
Package ‘VTrack’
February 22, 2018

Type Package

Title A Collection of Tools for the Analysis of Remote Acoustic
Telemetry Data

Version 1.21

Date 2018-02-22

Author Ross G. Dwyer, Mathew E. Watts, Hamish A. Campbell, Vinay Udyawer & Craig E. Franklin

Maintainer Ross Dwyer <ross.dwyer@uq.edu.au>

Description Designed to facilitate the assimilation, analysis and synthesis of animal loca-
tion and movement data collected by the VEMCO suite of acoustic transmitters and re-
ceivers. As well as database and geographic information capabilities the principal fea-
ture of VTrack is the qualification and identification of ecologically rele-
vant events from the acoustic detection and sensor data. This procedure condenses the acous-
tic detection database by orders of magnitude, greatly enhancing the synthesis of acoustic detec-
tion data.

Depends R (>= 3.3.0), foreach(>= 1.2.0)

Imports plotKML, sp, spacetime, doParallel, XML, intervals, gstat,
Hmisc, checkmate, gdistance, raster, plyr, lubridate

License GPL (>= 2)

URL http://www.uq.edu.au/eco-lab/v-track

Encoding latin1

Suggests testthat

RoxygenNote 6.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2018-02-22 11:27:07 UTC

R topics documented:
VTrack-package . 2
AATAMS1 . 3

1

http://www.uq.edu.au/eco-lab/v-track

2 VTrack-package

COA . 4
ComputeAzimuth . 5
ComputeDistance . 6
crocs . 6
ExtractData . 8
ExtractRecSummary . 10
ExtractStationSummary . 11
ExtractTagSummary . 12
ExtractUniqueValues . 13
GenerateAnimationKMLFile . 14
GenerateAnimationKMLFile_Multitag . 16
GenerateAnimationKMLFile_Track . 17
GenerateCircuitousDistance . 19
GenerateDirectDistance . 20
GenerateLeastCostDistance . 21
NonResidenceExtractId . 22
PointsCircuitous_crocs . 23
PointsDirect_AATAMS1 . 24
PointsDirect_crocs . 25
ReadInputData . 26
ReturnVR2Distance . 28
RunResidenceExtraction . 29
RunSensorEventExtraction . 33
RunTimeProfile . 36

Index 40

VTrack-package VTrack: A Collection of Tools for the Analysis of Remote Acoustic
Telemetry Data

Description

The package VTrack was designed by researchers at the University of Queensland to allow the
analysis and visualisation of data generated from the VEMCO suite of passive and active acoustic
receivers.

Details

Package: VTrack
Type: Package
Version: 1.21
Date: 2018-02-22
License: GPL(>=2)

AATAMS1 3

Author(s)

Ross Dwyer, Mathew Watts, Hamish Campbell & Craig Franklin E.C.O.-lab and the E.D.G., School
of Biological Sciences, University of Queensland, StLucia, Queensland, Australia.

Maintainer: Ross Dwyer <ross.dwyer@uq.edu.au>

References

Campbell, H.A., Watts, M.E., Dwyer, R.G., Franklin, C.E. 2012. V-Track: software for analysing
and visualising animal movement from acoustic telemetry detections. Marine and Freshwater Re-
search, 63:815-820.

AATAMS1 Passive Acoustic Monitoring of one animal in the AATAMS format

Description

This AATAMS dataset contains the relocations of one animal monitored between 08 January 2010
and 15 April 2011. Data supplied by Andrew Boomer from AATAMS-IMOS.

Usage

data(AATAMS1)

Format

A data frame with 2735 observations on the following 10 variables.

timestamp a vector of type POSIXct in Co-ordinated Universal Time (UTC) Greenwich Mean
Time

station.name a character vector specifying the user-defined location for a particular deploy-
ment. This is usually assigned and recorded in the receivers memory in VUE before receiver
deployment. Multiple receivers may be associated with the same station.name

latitude a numeric vector containing the location’s latitude (decimal degrees)

longitude a numeric vector containing the location’s longitude (decimal degrees)

receiver.ID a character vector specifying the unique identity of each receiver according to their
model and serial number (i.e. VR2W-101731)

tag.ID a character vector containing either a combination of the code space and factory assigned
transmitter ID number (i.e. 346)

species the species being studied. NA suggests that no species name was supplied

uploader a character vector giving the identity of person who uploaded the data

transmitter.ID a numeric vector containing the factory assigned transmitter serial number,
A69-1303-7796

organisation a character vector giving the organisation to which the data belongs. Data belongs
to AATAMS-IMOS

4 COA

Details

The coordinates are given in decimal degrees (WGS 84), time is GMT+10hrs.

Source

http://imos.org.au/home.html

Examples

Load the data and print the first few rows of the data frame
data(AATAMS1)
head(AATAMS1)

COA Short-term Centers of Activity

Description

Function to calculate Short-term centers of activity positions from passive telemetry data. Based on
technique described in: Simpfendorfer, C. A., M. R. Heupel, and R. E. Hueter. 2002. Estimation of
short-term centers of activity from an array of omnidirectional hydrophones and its use in studying
animal movements. Canadian Journal of Fisheries and Aquatic Sciences 59:23-32.

Usage

COA(tagdata, id, timestep, ...)

Arguments

tagdata a data frame containing acoustic tracking data in the VEMCO VUE export for-
mat (default). file must contain Longitude Latitude information

id a character string containing column name in the data frame for the unique tag
identifier

timestep an integer containing the temporal bin size of center of activity calculations (in
minutes)

... Graphical parameters. Any argument that can be passed to image.plot and to
plot, such as axes=FALSE, main=’title’, ylab=’latitude’

Value

Exports a data frame when one tag is used and a list object containing multiple data frames when
multiple tag ids are used

DateTime a factor of the temporal bin used in the COA analysis 'yyyy-mm-dd HH:MM:SS'

Transmitter a character vector giving the code space and tag id code
Transmitter.Name

a factor containing the name of the animal as identified by the user

http://imos.org.au/home.html

ComputeAzimuth 5

Transmitter.Serial

an numeric vector of the transmitter serial number
Sensor.Value.coa

a numeric vector containing the mean sensor value for a temporal bin

Sensor.unit a character vector csensor unit

Latitude.COA a numeric vector containing the mean Latitude value for a temporal bin)

Longitude.COA a numeric vector containing the mean Longitude value for a temporal bin

Author(s)

Vinay Udyawer, Colin Simpfendorfer

ComputeAzimuth Compute the Azimuth Between Two Coordinates

Description

This function computes the Azimuth from two geographical coordinates. These locations must be
in decimal degrees.

Usage

ComputeAzimuth(lat1, lat2, lon1, lon2)

Arguments

lat1 the latitude of the first coordinate

lat2 the latitude of the second coordinate

lon1 the longitude of the first coordinate

lon2 the longitude of the second coordinate

Details

Coordinates are given in decimal degrees (WGS 84)

6 crocs

ComputeDistance Compute the Distance Between Two Coordinates

Description

This function computes the distance between two geographical coordinates. These locations must
be in decimal degrees.

Usage

ComputeDistance(Lat1, Lat2, Lon1, Lon2)

Arguments

Lat1 the latitude of the first coordinate

Lat2 the latitude of the second coordinate

Lon1 the longitude of the first coordinate

Lon2 the longitude of the second coordinate

Details

Coordinates are given in decimal degrees (WGS 84)

Examples

Calculate the distance between two coordinates
ComputeDistance(-12.19506,-12.19477,141.8946,141.8980)

crocs Passive Acoustic Monitoring of Saltwater Crocodiles

Description

This VEMCO dataset contains the relocations of 3 saltwater crocodiles monitored between 09
September 2008 to 31 December 2008 on the Wenlock River, Cape York, Queensland, Australia.
Data supplied H. Campbell from the School of Biological Sciences, The University of Queensland,
Queensland, Australia.

Usage

data(crocs)

crocs 7

Format

A data frame with 11229 observations on the following 14 variables.

