Package ‘VBTree’

September 16, 2018
Type Package

Title Vector Binary Tree to Make Your Data Management More Efficient
Version 0.1.0

Date 2018-09-05

Author ZHANG Chen

Maintainer ZHANG Chen <447974102@qq. com>

Description Provides a new data structure, vector binary tree, to make
your data visiting and management more efficient. if your data has
very structurized column names with specific connecting pattern, it can
read, split, and factorize these names, then build the mapping from all
string objects to an array or tensor, through vector binary tree, by
which the batched data processing can be implemented easily. The methods
of array and tensor are also applicable.

Imports tensorA
Depends R (>=2.10)
License GPL-3

URL https://github.com/CubicZebra/VBTree
Encoding UTF-8

LazyData true

RoxygenNote 6.1.0

Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2018-09-16 18:10:09 UTC

https://github.com/CubicZebra/VBTree

2 VBTree-package

R topics documented:

VBTree-package e 2
advbting 3
advbtsub e e 5
arr2dl .. L e e e 6
arr2vblt . . . L e e e e e e e e 6
chrvec2dl e 7
datatest L L L e e e 8
datavisit L. e e e e e e 8
di2arr e e e 9
dI2ts . . . e e e e e e 10
dI2vbt . . e 11
VS o o o e e e e e 12
trvseleing 12
trvsidXing e e e e e 13
trvssubing L L e e e e 14
ts2dl . . L L e 15
tS2Vbt . L L e e 15
VDL2AIT L e e e e e e 16
vbt2dl . . L e e e e 17
VDE2LS . . e e e e e e e e e e 18
vbting 18
vbtsub . .. e 19
Index 21
VBTree-package Vector Binary Tree to Make Your Data Management More Efficient
Description

Provides a new data structure, vector binary tree, to make your data visiting and management more
efficient. if your data has very structurized column names with specific connecting pattern, it can
read, split, and factorize these names, then build the mapping from all string objects to an array or
tensor, through vector binary tree, by which the batched data processing can be implemented easily.
The methods of array and tensor are also applicable.

Details

This package provide an efficient approach to manage data by structurizing the column names. A
column name is generally seen as a character object, while if it has a very organized pattern, such
as "*-*-*-*" for example (each * mark presents a different condition), it must has a certain mapping
relationship to a specific tensor. This package uses two data structure: double list and vector binary
tree, to implement the conversion between the character vector and tensor. It affords various inquiry
methods, which was mainly drived by vector binary tree, to extract the highly customizable subset
from original data.

advbting 3

Author(s)

ZHANG Chen
Maintainer: ZHANG Chen <447974102 @qq.com>

References

Sedgewick, Robert & Wayne, Kevin (2011). Algorithms, 4th Edition.. Addison-Wesley

Prakash, P. K. S. & Rao, Achyutuni Sri Krishna (2016). R Data Structures and Algorithms. Packt
Publishing

See Also

to.tensor, pos.tensor.

Examples

#View the data to be visited:
summary (datatest)
colnames(datatest)

#Structurize colnames of data into vector binary tree:
dl <- chrvec2dl(colnames(datatest))

vbt <- dl2vbt(dl)

vbt

#Setting subset in different forms, for example the pattern
#"Strain-(900~1100)-(0.01, 1)-0.6" is desired:

subunregdl <- list(c(1), c(1:5), c(2,4), c(1)) # undifined double list
subregdl <- advbtinqg(vbt, subunregdl) # regularized double list

subvbt <- dl2vbt(subregdl) # sub vector binary tree

subts <- vbt2ts(subvbt) # tensor

subarr <- vbt2arr(subvbt) # array

subchrvec <- as.vector(subarr) # character vector

#Visit the data through different methods:
datavisit(datatest, c(1,2,2,1)) # by integer vector
datavisit(datatest, subunregdl) # by handmade double list
datavisit(datatest, subregdl) # by defined double list
datavisit(datatest, subvbt) # by vector binary tree
datavisit(datatest, subts) # by tensor
datavisit(datatest, subarr) # by array
datavisit(datatest, subchrvec) # by character vector

advbting Using double list to visit vector binary tree

4 advbting

Description

Advanced visiting for the vector binary tree. Return a double list by specific assigment determined
by the argument ing.

