
Package ‘UBL’
July 13, 2017

Type Package

Title An Implementation of Re-Sampling Approaches to Utility-Based
Learning for Both Classification and Regression Tasks

Description
Provides a set of functions that can be used to obtain better predictive performance on cost-
sensitive and cost/benefits tasks (for both regression and classification). This includes re-
sampling approaches that modify the original data set biasing it towards the user preferences.

Version 0.0.6

Depends R(>= 3.0), methods, grDevices, graphics, stats, MBA, gstat,
automap, sp, randomForest

Suggests MASS, rpart, testthat, DMwR, ggplot2, e1071

Date 2017-07-13

URL https://github.com/paobranco/UBL

BugReports https://github.com/paobranco/UBL/issues

License GPL (>= 2)

LazyLoad yes

LazyData yes

NeedsCompilation yes

Author Paula Branco [aut, cre],
Rita Ribeiro [aut, ctb],
Luis Torgo [aut, ctb]

Maintainer Paula Branco <paobranco@gmail.com>

Repository CRAN

Date/Publication 2017-07-13 13:01:35 UTC

R topics documented:
UBL-package . 2
AdasynClassif . 4
CNNClassif . 7

1

https://github.com/paobranco/UBL
https://github.com/paobranco/UBL/issues

2 UBL-package

distances . 9
ENNClassif . 10
EvalClassifMetrics . 12
EvalRegressMetrics . 14
GaussNoiseClassif . 17
GaussNoiseRegress . 18
ImbC . 21
ImbR . 22
ImpSampClassif . 23
ImpSampRegress . 24
NCLClassif . 25
neighbours . 27
OSSClassif . 29
phi . 30
phi.control . 32
RandOverClassif . 34
RandOverRegress . 35
RandUnderClassif . 37
RandUnderRegress . 39
SmoteClassif . 41
SmoteRegress . 43
TomekClassif . 46
UtilInterpol . 48
UtilOptimClassif . 53
UtilOptimRegress . 55

Index 61

UBL-package UBL: Utility-Based Learning

Description

The package provides a diversity of pre-processing functions to deal with both classification (binary
and multi-class) and regression problems that encompass non-uniform costs and/or benefits. These
functions can be used to obtain a better predictive performance on this type of tasks. The package
also includes two synthetic data sets for regression and classification.

Details

Name: UBL
Type: Package
Version: 0.0.5
Date: 2016-07-01
License: GPL 2 GPL 3

UBL-package 3

The package in focused on utility-based learning, i.e., classification and regression problems with
non-uniform benefits and/or costs. The main goal of the implemented functions is to improve the
predictive performance of the models obtained. The package provides pre-processing approaches
that change the original data set biasing it towards the user preferences.

All the methods avaliable are suitable for classification (binary and multiclass) and regression tasks.
Moreover, several distance functions are also implemented which allows the use of the methods in
data sets with categorical and/or numeric features.

We also provide two synthetic data sets for classification and regression.

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

Maintainer: Paula Branco

References

Branco, P., Ribeiro, R.P. and Torgo, L. (2016) UBL: an R package for Utility-based Learning. arXiv
preprint arXiv:1604.08079.

Examples

Not run:
library(UBL)
an example with the synthetic classification data set provided with the package
data(ImbC)

plot(ImbC$X1, ImbC$X2, col = ImbC$Class, xlab = "X1", ylab = "X2")

summary(ImbC)
randomly generate a 30-70% test and train partition
i.train <- sample(1:nrow(ImbC), as.integer(0.7*nrow(ImbC)))
trainD <- ImbC[i.train,]
testD <- ImbC[-i.train,]

model <- rpart(Class~., trainD)
preds <- predict(model, testD, type = "class")
table(preds, testD$Class)

apply random over-sampling approach to balance the data set:

newTrain <- RandOverClassif(Class~., trainD)

newModel <- rpart(Class~., newTrain)
newPreds <- predict(newModel, testD, type = "class")
table(newPreds, testD$Class)

an example with the synthetic regression data set provided with the package
data(ImbR)

4 AdasynClassif

library(ggplot2)
ggplot(ImbR, aes(x = X1, y = X2)) + geom_point(data = ImbR, aes(colour=Tgt)) +

scale_color_gradient(low = "red", high="blue")

boxplot(ImbR$Tgt)
#relevance function automatically obtained
phiF.args <- phi.control(ImbR$Tgt, method = "extremes", extr.type = "high")
y.phi <- phi(sort(ImbR$Tgt),control.parms = phiF.args)

plot(sort(ImbR$Tgt), y.phi, type = "l", xlab = "Tgt variable", ylab = "relevance value")

set the train and test data
i.train <- sample(1:nrow(ImbR), as.integer(0.7*nrow(ImbR)))
trainD <- ImbR[i.train,]
testD <- ImbR[-i.train,]

train a model on the original train data
library(DMwR)
model <- rpartXse(Tgt~., trainD, se = 0)

preds <- predict(model, testD)

plot(testD$Tgt, preds, xlim = c(0,55), ylim = c(0,55))
abline(a = 0, b = 1)

obtain a new train using random under-sampling strategy
newTrain <- RandUnderRegress(Tgt~., trainD)
newModel <- rpartXse(Tgt~., newTrain, se = 0)
newPreds <- predict(newModel, testD)

plot the predictions for the model obtained with
the original and the modified train data
plot(testD$Tgt, preds, xlim = c(0,55), ylim = c(0,55)) #black for original train
abline(a = 0, b = 1, lty=2, col="grey")
points(testD$Tgt, newPreds, col="blue", pch=2) #blue for changed train
abline(h=30, lty=2, col="grey")
abline(v=30, lty=2, col="grey")

End(Not run)

AdasynClassif ADASYN algorithm for unbalanced classification problems, both bi-
nary and multi-class.

Description

This function handles unbalanced classification problems using the ADASYN algorithm. This al-
gorithm generates synthetic cases using a SMOTE-like approache. However, the examples of the
class(es) where over-sampling is applied are weighted according to their level of difficulty in learn-
ing. This means that more synthetic data is generated for cases which are hrder to learn compared

AdasynClassif 5

to the examples of the same class that are easier to learn. This implementation provides a strategy
suitable for both binary and multi-class problems.

Usage

AdasynClassif(form, dat, baseClass = NULL, beta = 1, dth = 0.95,
k = 5, dist = "Euclidean", p = 2)

Arguments

form A formula describing the prediction problem

dat A data frame containing the original (unbalanced) data set

baseClass Character specifying the reference class, i.e., the class from which all other
classes will be compared to. This can be selected by the user or estimated from
the classes distribution. If not defined (the default) the majority class is selected.

beta Either a numeric value indicating the desired balance level after synthetic ex-
amples generation, or a named list specifying the selected classes beta value.
A beta value of 1 (the default) corresponds to full balancing the classes. See
examples.

dth

k A number indicating the number of nearest neighbors that are used to generate
the new examples of the minority class(es).

dist A character string indicating which distance metric to use when determining the
k nearest neighbors. See the details. Defaults to "Euclidean".

p A number indicating the value of p if the "p-norm" distance is chosen. Only
necessary to define if a "p-norm" is chosen in the dist argument. See details.

Details

dist parameter: The parameter dist allows the user to define the distance metric to be used
in the neighbors computation. Although the default is the Euclidean distance, other metrics
are available. This allows the computation of distances in data sets with, for instance, both
nominal and numeric features. The options available for the distance functions are as follows:
- for data with only numeric features: "Manhattan", "Euclidean", "Canberra", "Chebyshev",
"p-norm";
- for data with only nominal features: "Overlap";
- for dealing with both nominal and numeric features: "HEOM", "HVDM".
When the "p-norm" is selected for the dist parameter, it is also necessary to define the value
of parameter p. The value of parameter p sets which "p-norm" will be used. For instance, if p
is set to 1, the "1-norm" (or Manhattan distance) is used, and if p is set to 2, the "2-norm" (or
Euclidean distance) is applied. For more details regarding the distance functions implemented
in UBL package please see the package vignettes.

Value

The function returns a data frame with the new data set resulting from the application of ADASYN
algorithm.

6 AdasynClassif

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

References

He, H., Bai, Y., Garcia, E.A. and Li, S., 2008, June. ADASYN: Adaptive synthetic sampling ap-
proach for imbalanced learning. In 2008 IEEE International Joint Conference on Neural Networks
(IEEE World Congress on Computational Intelligence) (pp. 1322-1328). IEEE.

See Also

SmoteClassif, RandOverClassif, ImpSampClassif

Examples

Example with an imbalanced multi-class problem
data(iris)
dat <- iris[-c(45:75), c(1, 2, 5)]

checking the class distribution of this artificial data set
table(dat$Species)
newdata <- AdasynClassif(Species~., dat, beta=1)
table(newdata$Species)
beta <- list("setosa"=1, "versicolor"=0.5)
newdata <- AdasynClassif(Species~., dat, baseClass="virginica", beta=beta)
table(newdata$Species)

Checking visually the created data
par(mfrow = c(1, 2))
plot(dat[, 1], dat[, 2], pch = 19 + as.integer(dat[, 3]),

col = as.integer(dat[,3]), main = "Original Data",
xlim=range(newdata[,1]), ylim=range(newdata[,2]))

plot(newdata[, 1], newdata[, 2], pch = 19 + as.integer(newdata[, 3]),
col = as.integer(newdata[,3]), main = "New Data",
xlim=range(newdata[,1]), ylim=range(newdata[,2]))

A binary example
library(MASS)
data(cats)
table(cats$Sex)
Ada1cats <- AdasynClassif(Sex~., cats)
table(Ada1cats$Sex)
Ada2cats <- AdasynClassif(Sex~., cats, beta=5)
table(Ada2cats$Sex)

CNNClassif 7

CNNClassif Condensed Nearest Neighbors strategy for multiclass imbalanced
problems

Description

This function applies the Condensed Nearest Neighbors (CNN) strategy for imbalanced multiclass
problems. It constructs a subset of examples which are able to correctly classify the original data
set using a one nearest neighbor rule.

Usage

CNNClassif(form, dat, dist = "Euclidean", p = 2, Cl = "smaller")

Arguments

form A formula describing the prediction problem.

dat A data frame containing the original imbalanced data set.

dist A character string indicating which distance metric to use when determining the
k nearest neighbors. See the details. Defaults to "Euclidean".

p A number indicating the value of p if the "p-norm" distance is chosen. Only
necessary to define if a "p-norm" is chosen in the dist argument. See details.

Cl A character vector indicating which are the most important classes. Defaults
to "smaller" which means that the smaller classes are automatically determined.
In this case, all the smaller classes are those with a frequency below #exam-
ples/#classes. With the selection of option "smaller" those classes are the ones
considered important for the user.

Details

dist parameter: The parameter dist allows the user to define the distance metric to be used
in the neighbors computation. Although the default is the Euclidean distance, other metrics
are available. This allows the computation of distances in data sets with, for instance, both
nominal and numeric features. The options available for the distance functions are as follows:
- for data with only numeric features: "Manhattan", "Euclidean", "Canberra", "Chebyshev",
"p-norm";
- for data with only nominal features: "Overlap";
- for dealing with both nominal and numeric features: "HEOM", "HVDM".
When the "p-norm" is selected for the dist parameter, it is also necessary to define the value
of parameter p. The value of parameter p sets which "p-norm" will be used. For instance, if p
is set to 1, the "1-norm" (or Manhattan distance) is used, and if p is set to 2, the "2-norm" (or
Euclidean distance) is applied. For more details regarding the distance functions implemented
in UBL package please see the package vignettes.

8 CNNClassif

CNN algorithm: This function applies the Condensed Nearest Neighbors (CNN) strategy for deal-
ing with imbalanced multiclass problems. The classes selected in Cl are considered the most
important ones and all the others are under-sampled. The CNN under-sampling strategy starts
with a set composed by all the examples from the important classes and one randomly se-
lected example from the other classes. Then, examples from the other classes are added to the
set forming a subset of examples which correctly classifies the original data set using a one
nearest neighbor rule.

Value

The function returns a list with a data frame with the new data set resulting from the application of
the CNN strategy, a character vector with the important classes, and another character vector with
the unimportant classes.