Date.Time a vector of type POSIXct in Co-ordinated Universal Time (UTC)/ Greenwich Mean
Time

Code.Space a character vector containing the type of coding scheme used for the particular tag
type. This unique identifier encompasses all the information required for a receiver to detect
and decode that particular transmitter (e.g. A69-0001 is an acoustic transmitter operating at a
frequency of 69Hz and has 0001 as a unique number identifier).

ID a numeric vector giving the identity of each transmitter, 94,99,139,138

Sensor.1 a numeric vector giving the value of the environmental sensor such as temperature or
depth at the time of detection

Units.1 a factor with levels m and degrees C

Sensor.2 as this study included coded tags only, no environmental sensor data are present in this
vector

Units.2 as this study included coded tags only, no sensor units are present in this vector

Transmitter.Name a character vector containing user defined animal names

Transmitter.S.N a numeric vector containing the factory assigned transmitter serial number

Receiver.Name a factor specifying the unique identity of each receiver according to their model
and serial number. i.e. VR2W-103548

Receiver.S.N a numeric vector containing the factory assigned receiver serial number i.e. 1035481

Station.Name an optional character vector specifying the user-defined location for a particular
deployment. This is usually assigned and recorded in the receivers memory in VUE before
receiver deployment. Multiple receivers may be associated with the same station name.

Station.Latitude a numeric vector containing the location’s latitude in decimal degrees

Station.Longitude a numeric vector containing the location’s longitude in decimal degrees

Details

The coordinates are given in decimal degrees WGS 84, time is GMT +10 hrs

Source

www.uq.edu.au/eco-lab/V-Track

Examples

#load the data and print the first few rows of the data frame
data(crocs)
head(crocs)

www.uq.edu.au/eco-lab/V-Track

8 ExtractData

ExtractData Filter a Subset of Data from a VTrack File

Description

ExtractData enables the user to extract/remove a subset of data (i.e. transmitters, receivers, stations
and time period) from the file. For dual sensor data, this function also allows the user to extract
sensor only data (i.e. temperature or depth data) from the file.

Usage

ExtractData(sInputFile, sQuerySTARTTIME = NULL, sQueryENDTIME = NULL,
sQueryTransmitterList = NULL, sQueryReceiverList = NULL,
sQueryStationList = NULL, sQueryDataType = NULL)

Arguments

sInputFile a data frame containing VTrack-transformed acoustic tracking data
sQuerySTARTTIME

an optional POSIXct string specifying the date/time start point from which data
will be extracted from the original file. Date and time must be in the format
'yyyy-mm-dd HH:MM:SS'. Default is NULL

sQueryENDTIME an optional POSIXct string specifying the date/time end point from which data
will not be extracted from the original file. Date and time must be in the format
'yyyy-mm-dd HH:MM:SS'. Default is NULL

sQueryTransmitterList

an optional character string specifying the individual transmitters to be extracted
from the original file. Default is NULL

sQueryReceiverList

an optional character string specifying the receivers to be extracted from the
original file. Default is NULL

sQueryStationList

an optional character string specifying the stations to be extracted from the orig-
inal file. Default is NULL

sQueryDataType

an optional character string specifying the sensor data type (e.g. depth m) to be
extracted from the original file. Default is NULL

Value

Subsets the original a data frame returning the following components:

DATETIME a vector of class POSIXct of the time of location fix of type 'yyyy-mm-dd HH:MM:SS'

TRANSMITTERID a numeric vector giving the identity of each transmitter (= ID)

SENSOR1 a numeric vector containing the value of the environmental sensor (i.e. temper-
ature or depth) at the time of detection

ExtractData 9

UNITS1 a character vector containing the units of each sensor value (e.g. m)

TRANSMITTERID a character vector containing the identity of each transmitter (= ID or tag ID)

RECEIVERID a character vector containing the factory assigned receiver serial number (=
Receiver S/N or receiver ID)

STATIONNAME a character vector containing the user defined station name (= Station.Name or station name)

Author(s)

Ross Dwyer, Mathew Watts, Hamish Campbell

See Also

ExtractUniqueValues

Examples

Load the crocodile data set
data(crocs)

Convert data into the VTrack archive format
Vcrocs <- ReadInputData(infile=crocs,

iHoursToAdd=10,
dateformat = NULL,
sVemcoFormat='1.0')

Extract list of transmitters from test archive 1
(TransmitterList <- ExtractUniqueValues(Vcrocs,2))

Plot the detections against time for each TRANSMITTERID
par(mfrow=c(1,1),las=1,bty="l")
plot(as.Date(Vcrocs$DATETIME), as.numeric(as.factor(as.numeric(as.character(
Vcrocs$TRANSMITTERID)))),

ylab="TRANSMITTERID",xlab="DATETIME",
yaxt="n",pch=16,cex=0.7)

axis(side=2, at=seq(1,length(TransmitterList),1),
labels = TransmitterList[order(as.numeric(

TransmitterList))])

For TRANSMITTERID 139 plot the detections against time for each RECEIVERID
par(mfrow=c(1,1),las=1,bty="l")
T139 <- ExtractData(Vcrocs,sQueryTransmitterList = c("139"))

Extract data from TRANSMITTERID 139 and plot raw sensor data
par(mfrow=c(1,1),las=1,bty="l")
plot(T139$SENSOR1~
T139$DATETIME,xlab="Date",
ylab="Depth (m)",main=unique(T139[,2]),
pch=16,cex=0.7)

Extract depth only data for a certain time period.
#Vcrocs_Depth <- ExtractData(Vcrocs,

10 ExtractRecSummary

sQueryDataType = "m",
sQuerySTARTTIME = "2008-08-01 21:00:00",
sQueryENDTIME = "2009-10-31 23:03:00")

ExtractRecSummary Extended Function to Extract Summary Data for each Receiver Serial
Number in the File

Description

This function extracts summary data for each receiver serial number in the file

Usage

ExtractRecSummary(sInputFile)

Arguments

sInputFile a data frame containing VTrack archive data, this archive is created using the
ReadInputData function

Details

duration given in days.

Value

RECEIVERID a character vector containing the factory assigned receiver serial number

STATIONNAME a character vector containing the user defined station name

FIRSTDETECT a vector of class POSIXct of the time of the first location fix

NODETECTS a numeric vector giving the number of transmitter location fixes

LASTDETECT a vector of class POSIXct of the time of the last location fix

NOTRANSMITTER a numeric vector giving the number of unique transmitter ids detected

Author(s)

Ross Dwyer

ExtractStationSummary 11

Examples

data(crocs)
Load the crocodile data in the VTrack archive format
adding 10 hours to convert from UTC
Vcrocs <- ReadInputData(infile=crocs,

iHoursToAdd=10,
dateformat = NULL,
sVemcoFormat='1.0')

Extract summary table of receivers in the file
ExtractRecSummary(Vcrocs)

ExtractStationSummary Extended Function to Extract Summary Data for each Station Name
in the File

Description

This function extracts summary data for each station name in the file

Usage

ExtractStationSummary(sInputFile)

Arguments

sInputFile a data frame containing VTrack archive data, this archive is created using the
ReadInputData function

Details

duration given in days.

