat things like stick insects, fish eyes, etc. This dataset records the time taken to retch when eating these things.

Usage

bush

Format

A data frame with 5 variables and 8 observations:

participant participant ID

stick_insect time taken to retch when eating a stick insect

kangaroo_testicle time taken to retch when eating a kangaroo testicle

fish_eye time taken to retch when eating a fish eye

witchetty_grub time taken to retch when eating a witchetty grub

Details

Dataset from Field et al. book (p. 557).

References

Field, A., Miles, J, & Field, Z. (2012). Discovering Statistics Using R. Sage.

Examples

bush summary(bush)

bush

bwtrim

Description

The bwtrim function computes a two-way between-within subjects ANOVA on the trimmed means. It is designed for one between-subjects variable and one within-subjects variable. The functions sppba, sppbb, and sppbi compute the main fixed effect, the main within-subjects effect, and the interaction effect only, respectively, using bootstrap. For these 3 functions the user can choose an M-estimator for group comparisons.

Usage

```
bwtrim(formula, id, data, tr = 0.2)
tsplit(formula, id, data, tr = 0.2)
sppba(formula, id, data, est = "mom", avg = TRUE, nboot = 500, MDIS = FALSE)
sppbb(formula, id, data, est = "mom", nboot = 500)
sppbi(formula, id, data, est = "mom", nboot = 500)
```

Arguments

formula	an object of class formula.	
id	subject ID.	
data	an optional data frame for the input data.	
tr	trim level for the mean.	
est	Estimate to be used for the group comparisons: either "onestep" for one-step M-estimator of location using Huber's Psi, "mom" for the modified one-step (MOM) estimator of location based on Huber's Psi, or "median".	
avg	If TRUE, the analysis is done by averaging K measures of location for each level of the fixed effect, and then comparing averages by testing the hypothesis that all pairwise differences are equal to zero. If FALSE the analysis is done by testing whether K equalities are simultaneously true.	
nboot	number of bootstrap samples.	
MDIS	if TRUE the depths of the points in the bootstrap cloud are based on Mahalanobis distance, if FALSE a projection distance is used.	

Details

The tsplit function is doing exactly the same thing as bwtrim. It is kept in the package in order to be consistent with older versions of the Wilcox (2012) book. For sppba, sppbb, and sppbi the analysis is carried out on the basis of all pairs of difference scores. The null hypothesis is that all such differences have a robust location value of zero. In the formula interface it is required to specify full model.

bwtrim

Value

bwtrim returns an object of class "bwtrim" containing:

Qa	first main effect	
A.p.value	p-value first main effect	
A.df	df F-distribution first main effect	
Qb	second main effect	
B.p.value	p-value second main effect	
B.df	df F-distribution second main effect	
Qab	interaction effect	
AB.p.value	p-value interaction effect	
AB.df	df F-distribution interaction	
call	function call	
varnames	variable names	
sppba, sppbb, and sppbi returns an object of class "spp" containing:		

test	value of the test statistic
p.value	p-value
contrasts	contrasts matrix

References

Wilcox, R. (2017). Introduction to Robust Estimation and Hypothesis Testing (4th ed.). Elsevier.

See Also

t2way

Examples

```
## data need to be on long format
pictureLong <- reshape(picture, direction = "long", varying = list(3:4), idvar = "case",
timevar = c("pictype"), times = c("couple", "alone"))
pictureLong$pictype <- as.factor(pictureLong$pictype)
colnames(pictureLong)[4] <- "friend_requests"
## 2-way within-between subjects ANOVA
bwtrim(friend_requests ~ relationship_status*pictype, id = case, data = pictureLong)
## between groups effect only (MOM estimator)
sppba(friend_requests ~ relationship_status*pictype, case, data = pictureLong)
## within groups effect only (MOM estimator)
sppbb(friend_requests ~ relationship_status*pictype, case, data = pictureLong)
## interaction effect only (MOM estimator)
sppbb(friend_requests ~ relationship_status*pictype, case, data = pictureLong)
```

chile

Description

Originally from pepperjoe.com, this dataset contains the name, length, and heat of chiles. Heat is measured on a scale from 0-11. (0-2 ... for sissys, 3-4 ... sort of hot, 5-6 ... fairly hot, 7-8 ... real hot, 9.5-9 ... torrid, 9.5-11 ... nuclear).

Usage

chile

Format

A data frame with 3 variables and 85 observations:

name name of the chile

length length in cm

heat heat of the chile

References

Wright, D. B., & London, K. (2009). Modern Regression Techniques Using R. Sage.

Examples

summary(chile)

diet

Diet and Weight Loss

Description

Weight loss is studied for three different types of diets.

Usage

bush

electric

Format

A data frame with 7 variables and 78 observations:

gender gender
age age
height body height
diet.type three types of diet
initial.weight initial weight before diet
final.weight final weight after diet
weight.loss weight loss

Details

Original data taken from https://www.sheffield.ac.uk/polopoly_fs/1.570199!/file/stcp-Rdataset-Diet. csv, slightly modified.

References

Couturier, D. L., Nicholls, R., and Fernandes, M. (2018). ANOVA with R: analysis of the diet dataset. Retrieved online.

Examples

str(diet)

electric

The Electric Company

Description

These data are based on an educational TV show for children called "The Electric Company". In each of four grades, the classes were randomized into treated (TV show) and control groups (no TV show). At the beginning and at the end of the school year, students in all the classes were given a reading test. The average test scores per class were recorded.

Usage

electric

Format

A data frame with 5 variables and 192 observations:

City Fresno and Youngstown

Grade grade

Pretest reading scores at the beginning of the semester

Posttest reading scores at the end of the semester

Group treatment vs. control

essays

References

Gelman, A., & Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press: New York, NY.

Examples

summary(electric)

essays

Academic Writing Data

Description

This study looked at the effects of two forms of written corrective feedback on lexico-grammatical accuracy in the academic writing of English as a foreign language university students. It had a 3x4 within-by-between design with three groups (two treatment and one control) measured over four occasions (pretest/treatment, treatment, posttest, delayed posttest).