Usage

advbting(x, inq)

Arguments
X The vector binary tree to be visited. Traversal is acheivable through invalid
assignment in desired layer.
inqg An integer double list to determine the location to be visited. The length of inq
should be the same as the layers of visited vector binary tree, while all elements
in vector in each layer of ing should not over the intrinsic length of visited
vector binary tree layer, otherwise all elements will be returned in this layer.
Value

Return a double list according to the argument ing.

See Also

vbting, vbtsub, advbtsub.

Examples

#Make vector binary tree:
colnamevbt <- dl2vbt(chrvec2dl(colnames(datatest)))

#Visit by specific assignment:
visit <- list(c(2), c(3:6), c(2,4), 1)
advbting(colnamevbt, visit)

#Traversal of the second layers:
visit <- list(c(2), colnamevbt$dims[2]+1, c(2,4), 1)
advbting(colnamevbt, visit)

#Invalid assignments in 1st and 3rd layers:
visit <- list(c(3), c(3:6), c(5), 1)
advbting(colnamevbt, visit)

advbtsub 5

advbtsub Using double list to generate sub tree from vector binary tree

Description
Advanced visiting for the vector binary tree. Generating a sub tree from visited vector binary tree,
through specific assigment determined by the argument ing.

Usage

advbtsub(x, inq)

Arguments
X The vector binary tree to be visited. Traversal is acheivable through invalid
assignment in desired layers.
inqg An integer double list to determine the visiting location. The length of inq
should be the same as the layers of visited vector binary tree. If any assign
element in specificed layer exceeds its intrinsic length of visited vector binary
tree layer, all elements will be returned in this layer.
Value

Return a sub tree from visited vector binary tree, according to the argument ing.

See Also

vbting, vbtsub, advbting.

Examples

#Make vector binary tree:
colnamevbt <- dl2vbt(chrvec2dl(colnames(datatest)))

#Visit by specific assignment:
visit <- list(c(2), c(3:6), c(2,4), 1)
advbtsub(colnamevbt, visit)

#Traversal of the second layers:
visit <- list(c(2), colnamevbt$dims[2]+1, c(2,4), 1)
advbtsub(colnamevbt, visit)

#Invalid assignments in 1st and 3rd layers:
visit <- list(c(3), c(3:6), c(5), 1)
advbtsub(colnamevbt, visit)

6 arr2vbt

arr2dl Convert a structured character array to double list

Description

Convert a structured character array to a double list. All character elements in array will be splited
by a specific pattern then sorted intrinsically in each layer of the double list.

Usage
arr2dl(x, ...)
Arguments
X A structured character array to be converted.
Argument in chrvec2dl to control split pattern.
Value

Return a double list based on the input array.

See Also

arr2vbt, chrvec2dl.

Examples

#Write the column names of datatest into a array:
arr <- dl2arr(chrvec2dl(colnames(datatest)))

#Recover the double list from character array:
arr2dl(arr)

arr2vbt Convert a structured character array to double list

Description
Convert a structured character array to a vector binary tree. All character elements in array will be
splited by a specific pattern then sorted intrinsically in each layer of the vector binary tree.

Usage

arr2vbt(x, ...)

chrvec2dl 7

Arguments
X A structured character array to be converted.
Argument in chrvec2dl to control split pattern.
Value

Return a vector binary tree based on the input array.

See Also

arr2dl, chrvec2dl.

Examples

#Write the column names of datatest into a array:
arr <- dl2arr(chrvec2dl(colnames(datatest)))

#Recover the vector binary tree from character array:
arr2vbt(arr)

chrvec2dl Convert character vector to a double list

Description

Structurize a character vector to a double list. Layers in the double list will be determined by the
given pattern.