Value

RECEIVERID a character vector containing the factory assigned receiver serial number

STATIONNAME a character vector containing the user defined station name

FIRSTDETECT a vector of class POSIXct of the time of the first location fix

NODETECTS a numeric vector giving the number of transmitter location fixes

LASTDETECT a vector of class POSIXct of the time of the last location fix

NOTRANSMITTER a numeric vector giving the number of unique transmitter ids detected

Author(s)

Ross Dwyer

12 ExtractTagSummary

Examples

data(crocs)
Load the crocodile data in the VTrack archive format
adding 10 hours to convert from UTC
Vcrocs <- ReadInputData(infile=crocs,

iHoursToAdd=10,
dateformat = NULL,
sVemcoFormat='1.0')

Extract summary table of receiver sstations in the file
ExtractStationSummary(Vcrocs)

ExtractTagSummary Function to Extract Summary Data for each Transmitter in the File

Description

This function extracts summary data for each transmitter in the file

Usage

ExtractTagSummary(sInputFile,sLocation)

Arguments

sInputFile a data frame containing VTrack archive data, this archive is created using the
ReadInputData function

sLocation the location at which we wish to extract our tag summary data (i.e. RECEIVERID
or STATIONNAME). The default is RECEIVERID

Details

distances are given in meters

Value

TRANSMITTERID a character vector containing the factory assigned transmitter tag id

FIRSTDETECT a vector of class POSIXct of the time of the first location fix

LASTDETECT a vector of class POSIXct of the time of the last location fix

NODETECTS a numeric vector giving the number of transmitter location fixes

STARTLOC a character vector containing the first location at which the transmitter was de-
tected

ENDLOC a character vector containing the last location at which the transmitter was de-
tected

NOLOCS a numeric vector giving the number of unique receivers or stations at which the
transmitter was detected

ExtractUniqueValues 13

Author(s)

Ross Dwyer

Examples

Load the crocodile data in the VTrack 1.0 archive format
adding 10 hours to convert from UTC
data(crocs)
Vcrocs <- ReadInputData(infile=crocs,

iHoursToAdd=10,
dateformat = NULL,
sVemcoFormat='1.0')

Extract summary table of transmitters in the file according to receiver serial numbers
ExtractTagSummary(Vcrocs,sLocation="RECEIVERID")

Extract summary table of transmitters in the file according to station names
ExtractTagSummary(Vcrocs,sLocation="STATIONNAME")

ExtractUniqueValues Extract Transmitters Found, or Receivers and Stations Used

Description

Extract a list of the transmitters located, receivers used or stations used during the study.

Usage

ExtractUniqueValues(sInputFile,iFieldToExtract)

Arguments

sInputFile a data frame containing VTrack-transformed tracking data
iFieldToExtract

numeric. Column number of sInputFile relating to field of interest (TRANSMITTERID = 2;
RECEIVERID = 5; STATIONNAME = 6)

Author(s)

Ross Dwyer, Mathew Watts, Hamish Campbell

Examples

data(crocs)
Load the crocodile data in the VTrack archive format
adding 10 hours to convert from UTC
Vcrocs <- ReadInputData(infile=crocs,

iHoursToAdd=10,
dateformat = NULL,

14 GenerateAnimationKMLFile

sVemcoFormat='1.0')

Extract list of transmitters from the crocs dataset
ExtractUniqueValues(Vcrocs,2)

Extract list of receivers from the crocs dataset
ExtractUniqueValues(Vcrocs,5)

GenerateAnimationKMLFile

Create Animation of Transmitter Residences and Movements to View
in Google Earth

Description

This function creates a Keyhole Markup Language (KML) animation of horizontal movements that
can be displayed in Google Earth. The animation shows when a transmitter was within the detection
field of a receiver and when it moved between receivers or stations. Users can adjust the time slider
to visualise individual time periods for display.

Usage

GenerateAnimationKMLFile(sInputResidenceFile, sInputNonResidenceFile,
sInputPointsFile, sOutputFile, sReceiverColour)

Arguments

sInputResidenceFile

the location of a residences event file (.csv) containing the residences table
created using the RunResidenceExtraction function

sInputNonResidenceFile

the location of a nonresidences event file (.csv) containing the nonresidences
table created using the RunResidenceExtraction function

sInputPointsFile

the location of a points file (.csv) containing the latitude and longitude of all the
RECEIVERID or STATIONNAME locations within the array. Location data should
be uploaded in decimal degrees in the WGS 84 datum. In many arrays, animals
may not be capable of moving in a direct line between receivers (e.g. in river
systems). VTrack offers users the flexablity to include other points (with their
corresponding geographical locations) to link receivers along a circuitous path

sOutputFile a string detailing the location and name of the output file to be created
sReceiverColour

colour of the receivers in the output .kml

Details

the output is a .kml that can be viewed as an animation in Google Earth

GenerateAnimationKMLFile 15

Author(s)

Ross Dwyer, Matthew Watts, Hamish Campbell

See Also

GenerateDirectDistance, GenerateCircuitousDistance, RunResidenceExtraction

Examples

Not run:
###GenerateAnimationKMLFile example

Note, users must download Google Earth in order to visualise the kml.
Extract residence and nonresidence events from the archived crocodile data

Load crocodile datset into VTrack archive
data(crocs)
Vcrocs <- ReadInputData(infile=crocs,

iHoursToAdd=10,
dateformat = NULL,
sVemcoFormat='1.0')

Load Wenlock points file and generate circuitous distance matrix
data(PointsCircuitous_crocs)
CircuitousDM <- GenerateCircuitousDistance(PointsCircuitous_crocs)

Extract transmitter #139 data from crocs dataset
T139 <- ExtractData(Vcrocs,sQueryTransmitterList = c("139"))

Extract residence and nonresidence events from the archived crocodile data
Events occur when >1 detections occurs at a receiver and
detections are less than 43200 seconds (12hrs) apart
The circuitous distance matrix is used for distance calculations
T139Res<- RunResidenceExtraction(T139,

"RECEIVERID",
2,
43200,
sDistanceMatrix=CircuitousDM)

The residences event file
T139resid <- T139Res$residences
The nonresidences event file
T139nonresid <- T139Res$nonresidences

Set working directory (in this case a temporary directory)
setwd(tempdir())

Write the files to the temporary directory
write.csv(T139resid,"T139_resid.csv",row.names=FALSE)
write.csv(T139nonresid,"T139_nonresid.csv",row.names=FALSE)
write.csv(PointsCircuitous_crocs,"PointsCircuitous_crocs.csv",row.names=FALSE)

16 GenerateAnimationKMLFile_Multitag

Now generate the .kml animation and save to the temporary directory
GenerateAnimationKMLFile("T139_resid.csv","T139_nonresid.csv","PointsCircuitous_crocs.csv",

"T139.KML","ff0000ff")

This file can be found within the tempdir() directory on your computer.
Double-click on the .kml file to open in Google Earth

End(Not run)

GenerateAnimationKMLFile_Multitag

Create Animation of Multiple Transmitters to View in Google Earth

Description

This function creates a Keyhole Markup Language (KML) animation of transmitter detections at
receivers that can be displayed in Google Earth. The animation shows the number of transmitters
detected within the detection field of a receiver on a given day. Users can adjust the time slider to
visualise individual time periods for display.

Usage

GenerateAnimationKMLFile_Multitag(sInputFile,sPointsFile,sOutputFile,
sLocation="RECEIVERID")

Arguments

sInputFile a data frame containing VTrack archive data, this archive is created using the
ReadInputData function

sPointsFile a data frame containing the RECEIVERID or STATIONNAME, the coordinates
and the detection RADIUS in meters. This should be in the format LOCATION,
LATITUDE, LONGITUDE, RADIUS

sOutputFile a string detailing the location and name of the output kml file to be created

sLocation the location at which we wish to visualise our movement events (i.e. RECEIVERID
or STATIONNAME).

Details

the output is a .kml that can be viewed as an animation in Google Earth

Author(s)

Ross Dwyer

See Also

ReadInputData, GenerateAnimationKMLFile_Track

GenerateAnimationKMLFile_Track 17

Examples

Not run:
###GenerateAnimationKMLFile_Multitag example

Note, users must download Google Earth in order to visualise the kml.

Load crocodile datset into VTrack archive
data(crocs)
data(PointsDirect_crocs)

Vcrocs <- ReadInputData(infile=crocs,
iHoursToAdd=10,
dateformat = NULL,
sVemcoFormat='1.0')

Set working directory (in this case a temporary directory)
setwd(tempdir())
or alternatively to your Desktop on Mac OS
setwd("~/Desktop")

Run the function to generate the KML
GenerateAnimationKMLFile_Multitag(Vcrocs,

PointsDirect_crocs,
"Croc Multi.kml",
sLocation="RECEIVERID")

This file can be found within the tempdir() directory on your computer.
Double-click on the .kml file to open in Google Earth

End(Not run)

GenerateAnimationKMLFile_Track

Create Animation of Transmitter Track to View in Google Earth

Description

This function creates a Keyhole Markup Language (KML) animation of horizontal movements that
can be displayed in Google Earth. The animation shows when a transmitter was within the detection
field of a receiver and when it moved between receivers or stations. Users can adjust the time slider
to visualise individual time periods for display.