Usage

bush

Format

A data frame with 4 variables and 120 observations:

id participant ID

group control, direct, indirect

essay four measurement occasions

errorRatio error ratio

References

McGrath, D. (2016). The Effects of Comprehensive Direct and Indirect Written Corrective Feedback on Accuracy in English as a Foreign Language Students' Writing (Unpublished master's thesis). Macquarie University, Sydney, Australia.

Examples

head(essays) summary(essays) eurosoccer

Description

Contains various team stats from five European soccer leagues (2008/09 season).

Usage

eurosoccer

Format

A data frame with 11 variables and 96 teams:

League Country Team Team Games Number of games Won Games won Tied Games tied Lost Games lost GoalsScored Goals scored GoalsConceded Goals conceded GoalDifference Goal difference Points Final amount of points GoalsGame Goal scored per game

Examples

head(eurosoccer)

goggles

Beer Goggles Effect

Description

This dataset is about the effects of alcohol on mate selection in night-clubs. The hypothesis is that after alcohol had been consumed, subjective perceptions of physical attractiveness would become more inaccurate (beer-goggles effect). There are 48 participants: 24 males, 24 females. The reseacher took 3 groups of 8 participants to a night club. One group got no alcohol, one group 2 pints, and one group 4 pints. At the end of the evening the researcher took a photograph of the person the participant was chatting up. The attractiveness of the person on the photo was then evaluated by independent judges.

hangover

Usage

goggles

Format

A data frame with 3 variables and 48 observations:

gender 24 male, 24 female students alcohol amount of alcohol consumed attractiveness attractiveness rating (0-100)

Details

Dataset from Field et al. book (p. 501).

References

Field, A., Miles, J, & Field, Z. (2012). Discovering Statistics Using R. Sage.

Examples

goggles
summary(goggles)

hangover

Hangover Symptoms

Description

In a study on the effect of consuming alcohol, hangover symptoms were measured for two independent groups, with each subject consuming alcohol and being measured on three different occasions. One group consisted of sons of alcoholics and the other was a control group.

Usage

hangover

Format

A data frame with 4 variables and 120 observations:

symptoms number of hangover symptoms

group son of alcoholic vs. control

time measurement occasion

id subject ID

References

Wilcox, R. (2012). Introduction to Robust Estimation and Hypothesis Testing (3rd ed.). Elsevier.

Examples

summary(hangover)

invisibility Cloaks of Invisibility

Description

We are interested in the effect that wearing a cloak of invisibility has on people's tendency to mischief. 80 participants were placed in an enclosed community. Hidden cameras recorded mischievous acts. It was recorded how many mischievous acts were conducted in the first 3 weeks (mischief1). After 3 weeks 34 participants were told that the cameras were switched off so that no one would be able to see what they're getting up to. The remaining 46 subjects were given a cloak of invisibility. These people were told not to tell anyone else about their cloak and they could wear it whenever they liked. The number of mischievous acts were recorded over the next 3 weeks (mischief2).

Usage

invisibility

Format

A data frame with 3 variables and 80 observations:

cloak factor with 34 subjects in the no cloak condition, 46 in the cloak condition

mischief1 number of mischievous acts during the first 3 weeks

mischief2 number of mischievous acts during the second 3 weeks

Details

Fictional dataset from Field et al. book (p. 485).

References

Field, A., Miles, J, & Field, Z. (2012). Discovering Statistics Using R. Sage.

Examples

```
invisibility
summary(invisibility)
```

Leerkes

Description

TIn this dataset (n = 92) the relationship between how girls were raised by there own mother and their later feelings of maternal self-efficacy, i.e. our belief in our ability to succeed in specific situations. The other variable is self-esteem (can act as mediator). All variables are scored on a continuous scale from 1 to 4.

Usage

Leerkes

Format

A data frame with 3 variables and 92 observations:

MatCare maternal care

Efficacy maternal self-efficacy

Esteem self-esteen

References

Leerkes, E.M. & Crockenberg, S.C. (2002). The development of maternal self-efficacy and its impact on maternal behavior. Infancy, 3, 227-247.

Howell, D.C. (2012). Statistical Methods for Psychology (8th edition). Wadsworth, Belmont, CA.

Examples

summary(Leerkes)

med1way

Heteroscedastic one-way ANOVA for medians.

Description

This function computes a one-way ANOVA for the medians. Homoscedasticity assumption not required. There shouldn't be too many ties.

Usage

med1way(formula, data, iter = 1000)

med2way

Arguments

formula	an object of class formula.
data	an optional data frame for the input data.
iter	number of iterations to determine critical value.

Details

Evaluating the test statistic using the df proposed in the literature can result in the actual level being less than the nominal level, (i.e., around 0.02-0.025 when testing at the 0.05 level and the sample size is small). A better strategy is to simulate the critical value and computing the p-value accordingly, as implemented in this function.

Value

Returns an object of class med1way containing:

test	F-value of the test statistic
crit.val	critical value
p.value	p-value
call	function call

References

Wilcox, R. (2012). Introduction to Robust Estimation and Hypothesis Testing (3rd ed.). Elsevier.

See Also

t1way,t1waybt,Qanova

Examples

```
set.seed(123)
med1way(libido ~ dose, data = viagra, iter = 3000)
```

med2way

A two-way ANOVA for medians.

Description

This function computes a two-way ANOVA medians with interactions effects.

Usage

med2way(formula, data)

med2way

Arguments

formula	an object of class formula.
data	an optional data frame for the input data.

Details

There should not be too many ties in the data. The test statistics for the main effects in med2way are F-distributed, the (heteroscedastic) test for the interaction is chi-square distributed. Post hoc tests can be performed using mcp2a.

Value

Returns an object of class t2way containing:

Qa	first main effect
A.p.value	p-value first main effect
Qb	second main effect
B.p.value	p-value second main effect
Qab	interaction effect
AB.p.value	p-value interaction effect
call	function call
varnames	variable names
dim	design dimensions

References

Wilcox, R. (2012). Introduction to Robust Estimation and Hypothesis Testing (3rd ed.). Elsevier.