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

References

Hart, P. E. (1968). The condensed nearest neighbor rule IEEE Transactions on Information Theory,
14, 515-516

See Also

OSSClassif, TomekClassif

Examples

library(DMwR)
data(algae)
clean.algae <- algae[complete.cases(algae),]
myCNN <- CNNClassif(season~., clean.algae,

Cl = c("summer", "spring", "winter"),
dist = "HEOM")

CNN1 <- CNNClassif(season~., clean.algae, Cl = "smaller", dist = "HEOM")
CNN2<- CNNClassif(season~., clean.algae, Cl = "summer",dist = "HVDM")
summary(myCNN[[1]]$season)
summary(CNN1[[1]]$season)
summary(CNN2[[1]]$season)

library(MASS)
data(cats)
CNN.catsF <- CNNClassif(Sex~., cats, Cl = "F")
CNN.cats <- CNNClassif(Sex~., cats, Cl = "smaller")

distances 9

distances Distance matrix between all data set examples according to a selected
distance metric.

Description

This function computes the distances between all examples in a data set using a selected distance
metric. The metrics available are suitable for data sets with numeric and/or nominal features and
include, among others: Euclidean, Manhattan, HEOM and HVDM.

Usage

distances(tgt, dat, dist, p=2)

Arguments

tgt The column of the problem target variable.

dat A data frame containing the problem data.

dist A character string specifying the distance function to use in the nearest neigh-
bours evaluation.

p An optional parameter that is only required if the distance function selected in
parameter dist is "p-norm".

Details

Several distance function are implemented in UBL package. The goal of having such a diversity
of distance functions is to provide the users more flexibility regarding the distance used and also
to provide distance fucntions that are able to deal with nominal and numeric features. The options
available for the distance functions are as follows:

data with only numeric features: "Manhattan", "Euclidean", "Canberra", "Chebyshev", "p-norm";

data with only nominal features: "Overlap";

data with both nominal and numeric features: "HEOM", "HVDM".

When the "p-norm" is selected for the dist parameter, it is also necessary to define the value of
parameter p. The value of parameter p sets which "p-norm" will be used. For instance, if p is set
to 1, the "1-norm" (or Manhattan distance) is used, and if p is set to 2, the "2-norm" (or Euclidean
distance) is applied. For more details regarding the distance functions implemented in UBL package
please see the package vignettes.

Value

The function returns a matrix with the distances computed between each pair of examples in the
data set.

10 ENNClassif

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

References

Wilson, D.R. and Martinez, T.R. (1997). Improved heterogeneous distance functions. Journal of
artificial intelligence research, pp.1-34.

See Also

neighbours

Examples

Not run:
data(ImbC)
determine the distances between each example in ImbC data set
using the "HVDM" distance function.
dist1 <- distances(3, ImbC, "HVDM")

now using the "HEOM" distance function
dist2 <- distances(3, ImbC, "HEOM")

check the differences
head(dist1)
head(dist2)

End(Not run)

ENNClassif Edited Nearest Neighbor for multiclass imbalanced problems

Description

This function handles imbalanced classification problems using the Edited Nearest Neighbor (ENN)
algorithm. It removes examples whose class label differs from the class of at least half of its k
nearest neighbors. All the existing classes can be under-sampled with this technique. Alternatively
a subset of classes to under-sample can be provided by the user.

Usage

ENNClassif(form, dat, k = 3, dist = "Euclidean", p = 2, Cl = "all")

ENNClassif 11

Arguments

form A formula describing the prediction problem.

dat A data frame containing the original (imbalanced) data set.

k A number indicating the number of nearest neighbors to use.

dist A character string indicating which distance metric to use when determining the
k nearest neighbors. See the details. Defaults to "Euclidean".

p A number indicating the value of p if the "p-norm" distance is chosen. Only
necessary to define if a "p-norm" is chosen in the dist argument. See details.

Cl A character vector indicating which classes should be under-sampled. Defaults
to "all" meaning that all classes are candidates for having examples removed.
The user may define a subset of the existing classes in which this technique will
be applied.

Details

dist parameter: The parameter dist allows the user to define the distance metric to be used
in the neighbors computation. Although the default is the Euclidean distance, other metrics
are available. This allows the computation of distances in data sets with, for instance, both
nominal and numeric features. The options available for the distance functions are as follows:
- for data with only numeric features: "Manhattan", "Euclidean", "Canberra", "Chebyshev",
"p-norm";
- for data with only nominal features: "Overlap";
- for dealing with both nominal and numeric features: "HEOM", "HVDM".
When the "p-norm" is selected for the dist parameter, it is also necessary to define the value
of parameter p. The value of parameter p sets which "p-norm" will be used. For instance, if p
is set to 1, the "1-norm" (or Manhattan distance) is used, and if p is set to 2, the "2-norm" (or
Euclidean distance) is applied. For more details regarding the distance functions implemented
in UBL package please see the package vignettes.

ENN algorithm: The ENN algorithm uses a cleaning method to perform under-sampling. For each
example with class label in Cl the k nearest neighbors are computed using a selected distance
metric. The example is removed from the data set if it is misclassified by at least half of it’s k
nearest neighbors. Usually this algorithm uses k=3.

Value

The function returns a list containing a data frame with the new data set resulting from the applica-
tion of the ENN algorithm, and the indexes of the examples removed.

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

References

D. Wilson. (1972). Asymptotic properties of nearest neighbor rules using edited data. Systems,
Man and Cybernetics, IEEE Transactions on, 408-421.

12 EvalClassifMetrics

See Also

NCLClassif

Examples

generate an small imbalanced data set
ir<- iris[-c(95:130),]

use ENN technique with different metrics, number of neighbours and classes
ir1norm <- ENNClassif(Species~., ir, k = 5, dist = "p-norm",

p = 1, Cl = "all")
irEucl <- ENNClassif(Species~., ir) # defaults to Euclidean distance
irCheby <- ENNClassif(Species~., ir, k = 7, dist = "Chebyshev",

Cl = c("virginica", "setosa"))
irHVDM <- ENNClassif(Species~., ir, k = 3, dist = "HVDM")

checking the impact
summary(ir$Species)
summary(ir1norm[[1]]$Species)
summary(irEucl[[1]]$Species)
summary(irCheby[[1]]$Species)
summary(irHVDM[[1]]$Species)

check the removed indexes of the ir1norm data set
ir1norm[[2]]

EvalClassifMetrics Utility metrics for assessing the performance of utility-based classifi-
cation tasks.

Description

This function allows to evaluate utility-based metrics in classification problems which have defined
a cost, benefit, or utility matrix.

Usage

EvalClassifMetrics(trues, preds, mtr, type = "util", metrics = NULL, thr=0.5, beta = 1)

Arguments

trues A vector with the true target variable values of the problem.

preds A vector with the prediction values obtained for the vector of trues.

mtr A matrix that can be either a cost, a benefit or a utility matrix. The matrix must
be always provided with the true class in the rows and the predicted class in the
columns.

type A character specifying the type of matrix provided. Can be set to "cost", "bene-
fit" or "utility" (the default).

metrics A character vector with the metrics names to be evaluated. If not specified (the
default), all the metrics avaliable for the type of matrix provided are evaluated.

EvalClassifMetrics 13

thr A numeric value between 0 and 1 setting a threshold on the relevance values for
determining which are the important classes to consider. This threshold is only
necessary for the following metrics: precPhi, recPhi and FPhi. Moreover, these
metrics are only available for problems based on utility matrices. Defaults to
0.5.

beta The numeric value of the beta parameter for F-score.

Value

The function returns a named list with the evaluated metrics results.

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

References

Ribeiro, R., 2011. Utility-based regression (Doctoral dissertation, PhD thesis, Dep. Computer
Science, Faculty of Sciences - University of Porto).

Branco, P., 2014. Re-sampling Approaches for Regression Tasks under Imbalanced Domains (Msc
thesis, Dep. Computer Science, Faculty of Sciences - University of Porto).

See Also

phi.control

Examples

the synthetic data set provided with UBL package for classification
data(ImbC)
sp <- sample(1:nrow(ImbC), round(0.7*nrow(ImbC)))
train <- ImbC[sp,]
test <- ImbC[-sp,]

example with a utility matrix
define a utility matrix (true class in rows and pred class in columns)
matU <- matrix(c(0.2, -0.5, -0.3, -1, 1, -0.9, -0.9, -0.8, 0.9), byrow=TRUE, ncol=3)

determine optimal preds (predictions that maximize utility)
library(e1071) # for the naiveBayes classifier
resUtil <- UtilOptimClassif(Class~., train, test, mtr = matU, type="util",

learner = "naiveBayes",
predictor.pars = list(type="raw", threshold = 0.01))

learning a model without maximizing utility
model <- naiveBayes(Class~., train)
resNormal <- predict(model, test, type="class", threshold = 0.01)

#Check the difference in the total utility of the results
EvalClassifMetrics(test$Class, resNormal, mtr=matU, type= "util")
EvalClassifMetrics(test$Class, resUtil, mtr=matU, type= "util")

14 EvalRegressMetrics

example with a classification task that has a cost matrix associated
define a cost matrix (true class in rows and pred class in columns)
matC <- matrix(c(0, 0.5, 0.3, 1, 0, 0.9, 0.9, 0.8, 0), byrow=TRUE, ncol=3)
resUtil <- UtilOptimClassif(Class~., train, test, mtr = matC, type="cost",

learner = "naiveBayes",
predictor.pars = list(type="raw", threshold = 0.01))

learning a model without maximizing utility
model <- naiveBayes(Class~., train)
resNormal <- predict(model, test, type="class")
#Check the difference in the total utility of the results
EvalClassifMetrics(test$Class, resNormal, mtr=matC, type= "cost")
EvalClassifMetrics(test$Class, resUtil, mtr=matC, type= "cost")

#example with a benefit matrix
define a benefit matrix (true class in rows and pred class in columns)
matB <- matrix(c(0.2, 0, 0, 0, 1, 0, 0, 0, 0.9), byrow=TRUE, ncol=3)

resUtil <- UtilOptimClassif(Class~., train, test, mtr = matB, type="ben",
learner = "naiveBayes",
predictor.pars = list(type="raw", threshold = 0.01))

learning a model without maximizing utility
model <- naiveBayes(Class~., train)
resNormal <- predict(model, test, type="class", threshold = 0.01)

Check the difference in the total utility of the results
EvalClassifMetrics(test$Class, resNormal, mtr=matB, type= "ben")
EvalClassifMetrics(test$Class, resUtil, mtr=matB, type= "ben")

table(test$Class,resNormal)
table(test$Class,resUtil)

EvalRegressMetrics Utility metrics for assessing the performance of utility-based regres-
sion tasks.

Description

This function allows to evaluate utility-based metrics in regression problems which have defined a
cost, benefit, or utility surface.

Usage

EvalRegressMetrics(trues, preds, util.vals, type = "util",
metrics = NULL, thr = 0.5, control.parms = NULL,
beta = 1, maxC = NULL, maxB = NULL)

EvalRegressMetrics 15

Arguments

trues A vector with the true target variable values of the problem.

preds A vector with the prediction values obtained for the vector of trues.

util.vals Either the cost, benefit or utility values corresponding to the provided points
(trues, preds).

type A character specifying the type of surface under consideration. Can be set to
"cost", "benefit" or "utility" (the default).

metrics A character vector with the metrics names to be evaluated. If not specified (the
default), all the metrics avaliable for the type of surface provided are evaluated.

thr A numeric value between 0 and 1 setting a threshold on the relevance values for
determining which are the important cases to consider. This threshold is only
necessary for the following metrics: precPhi, recPhi and FPhi. Moreover, these
metrics are only available for problems based on utility surfaces. Defaults to
0.5.

control.parms the control.parms of the relevance function phi. Can be obtained through func-
tion phi.control. These are only necessary for evaluating the following utility
metrics: recPhi, precPhi and FPhi.

beta The numeric value of the beta parameter for F-score.

maxC the maximum cost achievable in the cost surface. Parameter only required when
the problem depends on a cost surface.

maxB the maximum Benefit achievable in the benefit surface. Parameter only required
when the problem depends on a benefit surface.

Value

The function returns a named list with the evaluated metrics results.