Usage

GenerateAnimationKMLFile_Track(sInputFile, sid, sPointsFile,
sOutputFile, sTrackColour,sLocation)

18 GenerateAnimationKMLFile_Track

Arguments

sInputFile a data frame containing VTrack archive data, this archive is created using the
ReadInputData function

sid a string variable containing a single TRANSMITTERID

sPointsFile a data frame containing the RECEIVERID, the coordinates and the detection
RADIUS in meters. This should be in the format LOCATION, LATITUDE,
LONGITUDE, RADIUS

sOutputFile a string detailing the location and name of the output kml file to be created

sTrackColour colour of the tracks in the output .kml

sLocation the location at which we wish to visualise our tracks (i.e. RECEIVERID or STATIONNAME).

Details

the output is a .kml that can be viewed as an animation in Google Earth

Author(s)

Ross Dwyer

See Also

ReadInputData, RunResidenceExtraction, GenerateAnimationKMLFile

Examples

Not run:
###GenerateAnimationKMLFile_Track example

Note, users must download Google Earth in order to visualise the kml

Load crocodile datset into VTrack archive
data(crocs)
Vcrocs <- ReadInputData(infile=crocs,

iHoursToAdd=10,
dateformat = NULL,
sVemcoFormat='1.0')

Load Wenlock points file
data(PointsDirect_crocs)

Set working directory (in this case a temporary directory)
setwd(tempdir())
or alternatively to your Desktop on Mac OS
setwd("~/Desktop")

(TransmitterList <- ExtractUniqueValues(Vcrocs,2)) # Extract the transmitter names
TransmitterList[1] # Let's create the track for this tag

GenerateCircuitousDistance 19

Run the function to generate the KML for a single transmitter
GenerateAnimationKMLFile_Track(Vcrocs, # VTrack archive file

TransmitterList[1], # Transmitter id
PointsDirect_crocs, # points file
"Track1.kml", # file name
"cc69deb3", # colour of the track
sLocation="RECEIVERID")

This file can be found within the tempdir() directory on your computer.
Double-click on the .kml file to open in Google Earth

End(Not run)

GenerateCircuitousDistance

Converts a Points File into a Distance Matrix Using the Circuitous
Distances Along a Series of Receivers or Stations

Description

This function calculates the straight line distance beween a set of geographical coordinates and
generates a matrix containing the distances between each of the locations (i.e. receivers/stations)
minus the detection radius. This function works in series through a set of locations and may contain
waypoints to create indirect paths.

Usage

GenerateCircuitousDistance(sPointsFile)

Arguments

sPointsFile a dataframe containing the LOCATION (i.e. the STATIONNAME or the RE-
CEIVERID), the coordinates and the detection RADIUS in meters. This should
be in the format LOCATION, LATITUDE, LONGITUDE, RADIUS. Waypoints connect-
ing receivers/stations in series should be located between the relevent locations
and have a LOCATION = 0

Value

DM a 2x2 matrix containing the pairwise circuitous DISTANCE between each LOCATION
minus the detection RADIUS. Distances are returned in kilometers

Author(s)

Ross Dwyer, Mathew Watts, Hamish Campbell

See Also

GenerateDirectDistance

20 GenerateDirectDistance

Examples

Load the points file
data(PointsCircuitous_crocs)

Generate the Circuitous Distance Matrix
CircuitousDM <- GenerateCircuitousDistance(PointsCircuitous_crocs)

Now plot example of how circuitous distances between receivers were generated
In this example an individual must follow the course of the river in order to
move between receivers
par(mfrow=c(1,1),las=1,bty="l")
plot(PointsCircuitous_crocs$LONGITUDE,PointsCircuitous_crocs$LATITUDE,

pch=1,cex=0.5,col="grey",xlab="Longitude",ylab="Latitude")
lines(PointsCircuitous_crocs$LONGITUDE,PointsCircuitous_crocs$LATITUDE,

col="grey",lwd=0.3,lty=3)

Receiversonly <- na.omit(PointsCircuitous_crocs)
points(Receiversonly$LONGITUDE,Receiversonly$LATITUDE,pch=10,cex=1)

GenerateDirectDistance

Converts a Points File into a Distance Matrix Using Direct Distances
Between Receivers or Stations

Description

This function calculates the straight line distance between a set of geographical coordinates and
generates a matrix containing the distances between each of the points (i.e. receivers) minus the
detection radius.

Usage

GenerateDirectDistance(sPointsFile)

Arguments

sPointsFile a dataframe containing the LOCATION (i.e. the STATIONNAME or the RE-
CEIVERID), the coordinates and the detection RADIUS in meters. This should
be in the format LOCATION, LATITUDE, LONGITUDE, RADIUS

Value

a 2x2 matrix containing the pairwise direct DISTANCE between each LOCATION minus the detection
RADIUS. Distances are returned in kilometers

Author(s)

Ross Dwyer, Mathew Watts, Hamish Campbell

GenerateLeastCostDistance 21

See Also

GenerateCircuitousDistance

Examples

Load the points file
data(PointsDirect_crocs)
Generate the direct distance matrix
DirectDM <- GenerateDirectDistance(PointsDirect_crocs)

Now plot example of how direct distances between receivers were generated
In this example there are no structural boundary preventing an individual from
moving between receivers
par(mfrow=c(1,1),las=1,bty="l")
plot(PointsDirect_crocs$LONGITUDE,PointsDirect_crocs$LATITUDE,pch=10,cex=1,

xlab="Longitude",ylab="Latitude")
for(i in 1:length(PointsDirect_crocs$LONGITUDE))

{
lines(PointsDirect_crocs$LONGITUDE[c(1,i)],PointsDirect_crocs$LATITUDE[c(1,i)],

lwd=0.3,col="grey",lty=3)
}

points(PointsDirect_crocs$LONGITUDE,PointsDirect_crocs$LATITUDE,pch=10,cex=1)

GenerateLeastCostDistance

Converts a Points File into a Distance Matrix Using an Transition
Layer Generated from a Rasterised version of the Study Area

Description

This function calculates the distance between a set of geographical coordinates and generates a
matrix containing the distances between each of the points. In development.

Usage

GenerateLeastCostDistance(sPointsFile,sTransition)

Arguments

sPointsFile a dataframe containing the LOCATION (i.e. the STATIONNAME or the RE-
CEIVERID), the coordinates and the detection RADIUS in meters. This should
be in the format LOCATION, X, Y, RADIUS. Note - in this beta version the code
only works with Cartesian coordinate systems (i.e. meters not degrees)

sTransition a Transition object generated from a RasterLayer using the gdistance R package

Value

a 2x2 matrix containing the pairwise direct DISTANCE between each LOCATION minus the detection
RADIUS. Distances are returned in kilometers

22 NonResidenceExtractId

Author(s)

Ross Dwyer

See Also

GenerateCircuitousDistance

Examples

#WaterRaster <- raster("wenlock raster UTM.tif") # Load the raster
#tr <- transition(WaterRaster,
transitionFunction = mean,
directions = 8) # Create a Transition object from the raster

Load the points file
#data(PointsLeastCost_crocs)
Generate the Least Cost distance matrix
#RasterDM <- GenerateLeastCostDistance(PointsLeastCost_crocs,
tr)

NonResidenceExtractId Extract the Non-residence Events, the Corresponding Distance Moved
and the Rate of Movement

Description

This function creates a nonresidences data frame from a residences event data frame and a
optional distance matrix (sDistanceMatrix). This function is not mandatory as it is carried out
automatically if the user provides a distance matrix in the sDistanceMatrix field when running
the RunResidenceExtraction function.