See Also

t2way, med1way

Examples

```
med2way(attractiveness ~ gender*alcohol, data = goggles)
mcp2a(attractiveness ~ gender*alcohol, data = goggles, est = "median")
```

movie

Description

Participants are randomly assigned to one of two groups. The first group watches a violent film, and the other watches a nonviolent film. Afterwards, the aggressive affect is measured, and it is desired to compare three groups, taking gender and degress into account as well.

Usage

movie

Format

A data frame with 4 variables and 68 observations:

degree no degree vs. degree gender 36 males, 32 females type violend vs. nonviolent aggressive aggressive affect

Details

Artificial dataset from Wilcox book (p. 316).

References

Wilcox, R. (2012). Introduction to Robust Estimation and Hypothesis Testing (3rd ed.). Elsevier.

Examples

movie
summary(movie)

onesampb

One-sample percentile bootstrap

Description

Tests whether a robust location measure (median, Huber Psi) differs from a null value and reports a 95% confidence interval based on percentile bootstrap.

Usage

```
onesampb(x, est = "onestep", nboot = 2000, nv = 0, alpha = 0.05)
```

pbcor

Arguments

х	a numeric vector.
est	robust estimator to be used ("onestep", "mom", or "median").
nboot	number of bootstrap samples.
nv	value under H0.
alpha	alpha level.

Value

Returns an object of class "onesampb" containing:

ci	95% confidence interval
estimate	robust location sample estimate
p.value	p-value
n	number of effective observations
call	function call

References

Wilcox, R. (2017). Introduction to Robust Estimation and Hypothesis Testing (4th ed.). Elsevier.

See Also

t1way

Examples

```
set.seed(123)
x <- rnorm(30)
onesampb(x, nboot = 100)  ## H0: Psi = 0
set.seed(123)
x <- rlnorm(30)
onesampb(x, est = "median", nv = 1)  ## H0: median = 1</pre>
```

pbcor

Robust correlation coefficients.

Description

The pbcor function computes the percentage bend correlation coefficient, wincor the Winsorized correlation, pball the percentage bend correlation matrix, winall the Winsorized correlation matrix.

Usage

```
pbcor(x, y = NULL, beta = 0.2, ci = FALSE, nboot = 500, alpha = 0.05)
pball(x, beta = 0.2)
wincor(x, y = NULL, tr = 0.2, ci = FALSE, nboot = 500, alpha = 0.05)
winall(x, tr = 0.2)
```

Arguments

x	a numeric vector, a matrix or a data frame.
У	a second numeric vector (for correlation functions).
beta	bending constant.
tr	amount of Winsorization.
ci	whether boostrap CI should be computed or not.
nboot	number of bootstrap samples for CI computation.
alpha	alpha level for CI computation.

Details

It tested is whether the correlation coefficient equals 0 (null hypothesis) or not. Missing values are deleted pairwise. The tests are sensitive to heteroscedasticity. The test statistic H in pball tests the hypothesis that all correlations are equal to zero.

Value

pbcor and wincor return an object of class "pbcor" containing:

cor	robust correlation coefficient
test	value of the test statistic
p.value	p-value
n	number of effective observations
cor_ci	bootstrap confidence interval
call	function call

pball and winall return an object of class "pball" containing:

pbcorm	robust correlation matrix
p.values	p-values
Н	H-statistic
H.p.value	p-value H-statistic
COV	variance-covariance matrix

References

Wilcox, R. (2012). Introduction to Robust Estimation and Hypothesis Testing (3rd ed.). Elsevier.

picture

See Also

twocor

Examples

```
x1 <- subset(hangover, subset = (group == "control" & time == 1))$symptoms
x2 <- subset(hangover, subset = (group == "control" & time == 2))$symptoms
pbcor(x1, x2)
pbcor(x1, x2, beta = 0.1, ci = TRUE)
wincor(x1, x2, tr = 0.1, ci = TRUE)
require(reshape)
hanglong <- subset(hangover, subset = group == "control")
hangwide <- cast(hanglong, id ~ time, value = "symptoms")[,-1]
pball(hangwide)
winall(hangwide)
```

picture

Profile Pictures

Description

This dataset examines how the profile pictures on social network platforms affect the number of friend requests when females are in a relationship. The relationship status is a between-subject variable (part of the participants did set their status to relationship). For the first 3 weeks the subjects had a picture of their own in their profiles. For the following 3 weeks they posted a picture with a man.

Usage

picture

Format

A data frame with 4 variables and 40 observations:

case subject id

relationship_status Relationship status on social network platform

couple amount of friend requests when profile picture as couple

alone amount of friend requests when profile picture as single

Details

Dataset from Field et al. book (p. 644).

References

Field, A., Miles, J, & Field, Z. (2012). Discovering Statistics Using R. Sage.

Examples

picture
summary(picture)

Pygmalion

Pygmalion Data

Description

The Pygmalion effect is the phenomenon where higher expectations lead to an increase in performance. For instance, when teachers expect students to do well and show intellectual growth, they do; when teachers do not have such expectations, performance and growth are not so encouraged and may in fact be discouraged in a variety of ways. This dataset contains reasoning IQ scores of children. For the experimental group, positive expectancies had been suggested to teachers after the pretest. For the experimental group, no expectancies had been suggested after the pretest. For both groups we have reasoning IQ posttest scores. The dataset is taken from Elashoff and Snow (1970).

Usage

Pygmalion

Format

A data frame with 3 variables and 114 observations:

Pretest pretest score

Posttest posttest score

Group treatment vs. control

References

Elashoff, J. D., & Snow, R. E. (1970). A case study in statistical inference: Reconsideration of the Rosenthal-Jacobson data on teacher expectancy. Technical Report No. 15, School of Education, Stanford University.

Wilcox, R. (2012). Introduction to Robust Estimation and Hypothesis Testing (3rd ed.). Elsevier.

Examples

summary(Pygmalion)

Qanova

Description

One-way ANOVA based on quantiles. Only known method to work well when tied values are likely to occur.