Usage

chrvec2dl(x, splt = "-")
Arguments

X a character vector to be converted.

splt a string pattern to make defination for spliting each layer of double list.
Value

non

return a character double list splited by defined pattern, the default pattern is "-".
Examples
#example using default dataset:

charvector <- colnames(datatest)
chrvec2dl (charvector, "-"

8 datavisit

datatest A test data structurized column names.

Description

A test data with 56 different columns.

Usage

data("datatest")

Details
A test data structurized column names, with two data type "Strain" and "Stress", 7 different temper-

atures, 4 kinds strain rates and one level of compression rate.

Examples

datatest

datavisit Extract subset of data using different methods

Description
Extract the subset of data by column names using tensor, array, double list, integer vector, or vector
binary tree.

Usage

datavisit(data, inq)

Arguments
data A data.frame with structured column names.
ing An argument to determine the subset to be extracted by column names. A tensor,
array, double list, integer vector and vector binary tree is available format of inqg.
Value

Return a list which contains the item index, column name, column coordinate and the data in cor-
responding column for each element contained in the assignment of ing.

See Also

vbting, advbting, trvseleing, trvsidxing, trvssubing.

dI2arr 9

Examples

#View the data to be visited:
summary (datatest)
colnames(datatest)

#Structurize colnames of data into vector binary tree:
dl <- chrvec2dl(colnames(datatest))

vbt <- dl2vbt(dl)

vbt

#Setting subset in different forms, for example the pattern
#"Strain-(900~1100)-(0.01, 1)-0.6" is desired:

subunregdl <- list(c(1), c(1:5), c(2,4), c(1)) # undifined double list
subregdl <- advbting(vbt, subunregdl) # regularized double list

subvbt <- dl2vbt(subregdl) # sub vector binary tree

subts <- vbt2ts(subvbt) # tensor

subarr <- vbt2arr(subvbt) # array

subchrvec <- as.vector(subarr) # character vector

#Visit the data through different methods:
datavisit(datatest, subunregdl) # by integer vector
datavisit(datatest, subunregdl) # by handmade double list
datavisit(datatest, subregdl) # by defined double list
datavisit(datatest, subvbt) # by vector binary tree
datavisit(datatest, subts) # by tensor
datavisit(datatest, subarr) # by array
datavisit(datatest, subchrvec) # by character vector

dl2arr Convert a double list to array

Description

Convert a double list to an array. The pure numeric layers will be sorted intrinsically then all
elements will be bound in certain order as one character element, and filled into the proper location
in the array.

Usage
dl2arr(x)

Arguments

X A double list to be converted.

Value

Return an array filled with the binding character elements.

10 dI2ts

See Also

dl2vbt, dl2ts.

Examples

#Make column names of datatest into double list:
dl <- chrvec2dl(colnames(datatest), "-"

#Convert the double list to a tensor:
dl2arr(dl)

dl2ts Convert a double list to tensor

Description

Convert a double list to a tensor. The pure numeric layers will be sorted intrinsically then all
elements will be bound in certain order as one character element, and filled into the proper location
in the tensor.

Usage
dl2ts(x)

Arguments

X A double list to be converted.

Value

Return a tensor filled with the binding character elements.

See Also

dl2vbt, dl2arr.

Examples

#Make column names of datatest into double list:
dl <- chrvec2dl(colnames(datatest), "-")

#Convert the double list to a tensor:
dl2ts(dl)

dI2vbt 11

dl2vbt Convert a double list to vector binary tree

Description

Convert a double list to vector binary tree. The pure numeric layers will be sorted intrinsically then
all elements be exported in character form.

Usage
dl2vbt(x, regularize = TRUE, splt = "-")
Arguments
X A double list to be converted.
regularize A boolean value to control the treatment of empty layers of double listed to be
converted. The default value TRUE will fill the empty layer by mark "*". The
default value is recommanded.
splt A string pattern to split the binding elements in each layer if the sub-constructure
exists. The default pattern uses "-".
Value

Return a vector binary tree.

See Also

vbting, vbtsub, advbting, advbtsub, trvssubing, d12ts, d12arr.