Usage

NonResidenceExtractId(sResidenceEventFile, sDistanceMatrix = NULL)

Arguments

sResidenceEventFile

a residence event table
sDistanceMatrix

an optional two dimentional array (matrix) containing the pairwise distances
between a series of receivers

PointsCircuitous_crocs 23

Value

STARTTIME a POSIXct vector object containing the date and time a transmitter left a re-
ceiver/station after a residence event

ENDTIME a POSIXct vector object containing the date and time a transmitter arrived at a
receiver/station and a new residence event was logged

NONRESIDENCEEVENT

a numeric vector indexing each nonresidence event

TRANSMITTERID a numeric or character vector indexing the transmitter from which nonresidence
events were determined

RECEIVERID1 a numeric or character vector indexing the receiver which the transmitter initially
moved from. If STATIONNAME is specified in the function, STATIONNAME1 is
returned

RECEIVERID2 a numeric or character vector indexing the receiver which the transmitter moved
to. If STATIONNAME is specified in the function, STATIONNAME2 is returned

DURATION a numeric vector containing the total time in seconds taken for the transmitter to
move between two receivers or stations

DISTANCE a numeric vector containing the minimum distance travelled in meters between
two receivers/stations according to the distance matrix. If a distance matrix was
not attached (=NULL), distance is returned as 0

ROM a numeric vector containing the rate of movement (ROM) in m/s. This is calcu-
lated from the distance travelled (i.e. DISTANCE) divided by the time taken to
move between the receivers (i.e. DURATION)

Author(s)

Ross Dwyer, Mathew Watts, Hamish Campbell

See Also

RunResidenceExtraction

PointsCircuitous_crocs

Points File Containing VR2 Locations on the Wenlock River in 2008
with Waypoints Connecting Receivers

Description

This points file contains the locations of 20 VR2 receivers plus their corresponding detection ra-
diuses for monitoring saltwater crocodiles on the Wenlock River in 2008. When receivers have an
obstructed line of view to landscape features (i.e. an island or a bend in the river) waypoints were
added to facilitate the course of the shortest path. This points file corresponds with crocs.

24 PointsDirect_AATAMS1

Usage

data(PointsCircuitous_crocs)

Format

A data frame with 149 observations on the following 4 variables.

LOCATION a numeric vector containing the receiver serial number (i.e. RECEIVERID)

LATITUDE a numeric vector containing the location’s latitude in decimal degrees

LONGITUDE a numeric vector containing the location’s longitude in decimal degrees

RADIUS a numeric vector containing the detection radius for the receiver in meters

Details

The coordinates are given in decimal degrees WGS 84, detection radiuses are in meters.

Source

www.uq.edu.au/eco-lab/V-Track

Examples

Load the points file for the Wenlock River
data(PointsCircuitous_crocs)
head(PointsCircuitous_crocs)
receiversonly <- na.omit(PointsCircuitous_crocs)

Plot the locations of the receivers plus the waypoints
par(mfrow=c(1,1),las=1,bty="l")
plot(PointsCircuitous_crocs$LONGITUDE, PointsCircuitous_crocs$LATITUDE,

pch=1,cex=0.5,col="grey",xlab="Longitude",ylab="Latitude")
points(receiversonly$LONGITUDE,receiversonly$LATITUDE,cex=1,pch=10)

PointsDirect_AATAMS1 Points File Containing VR2 Locations For AATAMS1

Description

This points file contains the locations of two acoustic stations plus their corresponding detection
radiuses for monitoring x on y in 2009. This points file corresponds with AATAMS1

Usage

data(PointsDirect_AATAMS1)

www.uq.edu.au/eco-lab/V-Track

PointsDirect_crocs 25

Format

A data frame with 2 observations on the following 4 variables.

LOCATION a factor containing the station name

LATITUDE a numeric vector containing the location’s latitude (decimal degrees)

LONGITUDE a numeric vector containing the location’s longitude (decimal degrees)

RADIUS a numeric vector the detection radius for the location in meters

Details

The coordinates are given in decimal degrees (WGS 84), detection radiuses are in meters.

Source

urlhttp://imos.org.au/home.html

Examples

Load the points file for the AATAMS1 dataset
data(PointsDirect_AATAMS1)
head(PointsDirect_AATAMS1)

PointsDirect_crocs Points File Containing VR2 Locations on the Wenlock River in 2008

Description

This points file contains the locations of 20 VR2 receivers plus their corresponding detection ra-
diuses for monitoring saltwater crocodiles on the Wenlock River in 2008. This points file corre-
sponds with the crocs dataset

Usage

data(PointsDirect_crocs)

Format

A data frame with 20 observations on the following 4 variables.

LOCATION a numeric vector containing the factory assigned receiver serial number (Receiver S/N)

LATITUDE a numeric vector containing the location’s latitude (decimal degrees)

LONGITUDE a numeric vector containing the location’s longitude (decimal degrees)

RADIUS a numeric vector containing the detection radius for the location in meters

Details

The coordinates are given in decimal degrees (WGS 84), detection radiuses are in meters.

26 ReadInputData

Source

www.uq.edu.au/eco-lab/V-Track

Examples

Load the points file for the Wenlock River
data(PointsDirect_crocs)
head(PointsDirect_crocs)

Plot the locations of the receivers
par(mfrow=c(1,1),las=1,bty="l")
plot(PointsDirect_crocs$LONGITUDE,PointsDirect_crocs$LATITUDE,

pch=10,cex=1,xlab="Longitude",ylab="Latitude")

ReadInputData Read in a Raw VEMCO or AATAMS Data File into a VTrack Archive

Description

ReadInputData extracts single or dual sensor data from a raw VEMCO or IMOS-ATF exported file
to a VTrack structured data frame.

Usage

ReadInputData(infile, iHoursToAdd=0, fIMOSATF=FALSE, fVemcoDualSensor=FALSE,
dateformat = NULL, sVemcoFormat='Default')

Arguments

infile a data frame containing VEMCO/AATAMS tracking data

dateformat an optional string containing the format of the Date.Time field

iHoursToAdd the number of hours to add/subtract to convert the time-zone from Greenwich
Mean Time (GMT)

fIMOSATF logical. If data frame is in IMOS-ATF exported format (fIMOSATF = TRUE),
fVemcoDualSensor and sVemcoFormat are ignored

fVemcoDualSensor

logical. If VEMCO file contains single sensor data (FALSE), if dual sensor data
(TRUE)

sVemcoFormat an optional string containing the format of the VEMCO file. The infile was ex-
ported from VUE in either old Version ('1.0') format, or in the new ('Default')
format

www.uq.edu.au/eco-lab/V-Track

ReadInputData 27

Value

DATETIME a vector of class POSIXct of the time of location fix of type

TRANSMITTERID a numeric vector giving the identity of each transmitter (ID)

SENSOR1 a numeric vector containing the value of the environmental sensor (i.e. temper-
ature or depth) at the time of detection

UNITS1 a character vector containing the units of each sensor value (e.g. m

TRANSMITTERID a character vector containing the factory assigned transmitter tag id

RECEIVERID a character vector containing the factory assigned receiver serial number (Receiver S/N)

STATIONNAME a character vector containing the user defined station name

Author(s)

Ross Dwyer, Mathew Watts, Hamish Campbell

Examples

Load the crocodile dataset
data(crocs)

Convert data into the VTrack archive format
Vcrocs <- ReadInputData(infile=crocs,

iHoursToAdd=10,
fIMOSATF=FALSE,
fVemcoDualSensor=FALSE,
dateformat=NULL,
sVemcoFormat='1.0')

Plot a frequency histogram of total detection per transmitter
NoDetect_ID <- tapply(rep(1,nrow(Vcrocs)),

Vcrocs$TRANSMITTERID,sum)
par(mfrow=c(1,1),las=1,bty="l")
bp <- barplot(height=NoDetect_ID,

ylab="Number of detections",xlab="Transmitter ID",
axes=FALSE,axisnames=FALSE)

labels <- names(NoDetect_ID)
text(bp, par("usr")[3],labels=labels,

srt=45,adj=c(1.1,1.1),xpd=TRUE,cex=0.8)
axis(2)

Plot a frequency histogram of total detection per receiver
NoDetect_REC <- tapply(rep(1,nrow(Vcrocs)),Vcrocs$RECEIVERID,sum)
bp <- barplot(height=NoDetect_REC,

ylab="Number of detections",xlab="Receiver ID",
axes=FALSE, axisnames=FALSE)

labels <- names(NoDetect_REC)
text(bp, par("usr")[3], labels=labels,

srt = 45, adj=c(1.1,1.1),xpd=TRUE,cex=0.8)
axis(2)

28 ReturnVR2Distance

Plot a frequency histogram of total detections over time
NoDetect_DAY <- tapply(rep(1,nrow(Vcrocs)),

as.Date(Vcrocs$DATETIME),sum)
barplot(height=NoDetect_DAY,

names.arg=names(NoDetect_DAY),
ylab="Number of detections",
xlab="Date")

ReturnVR2Distance Extract the Distances Moved Between VR2 Receiver Units Within the
Acoustic Detection Database

Description

This function uses combines the non-residence event table with a distance matrix to extract the
minimum distance moved between two receivers. This function returns a numeric vector containing
the minimum distance moved between receivers (extracted from sDistanceMatrix). This function
is not mandatory as it is carried out automatically if the user provides a distance matrix in the
sDistanceMatrix field when running the RunResidenceExtraction function.