Usage

Qanova(formula, data, q = 0.5, nboot = 600)

Arguments

formula	an object of class formula.
data	an optional data frame for the input data.
q	quantile (or vector of quantiles) to be used.
nboot	number of bootstrap samples

Details

Test global hypothesis that J independent groups have equal quantiles (default: median) using the Harrell-Davis estimator. Performs well when there are tied values.

Value

Qanova an object of class "qanova" containing:

psihat	value of the test statistics
contrasts	contrasts
p.value	p-value
call	function call

References

Wilcox, R. (2012). Introduction to Robust Estimation and Hypothesis Testing (3rd ed.). Elsevier.

See Also

qcomhd, t1way, discANOVA

rmanova

Examples

```
## median comparison
set.seed(123)
fitmed <- Qanova(libido ~ dose, viagra, nboot = 200)
fitmed
## 1st, 3rd quartile comparison
set.seed(123)
fitquart <- Qanova(libido ~ dose, viagra, q = c(0.25, 0.75), nboot = 200)
fitquart</pre>
```

rmanova	A heteroscedastic one-way repeated measures ANOVA for trimmed
	means.

Description

The rmanova function computes a one-way repeated measures ANOVA for the trimmed means. Homoscedasticity assumption not required. Corresponding post hoc tests can be performed using rmmcp.

Usage

rmanova(y, groups, blocks, tr = 0.2)
rmmcp(y, groups, blocks, tr = 0.2, alpha = 0.05)

Arguments

У	a numeric vector of data values (response).
groups	a vector giving the group of the corresponding elements of y.
blocks	a vector giving the block of the corresponding elements of y.
tr	trim level for the mean.
alpha	alpha level for post hoc comparisons.

Value

rmanova an object of class "t1way" containing:

test	value of the test statistic
df1	degrees of freedom
df2	degrees of freedom
p.value	p-value
call	function call

rmanovab

rmmcp returns an object of class "mcp1" containing:

comp	inference for all pairwise comparisons
fnames	names of the factor levels

References

Wilcox, R. (2012). Introduction to Robust Estimation and Hypothesis Testing (3rd ed.). Elsevier.

See Also

rmanovab, med1way, t1way

Examples

```
head(WineTasting)
rmanova(WineTasting$Taste, WineTasting$Wine, WineTasting$Taster)
```

post hoc
rmmcp(WineTasting\$Taste, WineTasting\$Wine, WineTasting\$Taster)

```
head(bush)
require(reshape)
bushLong <- melt(bush, id.var = "participant", variable_name = "food")
rmanova(bushLong$value, bushLong$food, bushLong$participant)</pre>
```

```
## post hoc
rmmcp(bushLong$value, bushLong$food, bushLong$participant)
```

rmanovab

A heteroscedastic one-way repeated measures bootstrap ANOVA for trimmed means.

Description

The rmanovab function computes a bootstrap version of the one-way repeated measures ANOVA for the trimmed means. Homoscedasticity assumption not required. Corresponding post hoc tests can be performed using pairdepb.

Usage

```
rmanovab(y, groups, blocks, tr = 0.2, nboot = 599)
pairdepb(y, groups, blocks, tr = 0.2, nboot = 599)
```

Arguments

У	a numeric vector of data values (response).
groups	a vector giving the group of the corresponding elements of y.
blocks	a vector giving the block of the corresponding elements of y.
tr	trim level for the mean.
nboot	number of bootstrap samples.

Value

rmanovab an object of class "rmanovab" containing:

test	value of the test statistic	
crit	critical value	
call	function call	
pairdepb returns an object of class "mcp2" containing:		
comp	inference for all pairwise comparisons	
fnames	names of the factor levels	

References

Wilcox, R. (2012). Introduction to Robust Estimation and Hypothesis Testing (3rd ed.). Elsevier.

See Also

rmanova

Examples

```
set.seed(123)
rmanovab(WineTasting$Taste, WineTasting$Wine, WineTasting$Taster, nboot = 300)
## post hoc
set.seed(123)
pairdepb(WineTasting$Taste, WineTasting$Wine, WineTasting$Taster, nboot = 300)
```

runmean

Description

The runmean implements a running interval smoother on the trimmed mean, rungen uses general M-estimators, runmbo performs interval smoothing on M-estimators with bagging.

Usage

runmean(x, y, fr = 1, tr = 0.2)
rungen(x, y, fr = 1, est = "mom")
runmbo(x, y, fr = 1, est = "mom", nboot = 40)

Arguments

х	a numeric vector of data values (predictor)
У	a numeric vector of data values (response)
fr	smoothing factor (see details)
tr	trim level for the mean
est	type of M-estimator ("mom", "onestep", or "median")
nboot	number of bootstrap samples

Details

The larger the smoothing factor, the stronger the smoothing. Often the choice fr = 1 gives good results; the general strategy is to find the smallest constant so that the plot looks reasonably smooth.

Value

Returns the fitted values.

References

Wilcox, R. (2012). Introduction to Robust Estimation and Hypothesis Testing (3rd ed.). Elsevier.

See Also

ancova

Examples

```
## trimmed mean smoother
fitmean <- runmean(Pygmalion$Pretest, Pygmalion$Posttest)</pre>
## MOM smoother
fitmest <- rungen(Pygmalion$Pretest, Pygmalion$Posttest)</pre>
## median smoother
fitmed <- rungen(Pygmalion$Pretest, Pygmalion$Posttest, est = "median")</pre>
## bagged onestep smoother
fitbag <- runmbo(Pygmalion$Pretest, Pygmalion$Posttest, est = "onestep")</pre>
## plot smoothers
plot(Pygmalion$Pretest, Pygmalion$Posttest, col = "gray", xlab = "Pretest", ylab = "Posttest",
     main = "Pygmalion Smoothing")
orderx <- order(Pygmalion$Pretest)</pre>
lines(Pygmalion$Pretest[orderx], fitmean[orderx], lwd = 2)
lines(Pygmalion$Pretest[orderx], fitmest[orderx], lwd = 2, col = 2)
lines(Pygmalion$Pretest[orderx], fitmed[orderx], lwd = 2, col = 3)
lines(Pygmalion$Pretest[orderx], fitbag[orderx], lwd = 2, col = 4)
legend("topleft", legend = c("Trimmed Mean", "MOM", "Median", "Bagged Onestep"), col = 1:4, lty = 1)
```

spider

Arachnophobes

Description

24 arachnophobes were used in all. 12 were asked to play with a big hairy tarantula spider with big fangs and an evil look. Their subsequent anxiety was measured. The remaining 12 were shown only picture of the same hairy tarantula. Again, the anxiety was measured.