Examples

#Structurize the column names of datatest:
colname <- colnames(datatest)

colnamedl <- chrvec2dl(colname, "-")
colnamevbt <- dl2vbt(colnamedl)

#Simple data cleaning for sub-constructure existing double list;
#Make unregulated double list:

unregdl <- list(c("7", 2, 10), c("chr”, "5"), cQ,

c("var2", "var1”, "var3"), c("M-8-9", "3-2"), c("6-3", "2-7"))
regvbt <- dl2vbt(unregdl)

regvbt2 <- dl2vbt(unregdl, FALSE) # not recommended

12 trvseleing

trvs Make traversal from vector binary tree

Description
Generating a table of traversal from given vector binary tree, in order to construct correct mapping
relationships within double list, vector binary tree, array and tensor.

Usage

trvs(x)

Arguments

X A vector binary tree.

Value

Return a traversal table from the given vector binary tree.

Examples

#Make vector binary tree:
colnamevbt <- dl2vbt(chrvec2dl(colnames(datatest)))

#Construct traversal table:
trvs(colnamevbt)

trvseleinqg Using character element to visit the traversal table

Description

Visit the traversal table generated from a vector binary tree through the character element deter-
mined by the argument ing, and return an inquiry result containing its numeric item index, the
character pattern and its corresponding coordinate.

Usage

trvseleinq(trvs, inq)

Arguments

trvs The traversal table to be visited, which should be generated from the vector
binary tree by the function trvs().

ing A desired character element to match the traversal table.

trvsidxing 13

Value
Return an inquiry result with a numeric item index, a character pattern and its coordinate in form of
integer vector.

Examples

#Make traversal table:
trav <- trvs(dl2vbt(chrvec2dl (colnames(datatest))))

#Visit specific element by character pattern:
trvseleinqg(trav, "Strain-1100-0.001-0.6")

trvsidxing Using vector to visit the traversal table

Description

Visit the traversal table generated from a vector binary tree through the coordinate determined by
the argument ing, and return an inquiry result containing its numeric item index, its corresponding
character pattern and the coordinate.

Usage

trvsidxinq(trvs, inq)

Arguments
trvs The traversal table to be visited, which should be generated from the vector
binary tree by the function trvs().
ing An integer vector to assign the coordinate corresponding to the element to be
visited.
Value

Return an inquiry result with a numeric item index, a character pattern and its coordinate in form of
integer vector.

Examples

#Make traversal table:
trav <- trvs(dl2vbt(chrvec2dl(colnames(datatest))))

#Visit specific element by its coordinate:
trvsidxing(trav,c(1,2,3,1))

14 trvssubing

trvssubing Using sub vector binary tree to visit the traversal table

Description

Visit the traversal table generated from a vector binary tree through the sub vector binary tree deter-
mined by the argument ing, and return an inquiry list containing the numeric index, the character
pattern and the corresponding coordinate for each item.

Usage

trvssubing(trvs, inq)

Arguments
trvs The traversal table to be visited, which should be generated from the vector
binary tree by the function trvs().
ing A sub tree generated from the original vector binary tree, to determine the subset
of elements to be visited.
Value

Return a list containing the numeric index, the character pattern and the corresponding coordinate
for each item.

See Also

vbtsub, advbtsub.

Examples

#Make original vector binary tree and its traversal table:
vbt <- dl2vbt(chrvec2dl(colnames(datatest)))
trav <- trvs(vbt)

#Visit all elements defined by sub vector binary tree:

#example 1: visit all "Stress-*-x-x" patterns;

#make sub vector binary tree through vbtsub() then execute inquiry:
subvbt <- vbtsub(vbt, c(2,-1,-1,-1))

trvssubing(trav, subvbt)

#texample 2: visit all "Strain-("950", "1050")-("0.001", "0.1")-*" patterns;
#make sub vector binary tree through advbtsub() then execute inquiry:
subvbt <- advbtsub(vbt, list(1, c(2,4), c(1,3), 1))

trvssubinqg(trav, subvbt)

ts2dl 15

ts2dl Convert a structured character tensor to double list

Description

Convert a structured character tensor to a double list. All character elements in tensor will be splited
by a specific pattern then sorted intrinsically in each layer of the double list.