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

References

Ribeiro, R., 2011. Utility-based regression (Doctoral dissertation, PhD thesis, Dep. Computer
Science, Faculty of Sciences - University of Porto).

Branco, P., 2014. Re-sampling Approaches for Regression Tasks under Imbalanced Domains (Msc
thesis, Dep. Computer Science, Faculty of Sciences - University of Porto).

See Also

phi.control

16 EvalRegressMetrics

Examples

Not run:
#Example using a utility surface interpolated and observing the performance of
two models: i) a model obtained with a strategy designed for maximizing
predictions utility and a model obtained through a standard random Forest.

data(Boston, package = "MASS")

tgt <- which(colnames(Boston) == "medv")
sp <- sample(1:nrow(Boston), as.integer(0.7*nrow(Boston)))
train <- Boston[sp,]
test <- Boston[-sp,]

control.parms <- phi.control(Boston[,tgt], method="extremes", extr.type="both")
the boundaries of the domain considered
minds <- min(train[,tgt])
maxds <- max(train[,tgt])

build m.pts to include at least (minds, maxds) and (maxds, minds) points
m.pts must only contain points in [minds, maxds] range.
m.pts <- matrix(c(minds, maxds, -1, maxds, minds, -1),

byrow=TRUE, ncol=3)

pred.res <- UtilOptimRegress(medv~., train, test, type = "util", strat = "interpol",
strat.parms=list(method = "bilinear"),
control.parms = control.parms,
m.pts = m.pts, minds = minds, maxds = maxds)

assess the performance
eval.util <- EvalRegressMetrics(test$medv, pred.res$optim, pred.res$utilRes,

thr = 0.8, control.parms = control.parms)

now train a normal model
model <- randomForest(medv~.,train)
normal.preds <- predict(model, test)

#obtain the utility of this model predictions
NormalUtil <- UtilInterpol(test$medv, normal.preds, type = "util",

control.parms = control.parms,
minds, maxds, m.pts, method = "bilinear")

#check the performance
eval.normal <- EvalRegressMetrics(test$medv, normal.preds, NormalUtil,

thr=0.8, control.parms = control.parms)

3 check visually the utility surface and the predictions of both models
UtilInterpol(NULL,NULL, type = "util", control.parms = control.parms,

minds, maxds, m.pts, method = "bilinear",
visual=TRUE, full.output = TRUE)

points(test$medv, normal.preds) # standard model predition points
points(test$medv, pred.res$optim, col="blue") # model with optimized predictions

GaussNoiseClassif 17

End(Not run)

GaussNoiseClassif Introduction of Gaussian Noise for the generation of synthetic exam-
ples to handle imbalanced multiclass problems.

Description

This strategy performs both over-sampling and under-sampling. The under-sampling is randomly
performed on the examples of the classes defined by the user through the C.perc parameter. Re-
garding the over-sampling method, this is based on the generation of new synthetic examples with
the introduction of a small perturbation on existing examples through Gaussian noise. A new ex-
ample from a minority class is obtained by perturbing each feature a percentage of its standard
deviation (evaluated on the minority class examples). For nominal features, the new example ran-
domly selects a label according to the frequency of examples belonging to the minority class. The
C.perc parameter is also used to express which percentage of over-sampling should be applied and
to which classes.

Usage

GaussNoiseClassif(form, dat, C.perc = "balance", pert = 0.1, repl = FALSE)

Arguments

form A formula describing the prediction problem

dat A data frame containing the original (unbalanced) data set

C.perc A named list containing the percentage(s) of under- or/and over-sampling to ap-
ply to each class. The over-sampling percentage is a number above 1 while the
under-sampling percentage should be a number below 1. If the number 1 is pro-
vided for a given class then that class remains unchanged. Alternatively it may
be "balance" (the default) or "extreme", cases where the sampling percentages
are automatically estimated either to balance the examples between the minority
and majority classes or to invert the distribution of examples across the existing
classes transforming the majority classes into minority and vice-versa.

pert A number indicating the level of perturbation to introduce when generating syn-
thetic examples. Assuming as center the base example, this parameter defines
the radius (based on the standard deviation) where the new example is generated.

repl A boolean value controlling the possibility of having repetition of examples
when performing under-sampling by selecting among the majority class(es) ex-
amples.

Value

The function returns a data frame with the new data set resulting from the application of random
under-sampling and over-sampling through the generation of synthetic examples using Gaussian
noise.

18 GaussNoiseRegress

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

References

Sauchi Stephen Lee. (1999) Regularization in skewed binary classification. Computational Statis-
tics Vol.14, Issue 2, 277-292.

Sauchi Stephen Lee. (2000) Noisy replication in skewed binary classification. Computaional stistics
and data analysis Vol.34, Issue 2, 165-191.

See Also

SmoteClassif

Examples

library(DMwR)
data(algae)
clean.algae <- algae[complete.cases(algae),]
autumn and summer are the most important classes and winter
is the least important
C.perc = list(autumn = 3, summer = 1.5, winter = 0.2)
gn <- GaussNoiseClassif(season~., clean.algae, C.perc)
table(algae$season)
table(gn$season)

another example
data(iris)
dat <- iris[, c(1, 2, 5)]
dat$Species <- factor(ifelse(dat$Species == "setosa", "rare", "common"))
checking the class distribution of this artificial data set
table(dat$Species)
now using gaussian noise to create a more "balanced problem"
new.gn <- GaussNoiseClassif(Species ~ ., dat)
table(new.gn$Species)
Checking visually the created data
par(mfrow = c(1, 2))
plot(dat[, 1], dat[, 2], pch = as.integer(dat[, 3]),

col = as.integer(dat[, 3]), main = "Original Data")
plot(new.gn[, 1], new.gn[, 2], pch = as.integer(new.gn[, 3]),

col = as.integer(new.gn[, 3]), main = "Data with Gaussian Noise")

GaussNoiseRegress Introduction of Gaussian Noise for the generation of synthetic exam-
ples to handle imbalanced regression problems

GaussNoiseRegress 19

Description

This strategy performs both over-sampling and under-sampling. The under-sampling is randomly
performed on the examples below the relevance threshold defined by the user. Regarding the over-
sampling method, this is based on the generation of new synthetic examples with the introduction
of a small perturbation on existing examples through Gaussian noise. A new example from a rare
"class"" is obtained by perturbing all the features and the target variable a percentage of its standard
deviation (evaluated on the rare examples). The value of nominal features of the new example is
randomly selected according to the frequency of the values existing in the rare cases of the bump in
consideration.

Usage

GaussNoiseRegress(form, dat, rel = "auto", thr.rel = 0.5, C.perc = "balance",
pert = 0.1, repl = FALSE)

Arguments

form A formula describing the prediction problem
dat A data frame containing the original (unbalanced) data set
rel The relevance function which can be automatically ("auto") determined (the de-

fault) or may be provided by the user through a matrix with interpolating points.
thr.rel A number indicating the relevance threshold above which a case is considered

as belonging to the rare "class".
C.perc A list containing the percentage(s) of under- or/and over-sampling to apply to

each "class" (bump) obtained with the threshold. The C.perc values should be
provided in ascending order of target variable values. The over-sampling per-
centage(s) should be numbers above 1 and represent the increase that is applied
to the examples of the bump. The under-sampling percentage(s) should be num-
bers below 1 and represent the decrease applied to the cases in the corresponding
bump. If the value of 1 is provided for a given bump, then the examples in that
bump will remain unchanged. Alternatively it may be "balance" (the default) or
"extreme", cases where the sampling percentages are automatically estimated.

pert A number indicating the level of perturbation to introduce when generating syn-
thetic examples. Assuming as center the base example, this parameter defines
the radius (based on the standard deviation) where the new example is generated.

repl A boolean value controlling the possibility of having repetition of examples
when performing under-sampling by selecting among the "normal" examples.

Value

The function returns a data frame with the new data set resulting from the application of random
under-sampling and over-sampling through the generation of synthetic examples using Gaussian
noise.

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

20 GaussNoiseRegress

References

Sauchi Stephen Lee. (1999) Regularization in skewed binary classification. Computational Statis-
tics Vol.14, Issue 2, 277-292.

Sauchi Stephen Lee. (2000) Noisy replication in skewed binary classification. Computaional stistics
and data analysis Vol.34, Issue 2, 165-191.

See Also

SmoteRegress

Examples

library(DMwR)
data(algae)
clean.algae <- algae[complete.cases(algae),]
C.perc = list(0.5, 3)
mygn.alg <- GaussNoiseRegress(a7~., clean.algae, C.perc = C.perc)
gnB.alg <- GaussNoiseRegress(a7~., clean.algae, C.perc = "balance",

pert = 0.1)
gnE.alg <- GaussNoiseRegress(a7~., clean.algae, C.perc = "extreme")

plot(density(clean.algae$a7))
lines(density(gnE.alg$a7), col = 2)
lines(density(gnB.alg$a7), col = 3)
lines(density(mygn.alg$a7), col = 4)

ir <- iris[-c(95:130),]
mygn1.iris <- GaussNoiseRegress(Sepal.Width~., ir, C.perc = list(0.5, 2.5))
mygn2.iris <- GaussNoiseRegress(Sepal.Width~., ir, C.perc = list(0.2, 4),

thr.rel = 0.8)
gnB.iris <- GaussNoiseRegress(Sepal.Width~., ir, C.perc = "balance")
gnE.iris <- GaussNoiseRegress(Sepal.Width~., ir, C.perc = "extreme")

defining a relevance function
rel <- matrix(0, ncol = 3, nrow = 0)
rel <- rbind(rel, c(2, 1, 0))
rel <- rbind(rel, c(3, 0, 0))
rel <- rbind(rel, c(4, 1, 0))

gn.rel <- GaussNoiseRegress(Sepal.Width~., ir, rel = rel,
C.perc = list(5, 0.2, 5))

plot(density(ir$Sepal.Width), ylim = c(0,1))
lines(density(gnB.iris$Sepal.Width), col = 3)
lines(density(gnE.iris$Sepal.Width, bw = 0.3), col = 4)
check the impact of a different relevance threshold
lines(density(gn.rel$Sepal.Width), col = 2)

ImbC 21

ImbC Synthetic Imbalanced Data Set for a Multi-class Task

Description

Synthetic imbalanced data set for a multi-class task. The data set has a numeric feature ("X1"), a
nominal feature ("X2") and a target class named "Class". The three classes of the problem ("nor-
mal", "rare1" and "rare2") are assigned according to the rules described below. These rules depend
of the two features ("X1" and "X2").

Usage

data(ImbC)

Format

The data set has one continuous feature (X1) and one nominal feature (X2). The target class (denoted
as Class) has three possible values ("normal" , "rare1" and "rare2"). Classes "rare1" and "rare2"
are the minority classes. Examples of class "rare1" occur in 1% of the data while those of class
"rare2" occur in 13.1% of the data. The remaining class, "normal", is the majority class and occurs
in about 85.9% of the data. Data set ImbC has 1000 examples distributed in classes "rare1", "rare2"
and "normal" with 10, 131 and 859 examples respectively.

ImbC data has been simulated as follows:

- X1∼ N (0, 4)

- X2 labels "cat", "fish" and "dog" where randomly distributed with the restriction of having a
frequency of 30%, 30% and 40% respectively.

- To obtain the target variable Class, we have define the following sets:

• S1 = {(X1, X2) : X1 > 9 ∧ (X2 ∈ {”cat”, ”dog”})}
• S2 = {(X1, X2) : X1 > 7 ∧X2 = ”fish”}
• S3 = {(X1, X2) : −1 < X1 < 0.5}
• S4 = {(X1, X2) : X1 < −7 ∧X2 = ”fish”}

- The following conditions define the target variable distribution of the ImbC synthetic data set:

• Assign class label "rare1" to: a random sample of 90% of set S1 and a random sample of
40% of set S2

• Assign class label "rare2" to: a random sample of 80% of set S3 and a random sample of
70% of set S4

• Assign class label "normal" to the remaing examples.

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

22 ImbR

Examples

require(ggplot2)
data(ImbC)
summary(ImbC)
ggplot(data=ImbC, aes(x=X2, y=X1, color=Class))+geom_jitter()

ImbR Synthetic Regression Data Set

Description

Simulated data set for imbalanced domain on regression. The rare cases corresponden to the higher
extreme values and are described by a circle with white noise. The normal cases have a normal
distribution with the same center of the circunference with elliptical contours.