Usage

spider

Format

A data frame with 2 variables and 24 observations:

Group picture vs. real spider

Anxiety anxiety measure

Details

Dataset from Field et al. book (p. 362).

References

Field, A., Miles, J, & Field, Z. (2012). Discovering Statistics Using R. Sage.

swimming

Examples

spider

swimming

Optimistic and Pessimistic Swimmers

Description

At a swimming team practice, all participants were asked to swim their best event as far as possible, but in each case the time that was reported was falsified to indicate poorer than expected performance (i.e., each swimmer was disappointed). 30 min later, they did the same performance. The authors predicted that on the second trial more pessimistic swimmers would do worse than on their first trial, whereas optimistic swimmers would do better. The response is ratio = Time1/Time2 (> 1 means that a swimmer did better in trial 2).

Usage

swimming

Format

A data frame with 4 variables and 58 observations:

Optim Optimists and pessimists

Sex Gender of the swimmer

Event Swimming event: freestyle, breaststroke, backstroke

Ratio Ratio between the swimming times

References

Seligman, M. E. P., Nolen-Hoeksema, S., Thornton, N., & Thornton, C. M. (1990). Explanatory style as a mechanism of disappointing athletic performance. Psychological Science, 1, 143-146.

Examples

summary(swimming)

t1way

Description

The t1way function computes a one-way ANOVA on trimmed means. Homoscedasticity assumption not required. It uses a generalization of Welch's method. Corresponding post hoc tests can be performed using lincon.

Usage

t1way(formula, data, tr = 0.2, alpha = 0.05, nboot = 100) lincon(formula, data, tr = 0.2, alpha = 0.05)

Arguments

formula	an object of class formula.
data	an optional data frame for the input data.
tr	trim level for the mean.
alpha	alpha level for CI computation.
nboot	number of bootstrap samples for effect size CI computation.

Details

In the post hoc computations, confidence intervals are adjusted to control FWE, but p-values are not adjusted to control FWE.

Value

t1way returns an object of class "t1way" containing:

test	value of the test statistic (F-statistic)
df1	degrees of freedom
df2	degrees of freedom
p.value	p-value
effsize	explanatory measure of effect size
effsize_ci	boostrap effect size CI
call	function call
. .	

lincon returns an object of class "mcp1" containing:

comp	inference for all pairwise comparisons
fnames	names of the factor levels

t1waybt

References

Wilcox, R. (2012). Introduction to Robust Estimation and Hypothesis Testing (3rd ed.). Elsevier.

See Also

med1way,t1waybt

Examples

```
set.seed(123)
t1way(libido ~ dose, data = viagra)
## post hoc tests
lincon(libido ~ dose, data = viagra)
```

t1waybt

Bootstrap version of the heteroscedastic one-way ANOVA for trimmed means.

Description

Test the hypothesis of equal trimmed means using a percentile t bootstrap method. Corresponding post hoc tests are provided in mcppb20.

Usage

t1waybt(formula, data, tr = 0.2, nboot = 599) mcppb20(formula, data, tr = 0.2, nboot = 599)

Arguments

formula	an object of class formula.
data	an optional data frame for the input data.
tr	trim level for the mean.
nboot	number of bootstrap samples.

Value

Returns an object of class t1waybt containing:

test	value of the test statistic
p.value	p-value
Var.Explained	explained amount of variance
Effect.Size	effect size
nboot.eff	effective number of bootstrap samples
call	function call

mcppb20 returns an ob	pject of class	"mcp1"	containing:
-----------------------	----------------	--------	-------------

comp	inference for all pairwise comparisons
fnames	names of the factor levels

References

Wilcox, R. (2012). Introduction to Robust Estimation and Hypothesis Testing (3rd ed.). Elsevier.

See Also

t1way,med1way

Examples

t1waybt(libido ~ dose, data = viagra)
post hoc
mcppb20(libido ~ dose, data = viagra)

```
t2way
```

A two-way ANOVA for trimmed means, M-estimators, and medians.

Description

The t2way function computes a two-way ANOVA for trimmed means with interactions effects. Corresponding post hoc tests are in mcp2atm. pbad2way performs a two-way ANOVA using Mestimators for location with mcp2a for post hoc tests.

Usage

```
t2way(formula, data, tr = 0.2)
pbad2way(formula, data, est = "mom", nboot = 599, pro.dis = FALSE)
mcp2atm(formula, data, tr = 0.2)
mcp2a(formula, data, est = "mom", nboot = 599)
```

Arguments

formula	an object of class formula.
data	an optional data frame for the input data.
tr	trim level for the mean.
est	Estimate to be used for the group comparisons: either "onestep" for one-step M-estimator of location using Huber's Psi, "mom" for the modified one-step (MOM) estimator of location based on Huber's Psi, or "median".
nboot	number of bootstrap samples.
pro.dis	If FALSE, Mahalanobis distances are used; if TRUE projection distances are computed.

t2way

Details

t2way does not report any degrees of freedom since an adjusted critical value is used. pbad2way returns p-values only; if it happens that the variance-covariance matrix in the Mahalanobis distance computation is singular, it is suggested to use the projection distances by setting pro.dis = TRUE.