Usage
ts2dl(x, ...)
Arguments
X A structured character tensor to be converted.
Argument in chrvec2dl to control split pattern.
Value

Return a double list based on the input tensor.

See Also

ts2vbt, chrvec2dl.

Examples

#Write the column names of datatest into a tensor:
ts <- dl2ts(chrvec2dl(colnames(datatest)))

#Recover the double list from character tensor:
ts2d1(ts)

ts2vbt Convert a structured character tensor to double list

Description
Convert a structured character tensor to a vector binary tree. All character elements in tensor will
be splited by a specific pattern then sorted intrinsically in each layer of the vector binary tree.
Usage

ts2vbt(x, ...)

16 vbt2arr

Arguments
X A structured character tensor to be converted.
Argument in chrvec2dl to control split pattern.
Value

Return a vector binary tree based on the input tensor.

See Also

ts2dl, chrvec2dl.

Examples

#Write the column names of datatest into a tensor:
ts <- dl2ts(chrvec2dl(colnames(datatest)))

#Recover the vector binary tree from character tensor:
ts2vbt(ts)

vbt2arr Convert a vector binary tree to array

Description

Convert a vector binary tree to an array. The pure numeric layers will be sorted intrinsically then all
elements will be bound in certain order as one character element, and filled into the proper location
in the array.

Usage

vbt2arr(x)

Arguments

X A vector binary tree to be converted.

Value

Return an array filled with the binding character elements.

See Also

vbt2dl, vbt2ts.

vbt2dl 17

Examples

#Make column names of datatest into vector binary tree:
vbt <- dl2vbt(chrvec2dl(colnames(datatest), "-"))

#Convert the vector binary tree to an array:
vbt2arr(vbt)

vbt2dl Convert a vector binary tree to double list

Description

Recover a vector binary tree to double list for easy visualization. Empty layers in vector binary tree
will be marked by the symbol "*" as default.

Usage

vbt2d1(x)

Arguments

X A vector binary tree to be converted.

Value

Return a double list based on input vector binary tree.

See Also

vbting, vbtsub, advbting, advbtsub, trvssubing, vbt2ts, vbt2arr.

Examples

#Recover vector binary tree to a double list for easy visualization:
vbt <- dl2vbt(chrvec2dl(colnames(datatest))) #make vector binary tree
vbt2d1l(vbt)

18 vbting

vbt2ts Convert a vector binary tree to tensor

Description

Convert a vector binary tree to a tensor. The pure numeric layers will be sorted intrinsically then all
elements will be bound in certain order as one character element, and filled into the proper location
in the tensor.

Usage

vbt2ts(x)

Arguments

X A vector binary tree to be converted.

Value

Return a tensor filled with the binding character elements.

See Also

vbt2dl, vbt2arr.

Examples

#Make column names of datatest into vector binary tree:
vbt <- dl2vbt(chrvec2dl(colnames(datatest), "-"))

#Convert the vector binary tree to a tensor:
vbt2ts(vbt)

vbting Using vector to visit vector binary tree

Description
Visit the vector binary tree and return a double list through specific assigment determined by the
argument ing.

Usage

vbting(x, inq)

vbtsub 19

Arguments
X The vector binary tree to be visited. Traversal is available by setting -1 in desired
layer.
ing An integer vector to determine desired location. The length of inq should be the
same as the layers of visited vector binary tree. If any assignment in specificed
layer exceeds its intrinsic length of visited vector binary tree layer, all elements
will be returned in this layer.
Value

Return a double list according to the argument ing.

See Also

vbtsub, advbting, advbtsub.