Usage

data(ImbR)

Format

The data set has 2 continuous features (X1 and X2) and a continuous target variable (denoted as
Tgt). The rare examples, i.e, cases with higher values of the target variable occur in 5% of the data.
Data set ImbR has 1000 examples.

ImbR data has been simulated as follows:

- lower Tgt values: (X1, X2)∼ N2 (102,2.52) and Tgt∼ Γ (0.5, 1) + 10

- higher Tgt values: (X1, X2)∼ (ρ ∗ cos(θ) + 10, ρ ∗ sin(θ) + 10), where ρ ∼ 92 + N2 (02, I2)
and θ ∼ U2 (02, 2πI2) Tgt∼ Γ (1, 1) + 20

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

Examples

data(ImbR)
summary(ImbR)

boxplot(ImbR$Tgt)

ImpSampClassif 23

ImpSampClassif Importance Sampling algorithm for imbalanced classification prob-
lems

Description

This function handles imbalanced classification problems using the importance/relevance provided
to re-sample the data set. The relevance is used to introduce replicas of the most important examples
and to remove the least important examples. This function combines random over-sampling with
random under-sampling which are applied in the problem classes according to the corresponding
relevance.

Usage

ImpSampClassif(form, dat, C.perc = "balance")

Arguments

form A formula describing the prediction problem

dat A data frame containing the original (unbalanced) data set

C.perc A list containing the percentage(s) of random under- or over-sampling to ap-
ply to each class. The over-sampling percentage is a number above 1 while the
under-sampling percentage should be a number below 1. If the number 1 is pro-
vided for a given class then that class remains unchanged. Alternatively it may
be "balance" (the default) or "extreme", cases where the sampling percentages
are automatically estimated.

Value

The function returns a data frame with the new data set resulting from the application of the impor-
tance sampling strategy.

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

See Also

RandUnderClassif, RandOverClassif

Examples

data(iris)
generating an artificially imbalanced data set
ir <- iris[-c(51:70,111:150),]
IS.ext <-ImpSampClassif(Species~., ir, C.perc = "extreme")
IS.bal <-ImpSampClassif(Species~., ir, C.perc = "balance")

24 ImpSampRegress

myIS <-ImpSampClassif(Species~., ir, C.perc = list(setosa = 0.2,
versicolor = 2,
virginica = 6))

check the results
table(ir$Species)
table(IS.ext$Species)
table(IS.bal$Species)
table(myIS$Species)

ImpSampRegress Importance Sampling algorithm for imbalanced regression problems

Description

This function handles imbalanced regression problems using the relevance function provided to
re-sample the data set. The relevance function is used to introduce replicas of the most important
examples and to remove the least important examples.

Usage

ImpSampRegress(form, dat, rel = "auto", thr.rel = NA,
C.perc = "balance", O = 0.5, U = 0.5)

Arguments

form A formula describing the prediction problem

dat A data frame containing the original (unbalanced) data set

rel The relevance function which can be automatically ("auto") determined (the de-
fault) or may be provided by the user through a matrix with interpolating points.

thr.rel The default is NA which means that no threshold is used when performing the
over/under-sampling. In this case, the over-sampling is performed by assigning
a higher probability for selecting an example to the examples with higher rel-
evance. On the other hand, the under-sampling is performed by removing the
examples with less relevance. The user may chose a number between 0 and 1
indicating the relevance threshold above which a case is considered as belonging
to the rare "class".

C.perc A list containing the percentage(s) of under- or/and over-sampling to apply to
each "class" obtained with the threshold. This parameter is only used when a
relevance threshold (thr.rel) is set. Otherwise it is ignored. The C.perc val-
ues should be provided in ascending order of target variable values. The over-
sampling percentage(s) must be numbers higher than 1 and represent the in-
crease applied to the examples of the bump. The under-sampling percentage(s)
should be numbers below 1 and represent the decrease applyed in the corre-
sponding bump. If the value of 1 is provided for a given bump, then the examples
in that bump will remain unchanged. Alternatively, this parameter may be set to
"balance" (the default) or "extreme", cases where the sampling percentages are
automatically estimated.

NCLClassif 25

O A number expressing the importance given to over-sampling when the thr.rel
parameter is NA. When O increases the number of examples to include during
the over-sampling step also increases. Default to 0.5.

U A number expressing the importance given to under-sampling when the thr.rel
parameter is NA. When U increases, the number of examples selected during
the under-sampling step also increases. Defaults to 0.5.

Value

The function returns a data frame with the new data set resulting from the application of the impor-
tance sampling strategy.

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

See Also

RandUnderRegress, RandOverRegress

Examples

library(DMwR)
data(algae)
clean.algae <- algae[complete.cases(algae),]
defining a threshold on the relevance
IS.ext <-ImpSampRegress(a7~., clean.algae, rel = "auto",

thr.rel = 0.7, C.perc = "extreme")
IS.bal <-ImpSampRegress(a7~., clean.algae, rel = "auto", thr.rel = 0.7,

C.perc = "balance")
myIS <-ImpSampRegress(a7~., clean.algae, rel = "auto", thr.rel = 0.7,

C.perc = list(0.2, 6))
neither threshold nor C.perc defined
IS.auto <- ImpSampRegress(a7~., clean.algae, rel = "auto")

NCLClassif Neighborhood Cleaning Rule (NCL) algorithm for multiclass imbal-
anced problems

Description

This function handles imbalanced classification problems using the Neighborhood Cleaning Rule
(NCL) method.

Usage

NCLClassif(form, dat, k = 3, dist = "Euclidean", p = 2, Cl = "smaller")

26 NCLClassif

Arguments

form A formula describing the prediction problem.

dat A data frame containing the original imbalanced data set.

k A number indicating the number of nearest neighbors to use.

dist A character string indicating which distance metric to use when determining the
k nearest neighbors. See the details. Defaults to "Euclidean".

p A number indicating the value of p if the "p-norm" distance is chosen. Only
necessary to define if a "p-norm" is chosen in the dist argument. See details.

Cl A character vector indicating which classes should be under-sampled. Defaults
to "smaller" meaning that all "smaller"" classes are the most important and there-
fore only examples from the remaining classes should be removed. The user
may define a subset of the existing classes in which this technique will be ap-
plied.

Details

dist parameter: The parameter dist allows the user to define the distance metric to be used
in the neighbors computation. Although the default is the Euclidean distance, other metrics
are available. This allows the computation of distances in data sets with, for instance, both
nominal and numeric features. The options available for the distance functions are as follows:
- for data with only numeric features: "Manhattan", "Euclidean", "Canberra", "Chebyshev",
"p-norm";
- for data with only nominal features: "Overlap";
- for dealing with both nominal and numeric features: "HEOM", "HVDM".
When the "p-norm" is selected for the dist parameter, it is also necessary to define the value
of parameter p. The value of parameter p sets which "p-norm" will be used. For instance, if p
is set to 1, the "1-norm" (or Manhattan distance) is used, and if p is set to 2, the "2-norm" (or
Euclidean distance) is applied. For more details regarding the distance functions implemented
in UBL package please see the package vignettes.

NCL algorithm: The NCL algorithm includes two phases. In the first phase the ENN algorithm
is used to under-sample the examples whose class label is not in Cl. Then, a second step is
performed which aims at further clean the neighborhood of the examples in Cl. To achieve
this, the k nearest neighbors of examples in Cl are scanned. An example is removed if all the
previous neighbors have a class label which is not in Cl, and if the example belongs to a class
which is larger than half of the smaller class in Cl. In either steps the examples with class
labels in Cl are always maintained.

Value

The function returns a data frame with the new data set resulting from the application of the NCL
algorithm.

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

neighbours 27

References

J. Laurikkala. (2001). Improving identification of difficult small classes by balancing class distri-
bution. Artificial Intelligence in Medicine, pages 63-66.

See Also

ENNClassif

Examples

generate a small imbalanced data set
ir <- iris[-c(90:135),]
apply NCL method with different metrics, number of neighbors and classes
ir.M1 <- NCLClassif(Species~., ir, k = 3, dist = "Manhattan", Cl = "smaller")
ir.Def <- NCLClassif(Species~., ir)
ir.Ch <- NCLClassif(Species~., ir, k = 7, dist = "Chebyshev", Cl = "virginica")
ir.Eu <- NCLClassif(Species~., ir, k = 5, Cl = c("versicolor", "virginica"))
check the results
summary(ir$Species)
summary(ir.M1$Species)
summary(ir.Def$Species)
summary(ir.Ch$Species)
summary(ir.Eu$Species)

neighbours Computation of nearest neighbours using a selected distance function.

Description

This function allows to obtain the nearest neighbours of each example in a data set using a distance
function selected by the user.

Usage

neighbours(tgt, dat, dist, p=2, k)

Arguments

tgt The column of the problem target variable.

dat A data frame containing the problem data.

dist A character string specifying the distance function to use in the nearest neigh-
bours evaluation.

p An optional parameter that is only required if the distance function selected in
parameter dist is "p-norm".

k The number of nearest neighbours to return for each example.

28 neighbours

Details

Several distance function are implemented in UBL package. The goal of having such a diversity
of distance functions is to provide the users more flexibility regarding the distance used and also
to provide distance fucntions that are able to deal with nominal and numeric features. The options
available for the distance functions are as follows:

data with only numeric features: "Manhattan", "Euclidean", "Canberra", "Chebyshev", "p-norm";
data with only nominal features: "Overlap";
data with both nominal and numeric features: "HEOM", "HVDM".

When the "p-norm" is selected for the dist parameter, it is also necessary to define the value of
parameter p. The value of parameter p sets which "p-norm" will be used. For instance, if p is set
to 1, the "1-norm" (or Manhattan distance) is used, and if p is set to 2, the "2-norm" (or Euclidean
distance) is applied. For more details regarding the distance functions implemented in UBL package
please see the package vignettes.

Value

The function returns a matrix with the indexes of the k nearest neighbours for each example in the
data set.

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

References

Wilson, D.R. and Martinez, T.R. (1997). Improved heterogeneous distance functions. Journal of
artificial intelligence research, pp.1-34.

See Also

distances

Examples

Not run:
data(ImbC)
determine the 2 nearest neighbours of each example in ImbC data set
using the "HVDM" distance function.
neig1 <- neighbours(3, ImbC, "HVDM", k=2)

now using the "HEOM" distance function
neig2 <- neighbours(3, ImbC, "HEOM", k=2)

check the differences
head(neig1)
head(neig2)

End(Not run)

OSSClassif 29

OSSClassif One-sided selection strategy for handling multiclass imbalanced prob-
lems.

Description

This function performs an adapted one-sided selection strategy for multiclass imbalanced problems.

Usage

OSSClassif(form, dat, dist = "Euclidean", p = 2, Cl = "smaller", start = "CNN")

Arguments

form A formula describing the prediction problem.
dat A data frame containing the original imbalanced data set.
dist A character string indicating which distance metric to use when determining the

k nearest neighbors. See the details. Defaults to "Euclidean".
p A number indicating the value of p if the "p-norm" distance is chosen. Only

necessary to define if a "p-norm" is chosen in the dist argument. See details.
Cl A character vector indicating which are the most important classes. Defaults to

"smaller" which means that the smaller classes are automatically determined. In
this case, all the smaller classes are those with a frequency below (nr.examples)/(nr.classes).
With the selection of option "smaller" those classes are the ones considered im-
portant for the user.

start A string which determines which strategy (CNN or Tomek links) should be
performed first. The existing options are "CNN" and "Tomek". The first one,
"CNN", which is the default, means that CNN strategy will be performed first
and Tomek links are applied after. On the other hand, if start is set to "Tomek"
then the reverse order is applied (first Tomek links and after CNN strategy).