Value

The functions t2way and pbad2way return an object of class t2way containing:

Qa	first main effect
A.p.value	p-value first main effect
Qb	second main effect
B.p.value	p-value second main effect
Qab	interaction effect
AB.p.value	p-value interaction effect
call	function call
varnames	variable names
dim	design dimensions

The functions mcp2atm and mcp2a return an object of class mcp containing:

effects	list with post hoc comparisons for all effects
contrasts	design matrix

References

Wilcox, R. (2012). Introduction to Robust Estimation and Hypothesis Testing (3rd ed.). Elsevier.

See Also

t1way, med1way, t2way

Examples

```
## 2-way ANOVA on trimmed means
t2way(attractiveness ~ gender*alcohol, data = goggles)
```

post hoc tests
mcp2atm(attractiveness ~ gender*alcohol, data = goggles)

```
## 2-way ANOVA on MOM estimator
pbad2way(attractiveness ~ gender*alcohol, data = goggles)
```

```
## post hoc tests
mcp2a(attractiveness ~ gender*alcohol, data = goggles)
```

```
## 2-way ANOVA on medians
pbad2way(attractiveness ~ gender*alcohol, data = goggles, est = "median")
```

```
## post hoc tests
mcp2a(attractiveness ~ gender*alcohol, data = goggles, est = "median")
## extract design matrix
model.matrix(mcp2a(attractiveness ~ gender*alcohol, data = goggles, est = "median"))
```

```
t3way
```

A three-way ANOVA for trimmed means.

Description

This function computes a three-way ANOVA for trimmed means with all interactions effects.

Usage

t3way(formula, data, tr = 0.2)

Arguments

formula	an object of class formula.
data	an optional data frame for the input data.
tr	trim level for the mean.

Value

Returns an object of class t3way containing:

Qa	first main effect
A.p.value	p-value first main effect
Qb	second main effect
B.p.value	p-value second main effect
Qc	third main effect
C.p.value	p-value third main effect
Qab	first two-way interaction effect
AB.p.value	p-value first two-way interaction effect
Qac	second two-way interaction effect
AC.p.value	p-value second two-way interaction effect
Qbc	third two-way interaction effect
BC.p.value	p-value third two-way interaction effect
Qabc	three-way interaction effect
ABC.p.value	p-value three-way interaction effect
call	function call
varnames	variable names

trimse

References

Wilcox, R. (2012). Introduction to Robust Estimation and Hypothesis Testing (3rd ed.). Elsevier.

See Also

t1way, t2way

Examples

```
t3way(aggressive ~ degree*gender*type, data = movie)
```

trimse

Robust location measures and their standard errors (se).

Description

The following functions for estimating robust location measures and their standard errors are provided: winmean for the Winsorized mean, winse for its se, trimse for the trimmend mean se, msmedse for the median se, mest for the M-estimator with se in mestse. The functions onestep and mom compute the one-step and modified one-step (MOM) M-estimator. The Winsorized variance is implemented in winvar.

Usage

```
winmean(x, tr = 0.2, na.rm = FALSE)
winvar(x, tr = 0.2, na.rm = FALSE, STAND = NULL)
winse(x, tr = 0.2)
trimse(x, tr = 0.2, na.rm = FALSE)
msmedse(x, sewarn = TRUE)
mest(x, bend = 1.28, na.rm = FALSE)
mestse(x, bend = 1.28, na.rm = FALSE, MED = TRUE)
mom(x, bend = 2.24, na.rm = TRUE)
```

Arguments

х	a numeric vector containing the values whose measure is to be computed.
tr	trim lor Winsorizing level.
na.rm	a logical value indicating whether NA values should be stripped before the computation proceeds.
sewarn	a logical value indicating whether warnings for ties should be printed.
bend	bending constant for M-estimator.
MED	if TRUE, median is used as initial estimate.
STAND	no functionality, kept for WRS compatibility purposes.
sewarn bend MED	putation proceeds. a logical value indicating whether warnings for ties should be printed. bending constant for M-estimator. if TRUE, median is used as initial estimate.

Details

The standard error for the median is computed according to McKean and Shrader (1984).

References

Wilcox, R. (2012). Introduction to Robust Estimation and Hypothesis Testing (3rd ed.). Elsevier.

McKean, J. W., & Schrader, R. M. (1984). A comparison of methods for studentizing the sample median. Communications in Statistics - Simulation and Computation, 13, 751-773.

Dana, E. (1990). Salience of the self and salience of standards: Attempts to match self to standard. Unpublished PhD thesis, Department of Psychology, University of Southern California.

Examples

```
## Self-awareness data (Dana, 1990): Time persons could keep a portion of an
## apparatus in contact with a specified range.
self <- c(77, 87, 88, 114, 151, 210, 219, 246, 253, 262, 296, 299, 306, 376,
          428, 515, 666, 1310, 2611)
mean(self, 0.1)
                   ## .10 trimmed mean
trimse(self, 0.1) ## se trimmed mean
winmean(self, 0.1) ## Winsorized mean (.10 Winsorizing amount)
                   ## se Winsorized mean
winse(self, 0.1)
winvar(self, 0.1) ## Winsorized variance
median(self)
                   ## median
msmedse(self)
                   ## se median
                   ## Huber M-estimator
mest(self)
mestse(self)
onestep(self)
                  ## one-step M-estimator
                   ## modified one-step M-estimator
mom(self)
```

twocor

Confidence intervals for two-sided tests on correlation coefficients.

Description

The twopcor function tests whether the difference between two Pearson correlations is 0. The twocor function performs the same test on a robust correlation coefficient (percentage bend correlation or Winsorized correlation).

Usage

```
twopcor(x1, y1, x2, y2, nboot = 599)
twocor(x1, y1, x2, y2, corfun = "pbcor", nboot = 599, tr = 0.2, beta = 0.2)
```

twocor

Arguments

x1	a numeric vector.
у1	a numeric vector.
x2	a numeric vector.
у2	a numeric vector.
nboot	number of bootstrap samples.
corfun	Either "pbcor" for percentage based correlation or "wincor" for Winsorized correlation.
tr	amount of Winsorization.
beta	bending constant.