Examples

#Make vector binary tree:
colnamevbt <- dl2vbt(chrvec2dl(colnames(datatest)))

#Visit by specific assignment:
vbting(colnamevbt, c(2, 3, 1, 1))

#Traversal of the second layers:
vbting(colnamevbt, c(2, -1, 1, 1))

#Invalid assignments in 1st and 3rd layers:
vbting(colnamevbt, c(4, 3, 7, 1))

vbtsub Using vector to generate sub tree from vector binary tree

Description

Visit the vector binary tree and generate a sub tree from visited vector binary tree, through specific
assigment determined by the argument ing.

Usage

vbtsub(x, inq)

20 vbtsub

Arguments
X The vector binary tree to be visited. Traversal is available by setting -1 in desired
layer.
ing An integer vector to determine the visiting location. The length of inqg should
be the same as the layers of visited vector binary tree. If any assignment in
specificed layer exceeds its intrinsic length of visited vector binary tree layer, all
elements will be returned in this layer.
Value

Return a sub tree from visited vector binary tree, according to the argument ing.

See Also

vbting, advbting, advbtsub.

Examples

#Make vector binary tree:
colnamevbt <- dl2vbt(chrvec2dl(colnames(datatest)))

#Generating sub tree by specific assignment:
vbtsub(colnamevbt, c(2, 3, 1, 1))

#Generating sub tree with traversal in the second layers:
vbtsub(colnamevbt, c(2, -1, 1, 1))

#Generating sub tree with invalid assignments in 1st and 3rd layers:
vbtsub(colnamevbt, c(4, 3, 7, 1))

Index

xTopic Double.List vbt2arr, 16
advbting, 3 *Topic data.frame
arr2dl, 6 datavisit, 8
chrvec2dl, 7 *Topic datatest
datavisit, 8 datatest, 8
dl2arr,9 xTopic package
dl2ts, 10 VBTree-package, 2
dl2vbt, 11 «Topic tensor
ts2dl, 15 datavisit, 8
vbt2dl, 17 dl2ts, 10
vbting, 18 ts2dl, 15

+Topic Trav.Inq ts2vbt, 15

vbt2ts, 18

trvseleing, 12
trvsidxing, 13
trvssubing, 14

«Topic Trav.Table advbting, 3, 5,8, 11, 17, 19, 20

trvs,12. advbtsub, 4, 5, 11, 14,17, 19, 20
trvseleing, 12 arr2dl. 6.7
trvsidxing, 13 b ¢

xTopic vector
datavisit, 8

3 arr2vbt, 6, 6

trvssubing, 14

xTopic Vector.Binary.Tree chrvec2dl, 6, 7,7, 15, 16
advbting, 3
advbtsub, 5 datatest, 8
arr2vbt, 6 datavisit, 8
datavisit, 8 dl2arr, 9, 10, 11
dl2vbt, 11 dl2ts, 10, 10, 11
trvs, 12 dl2vbt, 10, 11
trvssubing, 14
tsavbt, 15 pos.tensor, 3
vbt2arr, 16 to.tensor, 3
vbt2dl, 17 trvs, 12
vbt?ts,lS trvseleing, 8, 12
vbting, 18 trvsidxing, 8, 13
vbtsub, 19 trvssubing, 8, 11, 14, 17

*TOplC array ts2dl, 15, 16
arr2dl, 6 ts2vbt, 15, 15
arr2vbt, 6
datavisit, 8 vbt2arr, 16, 17, 18
dl2arr,9 vbt2dl, 16, 17, 18

21

22

vbt2ts, 16, 17, 18
vbting, 4, 5,8, 11, 17,18, 20
VBTree (VBTree-package), 2
VBTree-package, 2
vbtsub, 4, 5,11, 14,17, 19, 19

INDEX

	VBTree-package
	advbtinq
	advbtsub
	arr2dl
	arr2vbt
	chrvec2dl
	datatest
	datavisit
	dl2arr
	dl2ts
	dl2vbt
	trvs
	trvseleinq
	trvsidxinq
	trvssubinq
	ts2dl
	ts2vbt
	vbt2arr
	vbt2dl
	vbt2ts
	vbtinq
	vbtsub
	Index