Details

dist parameter: The parameter dist allows the user to define the distance metric to be used
in the neighbors computation. Although the default is the Euclidean distance, other metrics
are available. This allows the computation of distances in data sets with, for instance, both
nominal and numeric features. The options available for the distance functions are as follows:
- for data with only numeric features: "Manhattan", "Euclidean", "Canberra", "Chebyshev",
"p-norm";
- for data with only nominal features: "Overlap";
- for dealing with both nominal and numeric features: "HEOM", "HVDM".
When the "p-norm" is selected for the dist parameter, it is also necessary to define the value
of parameter p. The value of parameter p sets which "p-norm" will be used. For instance, if p
is set to 1, the "1-norm" (or Manhattan distance) is used, and if p is set to 2, the "2-norm" (or
Euclidean distance) is applied. For more details regarding the distance functions implemented
in UBL package please see the package vignettes.

30 phi

Value

The function returns a data frame with the new data set resulting from the application of the selected
OSS strategy.

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

References

Kubat, M. & Matwin, S. (1997). Addressing the Curse of Imbalanced Training Sets: One-Sided
Selection Proc. of the 14th Int. Conf. on Machine Learning, Morgan Kaufmann, 179-186.

Batista, G. E.; Prati, R. C. & Monard, M. C. (2004). A study of the behavior of several methods for
balancing machine learning training data ACM SIGKDD Explorations Newsletter, ACM, 6, 20-29

See Also

TomekClassif, CNNClassif

Examples

Not run:
library(DMwR)
data(algae)
clean.algae <- algae[complete.cases(algae),]
alg1 <- OSSClassif(season~., clean.algae, dist = "HVDM",

Cl = c("spring", "summer"))
alg2 <- OSSClassif(season~., clean.algae, dist = "HEOM",

Cl = c("spring", "summer"), start = "Tomek")
alg3 <- OSSClassif(season~., clean.algae, dist = "HVDM", start = "CNN")
alg4 <- OSSClassif(season~., clean.algae, dist = "HVDM", start = "Tomek")
alg5 <- OSSClassif(season~., clean.algae, dist = "HEOM", Cl = "winter")
summary(alg1$season)
summary(alg2$season)
summary(alg3$season)
summary(alg4$season)
summary(alg5$season)

End(Not run)

phi Relevance function.

Description

This function allows to obtain the relevance function values on a set of target variable values given
the interpolating points.

phi 31

Usage

phi(y, control.parms)

Arguments

y The target variable values of the problem.

control.parms A named list supplied by the phi.control function with the parameters needed
for obtaining the relevance values.

Details

The phi function specifies the regions of interest in the target variable. It does so by performing
a Monotone Cubic Spline Interpolation over a set of maximum and minimum relevance points.
The notion of relevance can be associated with rarity. Nonetheless, this notion may depend on the
domain experts knowledge.

Value

The function returns the relevance values.

Author(s)

Rita Ribeiro <rpribeiro@dcc.fc.up.pt>, Paula Branco <paobranco@gmail.com>, and Luis Torgo
<ltorgo@dcc.fc.up.pt>

References

Ribeiro, R., 2011. Utility-based regression (Doctoral dissertation, PhD thesis, Dep. Computer
Science, Faculty of Sciences - University of Porto).

Fritsch, F.N. and Carlson, R.E., 1980. Monotone piecewise cubic interpolation. SIAM Journal on
Numerical Analysis, 17(2), pp.238-246.

See Also

phi.control

Examples

example of a relevance function where the extremes are the important values.
data(morley)
the target variable
y <- morley$Speed

phiF.args <- phi.control(y,method="extremes",extr.type="both")
y.phi <- phi(y, control.parms=phiF.args)
plot(y, y.phi)

32 phi.control

phi.control Estimation of parameters used for obtaining the relevance function.

Description

This function allows to obtain the parameters of the relevance function (phi). The parameters can
be obtained using one of the following methods: "extremes" or "range". If the selected method is
"extremes", the distribution of the target variable values is used to assign more importance to the
most extreme values according to the boxplot. If the selected method is "range", a matrix should be
provided defining the important and unimportant values (see section details).

Usage

phi.control(y, method="extremes", extr.type="both", coef=1.5, control.pts=NULL)

Arguments

y The target variable values.

method "extremes" (default) or "range".

extr.type parameter needed for method "extremes" to specify which type of extremes are
to be considered relevant: "high", "low" or "both"(default).

coef parameter needed for method "extremes" to specify how far the wiskers extend
to the most extreme data point in the boxplot. The default is 1.5.

control.pts parameter needed for method "range" to specify the interpolating points to the
relevance function (phi). It should be a matrix with three columns. The first
column represents the y value, the second column represents the corresponding
relevance value (phi(y)) in [0,1], and the third optional column represents the
corresponding relevance value derivative (phi’(y)).

Details

The method "extremes" uses the target variable distribution to automatically determine the most
relevant values. This method uses the boxplot to automatically derive a matrix with the interpolating
points for the relevance function (phi). According to the extr.type parameter it assigns maximum
relevance to: only the "high" extremes, only the "low" extremes or "both". In the latter case, it
assigns maximum relevance to "both" types of extremes if they exist. If "both" is selected and only
one type of extremes is present, then only the existing extremes are considered.

The method "range" uses the control.pts matrix provided by the user to define the interpolating
points for the relevance function (phi). The values supplied in the third column (phi derivative)
of the matrix are only indicative, meaning that they will be adjusted afterwards by the relevance
function (phi) to create a smooth continuous function.

Value

The function returns a list with the parameters needed for obtaining and evaluating the relevance
function (phi).

phi.control 33

Author(s)

Rita Ribeiro <rpribeiro@dcc.fc.up.pt>, Paula Branco <paobranco@gmail.com> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

References

Ribeiro, R., 2011. Utility-based regression (Doctoral dissertation, PhD thesis, Dep. Computer
Science, Faculty of Sciences - University of Porto).

See Also

phi

Examples

data(morley)
the target variable
y <- morley$Speed

the target variable has "low" and "high"extremes
boxplot(y)

using method "extremes" considering that
"both" extremes are important
phiF.argsB <- phi.control(y,method="extremes",extr.type="both")
y.phiB <- phi(y, control.parms=phiF.argsB)
plot(y, y.phiB)

using method "extremes" considering that only the
"high" extremes are relevant
phiF.argsH <- phi.control(y,method="extremes",extr.type="high")
y.phiH <- phi(y, control.parms=phiF.argsH)
plot(y, y.phiH)

using method "range" to choose the important values:
rel <- matrix(0,ncol=3,nrow=0)
rel <- rbind(rel,c(700,0,0))
rel <- rbind(rel,c(800,1,0))
rel <- rbind(rel,c(900,0,0))
rel <- rbind(rel,c(1000,1,0))
rel
phiF.argsR <- phi.control(y,method="range",control.pts=rel)
y.phiR <- phi(y, control.parms=phiF.argsR)

plot(y, y.phiR)

34 RandOverClassif

RandOverClassif Random over-sampling for imbalanced classification problems

Description

This function performs a random over-sampling strategy for imbalanced multiclass problems. Es-
sentially, a percentage of cases of the class(es) selected by the user are randomly over-sampled by
the introduction of replicas of examples. Alternatively, the strategy can be applied to either balance
all the existing classes or to "smoothly invert" the frequency of the examples in each class.

Usage

RandOverClassif(form, dat, C.perc = "balance", repl = TRUE)

Arguments

form A formula describing the prediction problem.

dat A data frame containing the original imbalanced data set.

C.perc A named list containing each class name and the corresponding over-sampling
percentage, greater than or equal to 1, where 1 means that no over-sampling is
to be applied in the corresponding class. The user may indicate only the classes
where he wants to apply random over-sampling. For instance, a percenatge of
2 means that, in the changed data set, the number of examples of that class are
doubled. Alternatively, this parameter can be set to "balance" (the default) or
"extreme", cases where the over-sampling percentages are automatically esti-
mated. The "balance" option tries to balance all the existing classes while the
"extreme" option inverts the classes original frequencies.

repl A boolean value controlling the possibility of having repetition of examples
when choosing the examples to repeat in the over-sampled data set. Defaults to
TRUE because this is a necessary condition if the selected percentage is greater
than 2. This parameter is only important when the over-sampling percentage is
between 1 and 2. In this case, it controls if all the new examples selected from a
given class can be repeated or not.

Details

This function performs a random over-sampling strategy for dealing with imbalanced multiclass
problems. The new examples included in the new data set are replicas of the examples already
present in the original data set.

Value

The function returns a data frame with the new data set resulting from the application of the random
over-sampling strategy.

RandOverRegress 35

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

See Also

RandUnderClassif

Examples

library(DMwR)
data(algae)
classes spring and winter remain unchanged
C.perc = list(autumn = 2, summer = 1.5, spring = 1)
myover.algae <- RandOverClassif(season~., algae, C.perc)
oveBalan.algae <- RandOverClassif(season~., algae, "balance")
oveInvert.algae <- RandOverClassif(season~., algae, "extreme")

library(MASS)
data(cats)
myover.cats <- RandOverClassif(Sex~., cats, list(M = 1.5))
oveBalan.cats <- RandOverClassif(Sex~., cats, "balance")
oveInvert.cats <- RandOverClassif(Sex~., cats, "extreme")

learn a model and check results with original and over-sampled data
library(rpart)
idx <- sample(1:nrow(cats), as.integer(0.7 * nrow(cats)))
tr <- cats[idx,]
ts <- cats[-idx,]

ctO <- rpart(Sex ~ ., tr)
predsO <- predict(ctO, ts, type = "class")
new.cats <- RandOverClassif(Sex~., tr, "balance")
ct1 <- rpart(Sex ~ ., new.cats)
preds1 <- predict(ct1, ts, type = "class")
table(predsO, ts$Sex)
table(preds1, ts$Sex)

RandOverRegress Random over-sampling for imbalanced regression problems

Description

This function performs a random over-sampling strategy for imbalanced regression problems. Ba-
sically a percentage of cases of the "class(es)" (bumps above a relevance threshold defined) selected
by the user are randomly over-sampled. Alternatively, it can either balance all the existing "classes"
(the default) or it can "smoothly invert" the frequency of the examples in each class.

36 RandOverRegress

Usage

RandOverRegress(form, dat, rel = "auto", thr.rel = 0.5,
C.perc = "balance", repl = TRUE)

Arguments

form A formula describing the prediction problem.

dat A data frame containing the original imbalanced data set.

rel The relevance function which can be automatically ("auto") determined (the de-
fault) or may be provided by the user through a matrix with the interpolating
points.

thr.rel A number indicating the relevance threshold above which a case is considered
as belonging to the rare "class".

C.perc A list containing the over-sampling percentage/s to apply to all/each "class"
(bump) obtained with the relevance threshold. Replicas of the examples are
are randomly added in each "class". If only one percentage is provided this
value is reused in all the "classes" that have values above the relevance thresh-
old. A different percentage can be provided to each "class". In this case, the
percentages should be provided in ascending order of target variable value. The
over-sampling percentage(s), should be numbers above 1, meaning that the im-
portant cases (cases above the threshold) are over-sampled by the corresponding
percentage. If the number 1 is provided then those examples are not changed.
Alternatively, C.perc parameter may be set to "balance" or "extreme", cases
where the over-sampling percentages are automatically estimated to either bal-
ance or invert the frequencies of the examples in the "classes" (bumps).

repl A boolean value controlling the possibility of having repetition of examples
when choosing the examples to repeat in the over-sampled data set. Defaults to
TRUE because this is a necessary condition if the selected percentage is greater
than 2. This parameter is only important when the over-sampling percentage is
between 1 and 2. In this case, it controls if all the new examples selected from a
given "class" can be repeated or not.

Details

This function performs a random over-sampling strategy for dealing with imbalanced regression
problems. The new examples included in the new data set are randomly selected replicas of the
examples already present in the original data set.

Value

The function returns a data frame with the new data set resulting from the application of the random
over-sampling strategy.

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

RandUnderClassif 37

See Also

RandUnderRegress

Examples

data(morley)

C.perc = list(2, 4)
myover <- RandOverRegress(Speed~., morley, C.perc=C.perc)
Bal <- RandOverRegress(Speed~., morley, C.perc= "balance")
Ext <- RandOverRegress(Speed~., morley, C.perc= "extreme")

library(DMwR)
data(algae)
clean.algae <- algae[complete.cases(algae),]
all automatic
ROB <-RandOverRegress(a7~., clean.algae)
user defined percentage for the only existing extreme (high)
myRO <-RandOverRegress(a7~., clean.algae, rel = "auto", thr.rel = 0.7,

C.perc = list(5))

check the results
plot(clean.algae[,c(1,ncol(clean.algae))])
plot(ROB[,c(1,ncol(clean.algae))])
plot(myRO[,c(1,ncol(clean.algae))])

RandUnderClassif Random under-sampling for imbalanced classification problems

Description

This function performs a random under-sampling strategy for imbalanced multiclass problems. Es-
sentially, a percentage of cases of the class(es) selected by the user are randomly removed. Alter-
natively, the strategy can be applied to either balance all the existing classes or to "smoothly invert"
the frequency of the examples in each class.