Details

It is tested whether the first correlation coefficient (based on x1 and y1) equals to the second correlation coefficient (based on x2 and y2). Both approaches return percentile bootstrap CIs.

Value

twopcor and twocor return an object of class "twocor" containing:

robust correlation coefficient
value of the test statistic
confidence interval
p-value
function call

References

Wilcox, R. (2012). Introduction to Robust Estimation and Hypothesis Testing (3rd ed.). Elsevier.

See Also

pbcor, wincor

Examples

```
ct1 <- subset(hangover, subset = (group == "control" & time == 1))$symptoms
ct2 <- subset(hangover, subset = (group == "control" & time == 2))$symptoms
at1 <- subset(hangover, subset = (group == "alcoholic" & time == 1))$symptoms
at2 <- subset(hangover, subset = (group == "alcoholic" & time == 2))$symptoms
set.seed(111)
twopcor(ct1, ct2, at1, at2)
set.seed(123)
twocor(ct1, ct2, at1, at2, corfun = "pbcor", beta = 0.15)
set.seed(224)
twocor(ct1, ct2, at1, at2, corfun = "wincor", tr = 0.15, nboot = 50)
```

viagra

Description

Participants were assigned randomly to three viagra dosages (placebo, low dosage, high dosage). The dependent variable was an objective measure of libido.

Usage

viagra

Format

A data frame with 2 variables and 15 observations:

dose viagra dosage

libido objective measure of libido

Details

Artificial dataset from Field et al. book (p. 401).

References

Field, A., Miles, J, & Field, Z. (2012). Discovering Statistics Using R. Sage.

Examples

viagra

WineTasting

Wine Tasting

Description

In this hypothetical dataset we have three types of wine (A, B and C). We asked 22 friends to taste each of the three wines (in a blind fold fashion), and then to give a grade of 1 to 7. We asked them to rate the wines 5 times each, and then averaged their results to give a number for a persons preference for each wine.

Usage

WineTasting

yuen

Format

A data frame with 3 variables and 66 observations:

Taste Taste Rating Wine Wine (A, B, C) Taster Taster (index)

Examples

WineTasting summary(WineTasting)

yuen

Independent samples t-tests on robust location measures including effect sizes.

Description

The function yuen performs Yuen's test for trimmed means, yuenbt is a bootstrap version of it. akp.effect and yuen.effect.ci can be used for effect size computation. The pb2gen function performs a t-test based on various robust estimators, medpb2 compares two independent groups using medians, and qcomhd compares arbitrary quantiles.

Usage

Arguments

formula	an object of class formula.
data	an optional data frame for the input data.
tr	trim level for the mean.
nboot	number of bootstrap samples.
side	side = TRUE indicates two-sided method using absolute value of the test statis- tics within the bootstrap; otherwise the equal-tailed method is used.
est	estimate to be used for the group comparisons: either "onestep" for one-step M-estimator of location using Huber's Psi, "mom" for the modified one-step (MOM) estimator of location based on Huber's Psi, or "median", "mean".

q	quantiles to be used for comparison.
alpha	alpha level.
ADJ.CI	whether CIs should be adjusted.
EQVAR	whether variances are assumed to be equal across groups.

Details

If yuenbt is used, p-value computed only when side = TRUE. medpb2 is just a wrapper function for pb2gen with the median as M-estimator. It is the only known method to work well in simulations when tied values are likely to occur.qcomhd returns p-values and critical p-values based on Hochberg's method.

Value

Returns objects of classes "yuen" or "pb2" containing:

test	value of the test statistic (t-statistic)	
p.value	p-value	
conf.int	confidence interval	
df	degress of freedom	
diff	trimmed mean difference	
effsize	explanatory measure of effect size	
call	function call	
qcomhd returns an object of class "robtab" containing:		

partable parameter table

References

Algina, J., Keselman, H.J., & Penfield, R.D. (2005). An alternative to Cohen's standardized mean difference effect size: A robust parameter and confidence interval in the two independent groups xase. Psychological Methods, 10, 317-328.

Wilcox, R. (2012). Introduction to Robust Estimation and Hypothesis Testing (3rd ed.). Elsevier.

Wilcox, R., & Tian, T. (2011). Measuring effect size: A robust heteroscedastic approach for two or more groups. Journal of Applied Statistics, 38, 1359-1368.

Yuen, K. K. (1974). The two sample trimmed t for unequal population variances. Biometrika, 61, 165-170.

See Also

t1way,t1waybt

yuend

Examples

```
set.seed(123)
## Yuen's test
yuen(Anxiety ~ Group, data = spider)
## Bootstrap version of Yuen's test (symmetric CIs)
yuenbt(Anxiety ~ Group, data = spider)
## Robust Cohen's delta
akp.effect(Anxiety ~ Group, data = spider)
## Using an M-estimator
pb2gen(Anxiety ~ Group, data = spider, est = "mom")
pb2gen(Anxiety ~ Group, data = spider, est = "mean")
pb2gen(Anxiety ~ Group, data = spider, est = "median")
## Using the median
medpb2(Anxiety ~ Group, data = spider)
## Quantiles
set.seed(123)
qcomhd(Anxiety ~ Group, data = spider, q = c(0.8, 0.85, 0.9), nboot = 500)
```

yuend

Paired samples robust t-tests.

Description

The function yuend performs Yuen's test on trimmed means for dependent samples. Dqcomhd compares the quantiles of the marginal distributions associated with two dependent groups via hd estimator. Tied values are allowed. dep.effect computes various effect sizes and confidence intervals for two dependent samples (see Details).

Usage

yuend(x, y, tr = 0.2) Dqcomhd(x, y, q = c(1:9)/10, nboot = 1000, na.rm = TRUE) dep.effect(x, y, tr = 0.2, nboot = 1000)

Arguments

х	an numeric vector of data values (e.g. for time 1).
У	an numeric vector of data values (e.g. for time 2).
tr	trim level for the means.
q	quantiles to be compared.
nboot	number of bootstrap samples.
na.rm	whether missing values should be removed.