Usage

ReturnVR2Distance(NonResidenceFile, sDistanceMatrix)

Arguments

NonResidenceFile

a data frame containing the nonresidences event table

sDistanceMatrix

a two dimentional array (matrix) containing the pairwise distances between an
array of VR2 receivers

Value

a numeric vector of minimum distance travelled (in kilometers) corresponding to the values listed
in the distance matrix

Author(s)

Ross Dwyer, Mathew Watts, Hamish Campbell

See Also

RunResidenceExtraction, NonResidenceExtractId

RunResidenceExtraction 29

Examples

Not run:
Extract residence events at RECEIVERS from the VTrack transformed
crocodile dataset

Load the crocodile dataset into the VTrack archive format
data(crocs)
Vcrocs <- ReadInputData(infile=crocs,

iHoursToAdd=10,
fAATAMS=FALSE,
fVemcoDualSensor=FALSE,
dateformat = NULL,
sVemcoFormat='1.0')

Extract data for only the transmitter #138
T138 <- ExtractData(Vcrocs,

sQueryTransmitterList = 138)

Extract residence and non residence events
Minimum number of detections to register as a residence
event = 2
Min time period between detections before residence event
recorded = 43200 secs (12 hours)
T139Res <- RunResidenceExtraction(sInputFile=T138,

sLocation="RECEIVERID",
iResidenceThreshold=2,
iTimeThreshold=43200,
sDistanceMatrix=NULL)

The nonresidences event table
T139nonresid <- T139Res$nonresidences

Generate the Direct Distance Matrix
data(PointsDirect_crocs)
DirectDM <- GenerateDirectDistance(PointsDirect_crocs)

Run the VR2 distances function
(My_distances <- ReturnVR2Distance(NonResidenceFile = T139nonresid,

sDistanceMatrix = DirectDM))

End(Not run)

RunResidenceExtraction

Extract Residence and Nonresidence Events Within the Acoustic De-
tection Database

Description

Events when the transmitter remained within the detection field of a given receiver. The event is
triggered when a transmitter is detected by a receiver and terminated when the transmitter is detected

30 RunResidenceExtraction

at another receiver, or if the transmitter is not detected by the same receiver within a user defined
timeout window. nonresidences (i.e. when a transmitter moves between the detection fields of
two receivers) are generated from the residences event table. The function returns a list object
containing a residenceslog, a residences event table and a nonresidences event table.

Usage

RunResidenceExtraction(sInputFile, sLocation, iResidenceThreshold, iTimeThreshold,
sDistanceMatrix = NULL,iCores = 2)

Arguments

sInputFile a data frame containing VTrack archive data, this archive is created using the
ReadInputData function

sLocation the location at which we wish to analyse our residence and non-residence events
(i.e. RECEIVERID or STATIONNAME)

iResidenceThreshold

the minimum number of successive transmitter pings detected at a receiver be-
fore a residence event is recorded

iTimeThreshold

the minimum time period in seconds between pings before a residence event is
recorded

sDistanceMatrix

an optional two dimensional array containing the distances between a set of
points. This can be the distances between each receiver or between each station.
The first column in this matrix must contain the names of the receivers/stations.
The diagonal of the distance matrix should be printed as 0 if appropriate and
the upper triange of the distance matrix should also be calculated. Row 1 must
contain the names of the corresponding receivers/stations and column 1 should
be named DM. If a distance matrix is not available, Distances moved and the rate
of movement (ROM) are returned as 0 in the nonresidences event table

iCores the the number of cores with which to run the function in parallel. Default is 2.

Value

A list object containing 3 tables. In the residenceslog table:

DATETIME a POSIXct vector object containing the date and time that the information was
logged at the receiver

RESIDENCEEVENT

a numeric vector indexing all the individual detections which make up each
particular residence event listed in the residence event table

RECORD a numeric vector indexing each detection within the event

TRANSMITTERID a numeric or character vector indexing the transmitter from which residence
events were determined

RECEIVERID a numeric or character vector indexing the receiver where the event occurred. If
STATIONNAME is specified in the function, STATIONNAME is returned

RunResidenceExtraction 31

ELAPSED a numeric vector containing the total time in seconds of the event

In the residences event table:

STARTTIME a POSIXct vector object containing the date and time a residence event was
initiated

ENDTIME a POSIXct vector object containing the date and time a residence event ended
RESIDENCEEVENT

a numeric vector indexing each particular event back to the residenceslog table
where all the individual detections making up the event can be viewed

TRANSMITTERID a numeric or character vector indexing the transmitter from which residence
events were determined

RECEIVERID a numeric or character vector indexing the receiver where the event occurred. If
STATIONNAME is specified in the function, STATIONNAME is returned

DURATION a numeric vector containing the time in seconds from the first to last detection
within the event

ENDREASON a character vector containing the reason why the residence event ended. This
may be due to the transmitter appearing at another receiver (receiver) or if
the last detection had passed the user defined timeout threshold (timeout).
signal lost indicates the last recording of each transmitter.

NUMRECS a numeric vector containing the number of records detected within each event

In the nonresidences event table:

STARTTIME a POSIXct vector object containing the date and time a transmitter left a receiver
or station

ENDTIME a POSIXct vector object containing the date and time a transmitter arrived at a
different receiver orstation

NONRESIDENCEEVENT

a numeric vector indexing each nonresidence event

TRANSMITTERID a numeric or character vector indexing the transmitter from which nonresidence
events were determined

RECEIVERID1 a numeric or character vector indexing the receiver which the transmitter initially
moved from. If STATIONNAME is specified in the function, STATIONNAME1 is
returned

RECEIVERID2 a numeric or character vector indexing the receiver which the transmitter moved
to. If STATIONNAME is specified in the function, STATIONNAME2 is returned

DURATION a numeric vector containing the total ime in seconds taken for the transmitter to
move between the two receivers

DISTANCE a numeric vector containing the minimum distance travelled (m) between two
receivers or stations according to the distance matrix. If a distance matrix was
not attached (NULL), distance is returned as 0

ROM a numeric vector containing the rate of movement (ROM) in m/s. This is calcu-
lated from the distance travelled (DISTANCE) divided by the time taken to move
between the receivers (DURATION)

32 RunResidenceExtraction

Author(s)

Ross Dwyer, Mathew Watts, Hamish Campbell

See Also

ReadInputData, RunSensorEventExtraction, RunTimeProfile

Examples

Not run:

Extract residence events from the archived crocodile data

Load the crocodile dataset into the VTrack archive format
data(crocs)
Vcrocs <- ReadInputData(infile=crocs,

iHoursToAdd=10,
dateformat = NULL,
sVemcoFormat='1.0')

Load and generate the direct distance matrix
data(PointsDirect_crocs)
DirectDM <- GenerateDirectDistance(PointsDirect_crocs)

Extract data for only transmitter #139
T139 <- ExtractData(Vcrocs,sQueryTransmitterList = c("139"))
T139_R <- ExtractUniqueValues(T139,5)

Extract residences and nonresidences events.
Events occur when >1 detection occurs at a receiver and detections
are less than 43200 seconds apart
The direct distance matrix is used for distance calculations
T139Res<- RunResidenceExtraction(T139,

"RECEIVERID",
2,
43200,
sDistanceMatrix=DirectDM)