Usage

RandUnderClassif(form, dat, C.perc = "balance", repl = FALSE)

Arguments

form A formula describing the prediction problem.

dat A data frame containing the original imbalanced data set.

38 RandUnderClassif

C.perc A named list containing each class name and the corresponding under-sampling
percentage, between 0 and 1, where 1 means that no under-sampling is to be ap-
plied in the corresponding class. The user may indicate only the classes where
he wants to apply random under-sampling. For instance, a percentage of 0.2
means that, in the changed data set, the class is reduced to 20% of its origi-
nal size. Alternatively, this parameter can be set to "balance" (the defualt) or
"extreme", cases where the under-sampling percentages are automatically esti-
mated. The "balance" option tries to balance all the existing classes while the
"extreme" option inverts the classes original frequencies.

repl A boolean value controlling the possibility of having repetition of examples in
the under-sampled data set. Defaults to FALSE.

Details

This function performs a random under-sampling strategy for dealing with imbalanced multiclass
problems. The examples removed are randomly selected among the examples belonging to each
class containing the normal cases. The user can chose one or more classes to be under-sampled.

Value

The function returns a data frame with the new data set resulting from the application of the random
under-sampling strategy.

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

See Also

RandOverClassif

Examples

library(DMwR)
data(algae)
C.perc = list(autumn = 1, summer = 0.9, winter = 0.4)
classes autumn and spring remain unchanged

myunder.algae <- RandUnderClassif(season~., algae, C.perc)
undBalan.algae <- RandUnderClassif(season~., algae, "balance")
undInvert.algae <- RandUnderClassif(season~., algae, "extreme")

library(MASS)
data(cats)
myunder.cats <- RandUnderClassif(Sex~., cats, list(M = 0.8))
undBalan.cats <- RandUnderClassif(Sex~., cats, "balance")
undInvert.cats <- RandUnderClassif(Sex~., cats, "extreme")

learn a model and check results with original and under-sampled data

RandUnderRegress 39

library(rpart)
idx <- sample(1:nrow(cats), as.integer(0.7*nrow(cats)))
tr <- cats[idx,]
ts <- cats[-idx,]

idx <- sample(1:nrow(cats), as.integer(0.7*nrow(cats)))
tr <- cats[idx,]
ts <- cats[-idx,]
ctO <- rpart(Sex ~ ., tr)
predsO <- predict(ctO, ts, type = "class")
new.cats <- RandUnderClassif(Sex~., tr, "balance")
ct1 <- rpart(Sex ~ ., new.cats)
preds1 <- predict(ct1, ts, type = "class")

table(predsO, ts$Sex)
predsO F M
F 9 3
M 7 25

table(preds1, ts$Sex)
preds1 F M
F 13 4
M 3 24

RandUnderRegress Random under-sampling for imbalanced regression problems

Description

This function performs a random under-sampling strategy for imbalanced regression problems. Es-
sentially, a percentage of cases of the "class(es)" (bumps below a relevance threshold defined) se-
lected by the user are randomly removed. Alternatively, the strategy can be applied to either balance
all the existing "classes"" or to "smoothly invert" the frequency of the examples in each "class".

Usage

RandUnderRegress(form, dat, rel = "auto", thr.rel = 0.5,
C.perc = "balance", repl = FALSE)

Arguments

form A formula describing the prediction problem.

dat A data frame containing the original imbalanced data set.

rel The relevance function which can be automatically ("auto") determined (the de-
fault) or may be provided by the user through a matrix with interpolating points.

thr.rel A number indicating the relevance threshold below which a case is considered
as belonging to the normal "class".

40 RandUnderRegress

C.perc A list containing the under-sampling percentage/s to apply to all/each "class"
(bump) obtained with the relevance threshold. Examples are randomly removed
from the "class(es)". If only one percentage is provided this value is reused
in all the "classes" that have values below the relevance threshold. A different
percentage can be provided to each "class". In this case, the percentages should
be provided in ascending order of target variable value. The under-sampling
percentage(s), should be a number below 1, meaning that the normal cases (cases
below the threshold) are under-sampled by the corresponding percentage. If
the number 1 is provided then those examples are not changed. Alternatively,
C.perc parameter may be set to "balance" or "extreme", cases where the under-
sampling percentages are automatically estimated to either balance or invert the
frequencies of the examples in the "classes" (bumps).

repl A boolean value controlling the possibility of having repetition of examples in
the under-sampled data set. Defaults to FALSE.

Details

This function performs a random under-sampling strategy for dealing with imbalanced regression
problems. The examples removed are randomly selected among the examples belonging to the
normal "class(es)" (bump of relevance below the threshold defined). The user can chose one or
more bumps to be under-sampled.

Value

The function returns a data frame with the new data set resulting from the application of the random
under-sampling strategy.

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

See Also

RandOverRegress

Examples

data(morley)

C.perc = list(0.5)
myUnd <- RandUnderRegress(Speed~., morley, C.perc=C.perc)
Bal <- RandUnderRegress(Speed~., morley, C.perc= "balance")
Ext <- RandUnderRegress(Speed~., morley, C.perc= "extreme")

SmoteClassif 41

SmoteClassif SMOTE algorithm for unbalanced classification problems

Description

This function handles unbalanced classification problems using the SMOTE method. Namely, it
can generate a new "SMOTEd" data set that addresses the class unbalance problem.

Usage

SmoteClassif(form, dat, C.perc = "balance", k = 5, repl = FALSE,
dist = "Euclidean", p = 2)

Arguments

form A formula describing the prediction problem

dat A data frame containing the original (unbalanced) data set

C.perc A named list containing the percentage(s) of under- or/and over-sampling to ap-
ply to each class. The over-sampling percentage is a number above 1 while the
under-sampling percentage should be a number below 1. If the number 1 is pro-
vided for a given class then that class remains unchanged. Alternatively it may
be "balance" (the default) or "extreme", cases where the sampling percentages
are automatically estimated either to balance the examples between the minority
and majority classes or to invert the distribution of examples across the existing
classes transforming the majority classes into minority and vice-versa.

k A number indicating the number of nearest neighbors that are used to generate
the new examples of the minority class(es).

repl A boolean value controlling the possibility of having repetition of examples
when performing under-sampling by selecting among the majority class(es) ex-
amples.

dist A character string indicating which distance metric to use when determining the
k nearest neighbors. See the details. Defaults to "Euclidean".

p A number indicating the value of p if the "p-norm" distance is chosen. Only
necessary to define if a "p-norm" is chosen in the dist argument. See details.

Details

dist parameter: The parameter dist allows the user to define the distance metric to be used
in the neighbors computation. Although the default is the Euclidean distance, other metrics
are available. This allows the computation of distances in data sets with, for instance, both
nominal and numeric features. The options available for the distance functions are as follows:
- for data with only numeric features: "Manhattan", "Euclidean", "Canberra", "Chebyshev",
"p-norm";
- for data with only nominal features: "Overlap";
- for dealing with both nominal and numeric features: "HEOM", "HVDM".

42 SmoteClassif

When the "p-norm" is selected for the dist parameter, it is also necessary to define the value
of parameter p. The value of parameter p sets which "p-norm" will be used. For instance, if p
is set to 1, the "1-norm" (or Manhattan distance) is used, and if p is set to 2, the "2-norm" (or
Euclidean distance) is applied. For more details regarding the distance functions implemented
in UBL package please see the package vignettes.

Smote algorithm: Unbalanced classification problems cause problems to many learning algorithms.
These problems are characterized by the uneven proportion of cases that are available for each
class of the problem.
SMOTE (Chawla et. al. 2002) is a well-known algorithm to fight this problem. The general
idea of this method is to artificially generate new examples of the minority class using the
nearest neighbors of these cases. Furthermore, the majority class examples are also under-
sampled, leading to a more balanced dataset.
The parameter C.perc controls the amount of over-sampling and under-sampling applied and
can be automatically estimated either to balance or invert the distribution of examples across
the different classes. The parameter k controls the number of neighbors used to generate new
synthetic examples.

Value

The function returns a data frame with the new data set resulting from the application of the SMOTE
algorithm.

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

References

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote: Synthetic minority
over-sampling technique. Journal of Artificial Intelligence Research, 16:321-357.

See Also

RandUnderClassif, RandOverClassif

Examples

A small example with a data set created artificially from the IRIS
data
data(iris)
dat <- iris[, c(1, 2, 5)]
dat$Species <- factor(ifelse(dat$Species == "setosa", "rare", "common"))
checking the class distribution of this artificial data set
table(dat$Species)

now using SMOTE to create a more "balanced problem"
newData <- SmoteClassif(Species ~ ., dat, C.perc = list(common = 1,rare = 6))
table(newData$Species)

SmoteRegress 43

Checking visually the created data
par(mfrow = c(1, 2))
plot(dat[, 1], dat[, 2], pch = 19 + as.integer(dat[, 3]),

main = "Original Data")
plot(newData[, 1], newData[, 2], pch = 19 + as.integer(newData[, 3]),

main = "SMOTE'd Data")

automatically balancing the data maintaining the total number of examples
datBal <- SmoteClassif(Species ~ ., dat, C.perc = "balance")
table(datBal$Species)

automatically inverting the original distribution of examples
datExt <- SmoteClassif(Species ~ ., dat, C.perc = "extreme")
table(datExt$Species)

library(DMwR)
data(algae)
clean.algae <- algae[complete.cases(algae),]
C.perc = list(autumn = 2, summer = 1.5, winter = 0.9)
class spring remains unchanged
In this case it is necessary to define a distance function that
is able to deal with both nominal and numeric features
mysmote.algae <- SmoteClassif(season~., clean.algae, C.perc, dist = "HEOM")
the distance function may be HVDM
smoteBalan.algae <- SmoteClassif(season~., clean.algae, "balance",

dist = "HVDM")
smoteExtre.algae <- SmoteClassif(season~., clean.algae, "extreme",

dist = "HVDM")

library(MASS)
data(cats)
mysmote.cats <- SmoteClassif(Sex~., cats, list(M = 0.8, F = 1.8))
smoteBalan.cats <- SmoteClassif(Sex~., cats, "balance")
smoteExtre.cats <- SmoteClassif(Sex~., cats, "extreme")

SmoteRegress SMOTE algorithm for imbalanced regression problems

Description

This function handles imbalanced regression problems using the SMOTE method. Namely, it can
generate a new "SMOTEd" data set that addresses the problem of imbalanced domains.

Usage

SmoteRegress(form, dat, rel = "auto", thr.rel = 0.5, C.perc = "balance",
k = 5, repl = FALSE, dist = "Euclidean", p = 2)

44 SmoteRegress

Arguments

form A formula describing the prediction problem

dat A data frame containing the original (unbalanced) data set

rel The relevance function which can be automatically ("auto") determined (the de-
fault) or may be provided by the user through a matrix.

thr.rel A number indicating the relevance threshold above which a case is considered
as belonging to the rare "class".

C.perc A list containing the percentage(s) of under- or/and over-sampling to apply to
each "class" (bump) obtained with the threshold. The percentages should be
provided in ascending order of target variable value. The percentages are applied
in this order to the "classes" (bumps) obtained through the threshold. The over-
sampling percentage, a number above 1, means that the examples in that bump
are increased by this percentage. The under-sampling percentage, a number
below 1, means that the cases in the corresponding bump are under-sampled
by this percentage. If the number 1 is provided then those examples are not
changed. Alternatively it may be "balance" (the default) or "extreme", cases
where the sampling percentages are automatically estimated.

k A number indicating the number of nearest neighbors to consider as the pool
from where the new generated examples are generated.

repl A boolean value controlling the possibility of having repetition of examples
when performing under-sampling by selecting among the "normal" examples.

dist A character string indicating which distance metric to use when determining the
k nearest neighbors. See the details. Defaults to "Euclidean".

p A number indicating the value of p if the "p-norm" distance is chosen. Only
necessary to define if a "p-norm" is chosen in the dist argument. see details.