Details

The test statistic is a paired samples generalization of Yuen's independent samples t-test on trimmed means.

dep.effect computes the following effect sizes:

AKP: robust standardized difference similar to Cohen's d

QS: Quantile shift based on the median of the distribution of difference scores,

QStr: Quantile shift based on the trimmed mean of the distribution of X-Y

SIGN: P(X<Y), probability that for a random pair, the first is less than the second.

Value

yuend returns an object of class "yuen" containing:

test	value of the test statistic (t-statistic)	
p.value	p-value	
conf.int	confidence interval	
df	degress of freedom	
diff	trimmed mean difference	
call	function call	
Dqcomhd returns an object of class "robtab" containing:		

partable parameter table

dep.effect returns a matrix with the null value of the effect size, the estimated effect size, small/medium/large conventions, and lower/upper CI bounds.

References

Wilcox, R. (2012). Introduction to Robust Estimation and Hypothesis Testing (3rd ed.). Elsevier.

See Also

yuen, qcomhd

Examples

```
## Cholesterol data from Wilcox (2012, p. 197)
before <- c(190, 210, 300,240, 280, 170, 280, 250, 240, 220)
after <- c(210, 210, 340, 190, 260, 180, 200, 220, 230, 200)
yuend(before, after)
set.seed(123)
Dqcomhd(before, after, nboot = 200, q = c(0.25, 0.5, 0.75))
set.seed(123)
dep.effect(before, after)</pre>
```

ZYmediate

Description

Performs a robust mediation test according to the method proposed by Zu & Yuan (2010).

Usage

ZYmediate(x, y, med, nboot = 2000, alpha = 0.05, kappa = 0.05)

Arguments

х	vector with predictor values.
У	vector with response values.
med	vector with mediator values.
nboot	number of bootstrap samples.
alpha	alpha level.
kappa	the percent of cases to be controlled when robust method is used.

Value

ZYmediate returns an object of class "robmed" containing:

a.est	effect of predictor on mediator)
b.est	effect of mediator on response (in multiple regression model which includes the predictor as well)
ab.est	indirect effect (mediation effect)
CI.ab	confidence interval mediation effect
p.value	p-value mediation test
call	function call

References

Zu J., Yuan, K.-H. (2010). Local influence and robust procedures for mediation analysis. Multivariate Behavioral Research, 45, 1-44.

Examples

- ## Leerkes data: ## Y: Efficacy ## X: MatCare ## M: Esteem
- ## fitting robust mediator regressions

```
require(MASS)
summary(rlm(Efficacy ~ MatCare, data = Leerkes))
summary(rlm(Esteem ~ MatCare, data = Leerkes))
summary(rlm(Efficacy ~ MatCare + Esteem, data = Leerkes))
```

robust testing of mediating effect (indirect effect)
with(Leerkes, ZYmediate(MatCare, Efficacy, Esteem))

Index

*Topic datasets bush, 6 chile, 9 diet, 9 electric, 10 essays, 11 eurosoccer, 12 goggles, 12 hangover, 13 invisibility, 14 Leerkes, 15 movie, 18 picture, 21 Pygmalion, 22 spider, 28 swimming, 29 viagra, 38 WineTasting, 38 *Topic **models** ancova, 2 binband, 4 bwtrim, 7 med1way, 15 med2way, 16 onesampb, 18 pbcor, 19 Qanova, 23 rmanova, 24 rmanovab, 25 runmean, 27 t1way, 30t1waybt, 31 t2way, 32t3way, 34 trimse, 35 twocor, 36 yuen, <u>39</u> yuend, 41 ZYmediate, 43

akp.effect (yuen), 39 ancboot (ancova), 2 ancova, 2, 27 binband, 4 bush, 6 bwtrim.7 chile, 9 dep.effect (yuend), 41 diet, 9 discANOVA, 23 discANOVA (binband), 4 discmcp (binband), 4 discstep (binband), 4 Dqcomhd (yuend), 41 electric, 10essays, 11 eurosoccer, 12 goggles, 12 hangover, 13invisibility, 14 Leerkes, 15 lincon (t1way), 30 mcp2a (t2way), 32 mcp2atm(t2way), 32 mcppb20 (t1waybt), 31 med1way, 15, 17, 25, 31-33 med2way, 16 medpb2 (yuen), 39 mest (trimse), 35 mestse (trimse), 35 model.matrix.mcp(t2way), 32 mom (trimse), 35

INDEX

movie, 18 msmedse (trimse), 35 onesampb, 18 onestep (trimse), 35 pairdepb (rmanovab), 25 pb2gen (yuen), 39 pbad2way (t2way), 32 pball (pbcor), 19 pbcor, 19, 37 picture, 21 print.ancova(ancova), 2 print.mcp(t2way), 32 print.med1way(med1way), 15 print.pb2(yuen), 39 print.pbcor (pbcor), 19 print.t1way(t1way), 30 print.t1waybt(t1waybt), 31 print.t2way(t2way), 32 print.t3way(t3way), 34 print.twocor(twocor), 36 print.yuen(yuen), 39 Pygmalion, 22 Qanova, 5, 16, 23 gcomhd, 23, 42 qcomhd (yuen), 39 rmanova, 24, 26 rmanovab, 25, 25 rmmcp (rmanova), 24 rungen (runmean), 27 runmbo (runmean), 27 runmean, 27 spider, 28 sppba(bwtrim), 7 sppbb (bwtrim), 7 sppbi(bwtrim), 7 swimming, 29 t1way, 5, 16, 19, 23, 25, 30, 32, 33, 35, 40 t1waybt, *16*, *31*, *31*, *40* t2way, 3, 8, 17, 32, 33, 35 t3way, 34 trimse, 35 tsplit(bwtrim), 7 twocor, 21, 36 twopcor (twocor), 36

viagra, <mark>38</mark>

winall (pbcor), 19
wincor, 37
wincor (pbcor), 19
WineTasting, 38
winmean (trimse), 35
winse (trimse), 35
winvar (trimse), 35

yuen, 39, 42 yuenbt (yuen), 39 yuend, 41

ZYmediate, 43