The residenceslog table
T139log <- T139Res$residenceslog
The residences event file
T139resid <- T139Res$residences
The nonresidences event file
T139nonresid <- T139Res$nonresidences

The RESIDENCEEVENT number in the residences event table corresponds
to the RESIDENCEEVENT number in the residenceslog table
subset(T139log,T139log$RESIDENCEEVENT==2)
subset(T139resid, T139resid$RESIDENCEEVENT==2)

subset(T139log,T139log$RESIDENCEEVENT==8)

RunSensorEventExtraction 33

subset(T139resid, T139resid$RESIDENCEEVENT==8)

Scale duration spent at receivers into 4 bins: <1min, <1hr, <1day, >1day
pchDURATION <- ifelse(T139resid$DURATION<60,0.1,

ifelse(T139resid$DURATION<(60*60),0.5,
ifelse(T139resid$DURATION<(60*60*24),1,3)))

For TRANSMITTERID 139 plot the detections against time for each RECEIVERID
par(mfrow=c(1,1),las=1,bty="l")
plot(as.Date(T139resid$STARTTIME),

as.numeric(as.factor(
as.numeric(as.character(T139resid$RECEIVERID)))),

ylab="RECEIVERID",xlab="DATETIME",
yaxt="n",pch=1,cex.axis=0.9,cex=pchDURATION,
main=unique(T139resid$TRANSMITTER))

axis(side=2,las=1, at=seq(1,length(T139_R),1),cex.axis=0.7,
labels = T139_R[order(as.numeric(T139_R))])

Now plot the residence time at a receiver spatially and with
each point representing the duration spent at each receiver
myresid1 <- subset(T139resid, T139resid$ENDREASON=="receiver")
totalDur <- tapply(myresid1$DURATION,myresid1$RECEIVERID,sum)
totalDurT <- data.frame(LOCATION=names(totalDur), DURATION=as.vector(totalDur))
XYDuration <- merge(PointsDirect_crocs,totalDurT)

plot(PointsDirect_crocs$LONGITUDE,PointsDirect_crocs$LATITUDE,
pch=1,cex=0.5,col="grey40",
xlim=c((min(PointsDirect_crocs$LONGITUDE)-0.01),(max(PointsDirect_crocs$LONGITUDE)+0.01)),
ylim=c((min(PointsDirect_crocs$LATITUDE)-0.01),(max(PointsDirect_crocs$LATITUDE)+0.01)),
xlab="Longitude",ylab="Latitude",
main=unique(T139resid$TRANSMITTER))

points(XYDuration$LONGITUDE,XYDuration$LATITUDE,
cex=XYDuration$DURATION/500000, pch=16)

End(Not run)

RunSensorEventExtraction

Extract Sensor Events within an Acoustic Detection Database

Description

This function identifies, qualifies and quantifies increasing or decreasing sensor events within the
acoustic detection database. Events are defined by the user and are based on sensor threshold
and time-out parameters between detections. These are established from changes in sensor values
between detections, over a user-defined period of time. The location of the event is determined by
either the station or the receiver or location

34 RunSensorEventExtraction

Usage

RunSensorEventExtraction(sInputFile, iEventType, sLocation, iSensor,
rTriggerThreshold, iTimeThresholdStart, iTimeThreshold, rTerminationThreshold)

Arguments

sInputFile a dataframe containing VTrack-transformed acoustic tracking data

iEventType the type of event the user wants to extract. This can be either an event whereby
the sensor values increase within a certain time period (= "INCREASE") or an
event whereby the sensor values decrease within a certain time period (= "DECREASE")

sLocation the location at which we wish to analyse our sensor events (i.e. RECEIVERID or
STATIONNAME)

iSensor the sensor data type to be extracted from the original file. This corresponds
to the sensor units (UNITS1) contained within the sInputFile data frame (e.g.
Depth = m)

rTriggerThreshold

the minimum change in sensor units for an event to commence
iTimeThresholdStart

the maximum time period (seconds) in which the rTriggerThreshold is reached
before a sensor event commences

iTimeThreshold

the maximum time period (seconds) between detections before the sensor event
is completed and the counter is reset

rTerminationThreshold

how close the sensor must be to the starting value before a sensor event is com-
pleted and the counter is reset

Value

A list object 2 tables. In the sensor event logtable:

DATETIME a vector of type POSIXct in Co-ordinated Universal Time (UTC)/ Greenwich
Mean Time. The date and time that the location and sensor data was logged at
the receiver

SENSOREVENT a numeric vector indexing all the individual detections which make up each
particular sensor event listed in the event table

RECORD a numeric vector indexing each detection within the event

TRANSMITTERID a numeric or character vector indexing the transmitter from which sensor events
were determined

RECEIVERID a numeric or character vector indexing the location where the event occurred.
If STATIONNAME is specified in the function, the STATIONNAME where the event
occurred is returned here

SENSOR1 a numeric vector containing the duration of the event in seconds

ELAPSED a numeric vector containing the total time in seconds of the event

In the sensor event table:

RunSensorEventExtraction 35

STARTTIME a POSIXct vector object containing the date and time a sensor event was initiated

ENDTIME a POSIXct vector object containing the date and time a sensor event ended

SENSOREVENT a numeric vector indexing each particular event back to the logtable, where all
the individual detections making up the event can be viewed

TRANSMITTERID a numeric vector indexing the transmitter from which sonsor events were deter-
mined

RECEIVERID a numeric vector indexing the location where the event occurred. If STATIONNAME
is specified in the function, the STATIONNAME where the event occurred is re-
turned here

DURATION a numeric vector containing the duration of the event in seconds

STARTSENSOR a numeric vector containing the sensor value when the event was initialised

ENDSENSOR a numeric vector containing the sensor value when the event was either com-
pleted or terminated

MAXSENSOR a numeric vector containing the maximum sensor value attained during the event

ENDREASON a character vector providing information on why the event was terminated. If the
sensor returned to a value within the termination threshold from the STARTSENSOR
value and within the time threshold (= return) or exceeded the timeout thresh-
old between successive detections (= timeout)

NUMRECS a number vector containing number of detections that compose the event

Author(s)

Ross Dwyer, Mathew Watts, Hamish Campbell

See Also

RunResidenceExtraction, RunTimeProfile

Examples

Not run:

Example 1

Extract depth events from transmitters attached
to crocodiles and plot a single diving event

Load crocodile data
data(crocs)
Vcrocs <- ReadInputData(infile=crocs,

iHoursToAdd=10,
dateformat = NULL,
sVemcoFormat='1.0')

Extract depth data for only the transmitter #139
T139 <- ExtractData(Vcrocs,

sQueryTransmitterList = 139)

36 RunTimeProfile

Extract increasing depth sensor events
Start depth event when there is an depth increase of 0.5m within 1 hr
Max interval between detections = 1 hr
Complete event when sensor returns within 0.5 of the starting value
T139dives <- RunSensorEventExtraction(T139,

"INCREASE",
"RECEIVERID",
"m",
0.5,
(1*60*60),
(60*60),
0.5)

The sensor logfile
T139divelog <- T139dives$logtable
The sensor event file
T139diveevent <- T139dives$event

Return list of event numbers where sensor events were complete
T139diveevent[which(T139diveevent$ENDREASON=="return"),"SENSOREVENT"]

Now extract and plot a single sensor event (we have swapped the axes round
to show the diving behaviour)
mylog <- subset(T139divelog,T139divelog$SENSOREVENT==19)
par(mfrow=c(1,1),las=1,bty="l")
plot(mylog$DATETIME,(mylog$SENSOR1),

xlab="Event duration (mins)",ylab="Depth (m)",type="b",
yaxs = "i", xaxs = "i", ylim = rev(c(0,max(mylog$SENSOR1+0.5))),
xlim = (range(mylog$DATETIME)+(c(-60,30))),
pch=as.character(mylog$RECORD))

title(main=paste("Id=",mylog[1,4],", event=",mylog[1,2], sep=" "))

##

End(Not run)

RunTimeProfile Extract a Time Profile for Depth, Temperature, Residence or Non-
residence Events

Description

This function groups sensor, residence or non-residence events into time profiles classified by time.
By specifying the time profile as hour, day, week, or month, the respective time profile is extracted
for that particular event. Users can also extract a circadian profile for each event where events are
filtered for each hour in a diel cycle (24 hr) and summed across days.