Details

dist parameter: The parameter dist allows the user to define the distance metric to be used
in the neighbors computation. Although the default is the Euclidean distance, other metrics
are available. This allows the computation of distances in data sets with, for instance, both
nominal and numeric features. The options available for the distance functions are as follows:
- for data with only numeric features: "Manhattan", "Euclidean", "Canberra", "Chebyshev",
"p-norm";
- for data with only nominal features: "Overlap";
- for dealing with both nominal and numeric features: "HEOM".
When the "p-norm" is selected for the dist parameter, it is also necessary to define the value
of parameter p. The value of parameter p sets which "p-norm" will be used. For instance, if p
is set to 1, the "1-norm" (or Manhattan distance) is used, and if p is set to 2, the "2-norm" (or
Euclidean distance) is applied. For more details regarding the distance functions implemented
in UBL package please see the package vignettes.

SmoteR algorithm: Imbalanced domains cause problems to many learning algorithms. These
problems are characterized by the uneven proportion of cases that are available for certain
ranges of the target variable which are the most important to the user.

SmoteRegress 45

SMOTE (Chawla et. al. 2002) is a well-known algorithm for classification tasks to fight
this problem. The general idea of this method is to artificially generate new examples of the
minority class using the nearest neighbors of these cases. Furthermore, the majority class
examples are also under-sampled, leading to a more balanced data set. SmoteR is a variant
of SMOTE algorithm proposed by Torgo et al. (2013) to address the problem of imbalanced
domains in regression tasks. This function uses the parameters rel and thr.rel, a relevance
function and a relevance threshold for distinguishing between the normal and rare cases.
The parameter C.perc controls the amount of over-sampling and under-sampling applied and
can be automatically estimated either to balance or invert the distribution of examples across
the different bumps. The parameter k controls the number of neighbors used to generate new
synthetic examples.

Value

The function returns a data frame with the new data set resulting from the application of the smoteR
algorithm.

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

References

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote: Synthetic minority
over-sampling technique. Journal of Artificial Intelligence Research, 16:321-357.

Torgo, Luis and Ribeiro, Rita P and Pfahringer, Bernhard and Branco, Paula (2013). SMOTE for
Regression. Progress in Artificial Intelligence, Springer,378-389.

See Also

RandUnderRegress, RandOverRegress

Examples

ir <- iris[-c(95:130),]
mysmote1.iris <- SmoteRegress(Sepal.Width~., ir, dist = "HEOM",

C.perc=list(0.5,2.5))
mysmote2.iris <- SmoteRegress(Sepal.Width~., ir, dist = "HEOM",

C.perc = list(0.2, 4), thr.rel = 0.8)
smoteBalan.iris <- SmoteRegress(Sepal.Width~., ir, dist = "HEOM",

C.perc = "balance")
smoteExtre.iris <- SmoteRegress(Sepal.Width~., ir, dist = "HEOM",

C.perc = "extreme")

checking visually the results
plot(sort(ir$Sepal.Width))
plot(sort(smoteExtre.iris$Sepal.Width))

46 TomekClassif

using a relevance function provided by the user
rel <- matrix(0, ncol = 3, nrow = 0)
rel <- rbind(rel, c(2, 1, 0))
rel <- rbind(rel, c(3, 0, 0))
rel <- rbind(rel, c(4, 1, 0))

sP.ir <- SmoteRegress(Sepal.Width~., ir, rel = rel, dist = "HEOM",
C.perc = list(4, 0.5, 4))

TomekClassif Tomek links for imbalanced classification problems

Description

This function uses Tomek links to perform under-sampling for handling imbalanced multiclass
problems. Tomek links are broken by removing one or both examples forming the link.

Usage

TomekClassif(form, dat, dist = "Euclidean", p = 2, Cl = "all", rem = "both")

Arguments

form A formula describing the prediction problem.

dat A data frame containing the original imbalanced data set.

dist A character string indicating which distance metric to use when determining the
k nearest neighbors. See the details. Defaults to "Euclidean".

p A number indicating the value of p if the "p-norm" distance is chosen. Only
necessary to define if a "p-norm" is chosen in the dist argument. See details.

Cl A character vector indicating which classes should be under-sampled. Defaults
to "all" meaning that examples from all existing classes can be removed. The
user may also specify a subset of classes for which tomek links should be re-
moved.

rem A character string indicating if both examples forming the Tomek link are to be
removed, or if only the example from the larger class should be discarded. In the
first case this parameter should be set to "both" and in the second case should be
set to "maj".

Details

dist parameter: The parameter dist allows the user to define the distance metric to be used
in the neighbors computation. Although the default is the Euclidean distance, other metrics
are available. This allows the computation of distances in data sets with, for instance, both
nominal and numeric features. The options available for the distance functions are as follows:
- for data with only numeric features: "Manhattan", "Euclidean", "Canberra", "Chebyshev",
"p-norm";

TomekClassif 47

- for data with only nominal features: "Overlap";
- for dealing with both nominal and numeric features: "HEOM", "HVDM".
When the "p-norm" is selected for the dist parameter, it is also necessary to define the value
of parameter p. The value of parameter p sets which "p-norm" will be used. For instance, if p
is set to 1, the "1-norm" (or Manhattan distance) is used, and if p is set to 2, the "2-norm" (or
Euclidean distance) is applied. For more details regarding the distance functions implemented
in UBL package please see the package vignettes.

Tomek method: This function performs an under-sampling strategy based on the notion of Tomek
links for imbalanced multiclass problems. Two examples form a Tomek link if they are each
other closest neighbors and they have different class labels.
The under-sampling procedure can be performed in two different ways. When detected the
Tomek links, the examples of both classes can be removed, or the Tomek link can be broken
by removing only one of the examples (traditionally the one belonging to the majority class).
This function also includes these two procedures. Moreover, it allows for the user to identify
in which classes under-sampling should be applied. These two aspects are controlled by the Cl
and rem parameters. The Cl parameter is used to express the classes that can be under-sampled
and its default is "all" (all existing classes are candidates for having examples removed). The
parameter rem indicates if the Tomek link is broken by removing both examples ("both") or by
removing only the example belonging to the more populated class between the two existing in
the Tomek link.
Note that the options for Cl and rem may "disagree". In those cases, the preference is given
to the Cl options once the user choose that specific set of classes to under-sample and not the
other ones (even if the defined classes are not the larger ones). This means that, when making
a decision on how many and which examples will be removed the first criteria used will be the
Cl definition .
For a better clarification of the impact of the options selected for Cl and rem parameters we
now provide some possible scenarios and the expected behavior:
1) Cl is set to one class which is neither the more nor the less frequent, and rem is set to
"maj". The expected behavior is the following: - if a Tomek link exists connecting the largest
class and another class(not included in Cl): no example is removed; - if a Tomek link exists
connecting the larger class and the class defined in Cl: the example from the Cl class is
removed (because the user expressly indicates that only examples from class Cl should be
removed);
2) Cl includes two classes and rem is set to "both". This function will do the following: - if a
Tomek link exists between an example with class in Cl and another example with class not in
Cl, then, only the example with class in Cl is removed; - if the Tomek link exists between two
examples with classes in Cl, then, both are removed.
3) Cl includes two classes and rem is set to "maj". The behavior of this function is the fol-
lowing: -if a Tomek link exists connecting two classes included in Cl, then only the example
belonging to the more populated class is removed; -if a Tomek link exists connecting an ex-
ample from a class included in Cl and another example whose class is not in Cl and is the
largest class, then, no example is removed.

Value

The function returns a list containing a data frame with the new data set resulting from the applica-
tion of the Tomek link strategy defined, and the indexes of the examples removed.

48 UtilInterpol

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

References

Tomek, I. (1976). Two modifications of CNN IEEE Trans. Syst. Man Cybern., 769-772

See Also

OSSClassif, CNNClassif

Examples

library(DMwR)
data(algae)
clean.algae <- algae[complete.cases(algae),]
alg.HVDM1 <- TomekClassif(season~., clean.algae, dist = "HVDM",

Cl = c("winter", "spring"), rem = "both")
alg.HVDM2 <- TomekClassif(season~., clean.algae, dist = "HVDM", rem = "maj")

removes only examples from class summer which are the
majority class in the link
alg.EuM <- TomekClassif(season~., clean.algae, dist = "HEOM",

Cl = "summer", rem = "maj")

removes only examples from class summer in every link they appear
alg.EuB <- TomekClassif(season~., clean.algae, dist = "HEOM",

Cl = "summer", rem = "both")

summary(clean.algae$season)
summary(alg.HVDM1[[1]]$season)
summary(alg.HVDM2[[1]]$season)
summary(alg.EuM[[1]]$season)
summary(alg.EuB[[1]]$season)

check which were the indexes of the examples removed in alg.EuM
alg.EuM[[2]]

UtilInterpol Utility surface obtained through methods for spatial interpolation of
points.

Description

This function uses spatial interpolation methods for obtaining the utility surface. It depends on
a set of points provided by the user and on a method selected for interpolation. The available
interpolation methods are: bilinear, splines, idw and krige. Check the details section for more on
these methods.

UtilInterpol 49

Usage

UtilInterpol(trues, preds, type = c("utility", "cost", "benefit"), control.parms,
minds, maxds, m.pts, method = c("bilinear", "splines", "idw", "krige"),

visual = FALSE, eps = 0.1, full.output = FALSE)

Arguments

trues A vector of true target variable values. Can be NULL. See details section.

preds A vector with corresponding predicted values for the trues provided. Can be
NULL. See details section.

type A character specifying the type of surface that is being interpolated. It can be
set to either "utility", "cost" or "benefit". When set to "cost" we assume that the
diagonal of the surface (where y=y.pred) is zero. Therefore, in this case, the user
doesn’t need to set the control.parms parameter.

control.parms These parameters are necessary for utility and benefit surfaces. control.parms
can be obtained with a call to function phi.control. This provides a list with the
parameters used for defining the relevance function phi. The points provided
through these parameters are used for interpolating the utility surface because
the relevance function matches the diagonal of the utility, i.e., the relevance
function phi corresponds to the utility of accurate predictions (y = y.pred). Al-
ternatively, the user may build the control.parms list. When the user selects a
cost surface, control.parms can simply be NULL. In this case, we assume that
the surface diagonal is zero. If control.parms are not NULL, then specified
points are used. See examples section.

minds The lower bound of the target variable considered for interpolation. A new
minds value may be necessary when trues and/or preds provided have lower
values than minds. This is handled by extrapolation and a warning is issued (see
details).

maxds The upper bound of the target variable considered for interpolation. A new
maxds value may be necessary when trues and/or preds provided have values
higher than maxds. This is handled by extrapolation and a warning is issued
(see details).

m.pts A 3-column matrix with interpolating points for the off-diagonal cases (i.e., y
!= y.pred), provided by the user. The first column has the y value, the second
column the y.pred value and the third column has the corresponding utility value.
At least, the off diagonal domain boundary points (i.e., points (minds, maxds,
util) and (maxds, minds, util)) must be provided in this matrix. Moreover, the
points provided through this parameter must be in [minds, maxds] range.

method A character indicating which interpolation method should be used. Can be one
of: "bilinear", "splines", "idw" or "krige". See details section for a description
of the available methods.

visual Logical. If TRUE a plot of the utility surface isometrics obtained and the points
provided is displayed. If FALSE (the default) no image is plotted.

eps Numeric value for the precision considered during the interpolation. Defaults to
0.1. Only relevant if a plot is displayed, or when full.output is set to TRUE. See
details section.

50 UtilInterpol

full.output Logical. If FALSE (the default) only the results from points provided through
parameters trues and preds are returned. If TRUE a matrix with the utility of
all points in domain (considering the eps provided) are returned. See details
section.