RunTimeProfile 37

Usage

RunTimeProfile(sInputFile, sDATETIMEField, sProfilePeriod)

Arguments

sInputFile an event data frame containing either the residence, movement, diving or tem-
perature events

sDATETIMEField

a character string identifying the DATE field (a POSIXct) used to create the time
profile from the event data frame (= STARTTIME, ENDTIME)

sProfilePeriod

a character string relating to which profile should be extracted (= hour, day,
week, month, circadian)

Value

DATE a POSIXct vector object containing the date and/or time an event was initiated

FREQ a numeric vector containing the number of events for that hour/day/month

SENSORMAX a numeric vector containing the maximum sensor reading for the time-grouped
events

SENSORAV a numeric vector containing the mean sensor reading for the time-grouped events

SENSORSTDEV a numeric vector containing the standard deviation for the sensor readings for
the time-grouped events

TIMESUM a numeric vector containing the total duration of the time-grouped events (sec-
onds)

TIMEMAX a numeric vector containing the maximum duration reading for the time-grouped
events (seconds)

TIMEAV a numeric vector containing the mean duration reading for the time-grouped
events (seconds)

TIMESTDEV a numeric vector containing the standard deviation for the duration readings for
the time-grouped events (seconds)

DETECTIONS a numeric vector containing the number of detections which form all the events
recorded for that time profile

DISTANCE a numeric vector containing the sum of the minimum distance travelled which
form all the events recorded for that time profile

Author(s)

Ross Dwyer, Mathew Watts, Hamish Campbell

See Also

RunResidenceExtraction, RunSensorEventExtraction

38 RunTimeProfile

Examples

Not run:
RunTimeProfile example using residences, nonresidences and sensor events

Load crocodile data and convert to a VTrack archive format
data(crocs)
Vcrocs <- ReadInputData(infile=crocs,

iHoursToAdd=10,
dateformat = NULL,
sVemcoFormat='1.0')

Load receiver data and generate the circuitous distance matrix
data(PointsCircuitous_crocs)
CircuitousDM <- GenerateCircuitousDistance(PointsCircuitous_crocs)

Extract depth data for transmitter #139
T139 <- ExtractData(Vcrocs,sQueryTransmitterList = c("139"))
T139_R <- ExtractUniqueValues(T139,5)

Extract residence and non residence events
T139Res<- RunResidenceExtraction(T139,

"RECEIVERID",
2,
43200,
sDistanceMatrix=CircuitousDM)

The residences event table
T139resid <- T139Res$residences
The nonresidences event table
T139nonresid <- T139Res$nonresidences

Generate plot dimentions
par(mfrow=c(2,2),las=1,bty="l")

Plot a
RESIDENCES: duration/day
Vres_D <- RunTimeProfile(T139resid,"STARTTIME","day")
day_res <- tapply(Vres_D$TIMEMAX,Vres_D$DATETIME,sum)[1:25]/(60*60)
numnames <- as.Date(as.character(names(day_res)))
plot(as.vector(day_res)~numnames,pch=16,

xlab="Day",ylab="Duration (h)",main="",ylim=c(0,23))

Plot b
MOVEMENTS: distance/month

Vmove_M <- RunTimeProfile(T139nonresid,"STARTTIME","month")
mon_mov <- tapply(Vmove_M$DISTANCE,Vmove_M$DATETIME,mean)/1000
numnames <- as.numeric(as.character(names(mon_mov)))
movdata <- rep(0,12)
movdata[numnames] <- as.vector(mon_mov)
names(movdata)<-as.character(1:12)
plot(as.vector(movdata)[9:12]~ names(movdata)[9:12],pch=16,xaxt="n",

RunTimeProfile 39

xlab="Month",ylab="Min distance (km)",main="")
axis(side=1,las=1, at=seq(9,12),labels=month.name[9:12])

Plot c
DEPTH EVENTS: frequency/diel cycle

Extract increasing depth sensor events for transmitter 139
T139dives <- RunSensorEventExtraction(T139,

"INCREASE",
"RECEIVERID",
"m",
0.5,
(1*60*60),
(60*60),
0.5)

The sensor logtable
T139divelog <- T139dives$logtable
The sensor event file
T139diveevent <- T139dives$event
Remove timeout events
T139diveevent<-subset(T139diveevent,T139diveevent$ENDREASON=="return")

Vdiv_C <- RunTimeProfile(T139diveevent,"STARTTIME","circadian")
cir_div <- tapply(Vdiv_C$FREQ,Vdiv_C$DATETIME,mean)
numnames <- as.numeric(as.character(names(cir_div)))
divdata <- rep(0,24)
divdata[numnames+1] <- as.vector(cir_div)
names(divdata)<-as.character(0:23)
plot(as.vector(divdata)~ names(divdata),pch=16,

xlab="24 hr cycle",ylab="Number of depth events",main="")

End(Not run)

Index

∗Topic archive
COA, 4
ExtractData, 8
ReadInputData, 26

∗Topic behaviour
GenerateAnimationKMLFile, 14
GenerateAnimationKMLFile_Multitag,

16
GenerateAnimationKMLFile_Track, 17
NonResidenceExtractId, 22
ReturnVR2Distance, 28
RunResidenceExtraction, 29
RunSensorEventExtraction, 33
RunTimeProfile, 36

∗Topic datasets
AATAMS1, 3
crocs, 6
PointsCircuitous_crocs, 23
PointsDirect_AATAMS1, 24
PointsDirect_crocs, 25

∗Topic extract
COA, 4
ExtractData, 8
ExtractUniqueValues, 13

∗Topic package
VTrack-package, 2

∗Topic spatial
ComputeAzimuth, 5
ComputeDistance, 6
ExtractRecSummary, 10
ExtractStationSummary, 11
ExtractTagSummary, 12
GenerateAnimationKMLFile, 14
GenerateAnimationKMLFile_Multitag,

16
GenerateAnimationKMLFile_Track, 17
GenerateCircuitousDistance, 19
GenerateDirectDistance, 20
GenerateLeastCostDistance, 21

NonResidenceExtractId, 22
ReturnVR2Distance, 28
RunResidenceExtraction, 29

AATAMS1, 3, 24

COA, 4
ComputeAzimuth, 5
ComputeDistance, 6
crocs, 6, 23, 25

ExtractData, 8
ExtractRecSummary, 10
ExtractStationSummary, 11
ExtractTagSummary, 12
ExtractUniqueValues, 9, 13

GenerateAnimationKMLFile, 14, 18
GenerateAnimationKMLFile_Multitag, 16
GenerateAnimationKMLFile_Track, 16, 17
GenerateCircuitousDistance, 15, 19, 21,

22
GenerateDirectDistance, 15, 19, 20
GenerateLeastCostDistance, 21

NonResidenceExtractId, 22, 28

PointsCircuitous_crocs, 23
PointsDirect_AATAMS1, 24
PointsDirect_crocs, 25

ReadInputData, 16, 18, 26, 30, 32
ReturnVR2Distance, 28
RunResidenceExtraction, 14, 15, 18, 22, 23,

28, 29, 35, 37
RunSensorEventExtraction, 32, 33, 37
RunTimeProfile, 32, 35, 36

VTrack (VTrack-package), 2
VTrack-package, 2

40

	VTrack-package
	AATAMS1
	COA
	ComputeAzimuth
	ComputeDistance
	crocs
	ExtractData
	ExtractRecSummary
	ExtractStationSummary
	ExtractTagSummary
	ExtractUniqueValues
	GenerateAnimationKMLFile
	GenerateAnimationKMLFile_Multitag
	GenerateAnimationKMLFile_Track
	GenerateCircuitousDistance
	GenerateDirectDistance
	GenerateLeastCostDistance
	NonResidenceExtractId
	PointsCircuitous_crocs
	PointsDirect_AATAMS1
	PointsDirect_crocs
	ReadInputData
	ReturnVR2Distance
	RunResidenceExtraction
	RunSensorEventExtraction
	RunTimeProfile
	Index