Details

method parameter: The parameter method allows the user to select from a set of interpolation
methods. The available methods are as follows:
- bilinear: local fitting of a polynomial surface of degree 1 obtained through loess function
of stats package.
- splines: multilevel B-splines interpolation method obtained through MBA R package.
- idw: inverse distance weighted interpolation obtained through R package gstat.
- krige: automatic kriging obtained using automap R package.

extrapolation: when trues or preds provided are outside the range [minds, maxds] the function
performs an extrapolation of the domain. To achieve this, four new points are added that
extend the initial target variable domain ([minds, maxds]). This extrapolation is performed as
follows:
- first: determine inc.fac, the distance necessary to increase (the largest value needed increase
the axes to include all trues and preds provided);
- second: define the new target variable domain ([minds - inc.fac, maxds + inc.fac]);
- third: add two new diagonal points evaluating the relevance function on these new points
(i.e. add (minds-inc.fac, minds-nc.fac, phi(minds-inc.fac, minds.inc.fac)) and (maxds+inc.fac,
maxds+inc.fac, phi(maxds+inc.fac, maxds+inc.fac)));
- fourth: add two new off-diagonal points using the new min and max values of the domain
and the utility provided by the user for the two mandatory points (minds, maxds) and (maxds,
minds).
In order to avoid this extrapolation, the user must ensure that the values provided in trues and
preds vectors are inside the [minds, maxds] range provided.

full.output parameter: This parameter is used to select which utility values are returned. There
are two options for this parameter:
- FALSE: This means that the user is only interested in obtaining the utility surface values of
some points (y, y.pred). In this case, the y and y.pred should be provided through parameters
trues and preds and the function returns a vector with the utility for the corresponding points.
- TRUE: The user is interested in obtaining the utility surface values on a grid of equally spaced
values of the target variable domain. In this case, there is no need for specifying parameters
trues and preds, because the goal is not to observe the utility of these points. Parameters trues
and preds can be set to NULL in this case. The function returns a lXl matrix with the utility
of all points in a grid defined as follows. The l equally spaced points are a sequence that starts
at minds-0.01, ends at maxds+0.01 and are incremented by eps value.

Value

The function returns a vector with utility of the points provided through the vectors trues and preds.

UtilInterpol 51

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

See Also

phi.control, UtilOptimRegress

Examples

Not run:
examples with a utility surface
data(Boston, package = "MASS")

tgt <- which(colnames(Boston) == "medv")
sp <- sample(1:nrow(Boston), as.integer(0.7*nrow(Boston)))
train <- Boston[sp,]
test <- Boston[-sp,]

control.parms <- phi.control(Boston[,tgt], method="extremes", extr.type="both")
the boundaries of the domain considered
minds <- min(Boston[,tgt])-5
maxds <- max(Boston[,tgt])+5

build m.pts to include at least the utility of the
points (minds, maxds) and (maxds, minds)
m.pts <- matrix(c(minds, maxds, -1, maxds, minds, 0),

byrow=TRUE, ncol=3)

trues <- test[,tgt]
library(randomForest)
model <- randomForest(medv~., train)
preds <- predict(model, test)

resLIN <- UtilInterpol(trues, preds, type="util", control.parms, minds, maxds, m.pts,
method = "bilinear", visual=TRUE)

resIDW <- UtilInterpol(trues, preds, type="util", control.parms, minds, maxds, m.pts,
method = "idw", visual=TRUE)

resSPL <- UtilInterpol(trues, preds, type="util", control.parms, minds, maxds, m.pts,
method = "spl", visual=TRUE)

resKRIGE <- UtilInterpol(trues, preds, type="util", control.parms, minds, maxds, m.pts,
method = "krige", visual=TRUE)

examples with a cost surface
data(Boston, package = "MASS")

tgt <- which(colnames(Boston) == "medv")
sp <- sample(1:nrow(Boston), as.integer(0.7*nrow(Boston)))
train <- Boston[sp,]
test <- Boston[-sp,]

the boundaries of the domain considered

52 UtilInterpol

minds <- min(Boston[,tgt])-5
maxds <- max(Boston[,tgt])+5

build m.pts to include at least the utility of the
points (minds, maxds) and (maxds, minds)
m.pts <- matrix(c(minds, maxds, 5, maxds, minds, 20),

byrow=TRUE, ncol=3)

trues <- test[,tgt]

train a model and predict on test set
library(randomForest)
model <- randomForest(medv~., train)
preds <- predict(model, test)

costLIN <- UtilInterpol(trues, preds, type="cost", control.parms=NULL, minds, maxds, m.pts,
method = "bilinear", visual=TRUE)

costSPL <- UtilInterpol(trues, preds, type="cost", control.parms=NULL, minds, maxds, m.pts,
method = "spl", visual=TRUE)

costKRIGE <- UtilInterpol(trues, preds, type="cost", control.parms=NULL, minds, maxds, m.pts,
method = "krige", visual=TRUE)

costIDW <- UtilInterpol(trues, preds, type="cost", control.parms=NULL, minds, maxds, m.pts,
method = "idw", visual=TRUE)

if the user has a cost matrix and wants to specify the control.parms:
my.pts <- matrix(c(0, 0, 0, 10, 0, 0, 20, 0, 0, 45, 0, 0), byrow=TRUE, ncol=3)
control.parms <- phi.control(trues, method="range", control.pts = my.pts)

costLIN <- UtilInterpol(trues, preds, type="cost", control.parms=control.parms,
minds, maxds, m.pts, method = "bilinear", visual=TRUE)

first trues and preds
trues[1:5]
preds[1:5]
trues[1:5]-preds[1:5]

first cost results on these predictions for cost surface costIDW
costIDW[1:5]
a summary of these prediction costs:
summary(costIDW)

#example with a benefit surface

define control.parms either by defining a list with 3 named elements
or by calling phi.control function with method range and passing
the selected control.pts
control.parms <- list(method="range", npts=5,

control.pts=c(0,1,0,10,5,0.5,20,10,0.5,30,30,0,50,30,0))

UtilOptimClassif 53

m.pts <- matrix(c(minds, maxds, 0, maxds, minds, 0),
byrow=TRUE, ncol=3)

benLIN <- UtilInterpol(trues, preds, type="ben", control.parms, minds, maxds, m.pts,
method = "bilinear", visual=TRUE)

benIDW <- UtilInterpol(trues, preds, type="ben", control.parms, minds, maxds, m.pts,
method = "idw", visual=TRUE)

benSPL <- UtilInterpol(trues, preds, type="ben", control.parms, minds, maxds, m.pts,
method = "spl", visual=TRUE)

benKRIGE <- UtilInterpol(trues, preds, type="ben", control.parms, minds, maxds, m.pts,
method = "krige", visual=TRUE)

End(Not run)

UtilOptimClassif Optimization of predictions utility, cost or benefit for classification
problems.

Description

This function determines the optimal predictions given a utility, cost or benefit matrix for the
selected learning algorithm. The learning algorithm must provide probabilities for the problem
classes. If the matrix provided is of type utility or benefit a maximization process is carried out. If
the user provides a cost matrix, then a minimization process is applied.

Usage

UtilOptimClassif(form, train, test, mtr, type = "util",
learner = NULL, learner.pars=NULL, predictor="predict",
predictor.pars=NULL)

Arguments

form A formula describing the prediction problem.
train A data.frame with the training data.
test A data.frame with the test data.
mtr A matrix, specifying the utility, cost, or benefit values associated to accurate

predictions and misclassification errors. It can be either a cost matrix, a benefit
matrix or a utility matrix. The corresponding type should be set in parameter
type. The matrix must be always provided with the true class in the rows and
the predicted class in the columns.

type The type of mtr provided. Can be set to: "utility"(default), "cost" or "benefit".
learner Character specifying the learning algorithm to use. It is required for the selected

learner to provide class probabilities.
learner.pars A named list containing the parameters of the learning algorithm.
predictor Character specifying the predictor selected (defaults to "predict").
predictor.pars A named list with the predictor selected parameters.

54 UtilOptimClassif

Value

The function returns a vector with the predictions for the test data optimized using the matrix pro-
vided.

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

References

Elkan, C., 2001, August. The foundations of cost-sensitive learning. In International joint confer-
ence on artificial intelligence (Vol. 17, No. 1, pp. 973-978). LAWRENCE ERLBAUM ASSO-
CIATES LTD.

See Also

UtilOptimRegress, EvalClassifMetrics

Examples

the synthetic data set provided with UBL package for classification
data(ImbC)
sp <- sample(1:nrow(ImbC), round(0.7*nrow(ImbC)))
train <- ImbC[sp,]
test <- ImbC[-sp,]

example with a utility matrix
define a utility matrix (true class in rows and pred class in columns)
matU <- matrix(c(0.2, -0.5, -0.3, -1, 1, -0.9, -0.9, -0.8, 0.9), byrow=TRUE, ncol=3)

library(e1071) # for the naiveBayes classifier

resUtil <- UtilOptimClassif(Class~., train, test, mtr = matU, type="util",
learner = "naiveBayes",
predictor.pars = list(type="raw", threshold = 0.01))

learning a standard model without maximizing utility
model <- naiveBayes(Class~., train)
resNormal <- predict(model, test, type="class", threshold = 0.01)
Check the difference in the total utility of the results
EvalClassifMetrics(test$Class, resNormal, mtr=matU, type= "util")
EvalClassifMetrics(test$Class, resUtil, mtr=matU, type= "util")

#example with a cost matrix
define a cost matrix (true class in rows and pred class in columns)
matC <- matrix(c(0, 0.5, 0.3, 1, 0, 0.9, 0.9, 0.8, 0), byrow=TRUE, ncol=3)
resUtil <- UtilOptimClassif(Class~., train, test, mtr = matC, type="cost",

learner = "naiveBayes",
predictor.pars = list(type="raw", threshold = 0.01))

UtilOptimRegress 55

learning a standard model without minimizing the costs
model <- naiveBayes(Class~., train)
resNormal <- predict(model, test, type="class")
Check the difference in the total utility of the results
EvalClassifMetrics(test$Class, resNormal, mtr=matC, type= "cost")
EvalClassifMetrics(test$Class, resUtil, mtr=matC, type= "cost")

#example with a benefit matrix
define a benefit matrix (true class in rows and pred class in columns)
matB <- matrix(c(0.2, 0, 0, 0, 1, 0, 0, 0, 0.9), byrow=TRUE, ncol=3)

resUtil <- UtilOptimClassif(Class~., train, test, mtr = matB, type="ben",
learner = "naiveBayes",
predictor.pars = list(type="raw", threshold = 0.01))

learning a standard model without maximizing benefits
model <- naiveBayes(Class~., train)
resNormal <- predict(model, test, type="class", threshold = 0.01)
Check the difference in the total utility of the results
EvalClassifMetrics(test$Class, resNormal, mtr=matB, type= "ben")
EvalClassifMetrics(test$Class, resUtil, mtr=matB, type= "ben")

table(test$Class,resNormal)
table(test$Class,resUtil)

UtilOptimRegress Optimization of predictions utility, cost or benefit for regression prob-
lems.

Description

This function determines the optimal predictions given a utility, cost or benefit surface. This surface
is obtained through a specified strategy with some parameters. For determining the optimal predic-
tions an estimation of the conditional probability density function is performed for each test case.
If the surface provided is of type utility or benefit a maximization process is carried out. If the user
provides a cost surface, then a minimization is performed.

Usage

UtilOptimRegress(form, train, test, type = "util", strat = "interpol",
strat.parms = list(method = "bilinear"), control.parms, m.pts,
minds, maxds, eps = 0.1)

56 UtilOptimRegress

Arguments

form A formula describing the prediction problem.

train A data.frame with the training data.

test A data.frame with the test data.

type A character specifying the type of surface provided. Can be one of: "utility",
"cost" or "benefit". Defaults to "utility".

strat A character determining the strategy for obtaining the surface of the problem.
For now, only the interpolation strategy is available (the default).

strat.parms A named list containing the parameters necessary for the strategy previously
specified. For the interpolation strategy (the default and only strategy available
for now), it is required that the user specifies wich method sould be used for
interpolating the points.

control.parms A named list with the control.parms defined through the function phi.control.
These parameters stablish the diagonal of the surface provided. If the type of
surface defined is "cost" this parameter can be set to NULL, because in this case
we assume that the accurate prediction, i.e., points in the diagonal of the surface
have zero cost. See examples.

m.pts A matrix with 3-columns, with interpolation points specifying the utility, cost or
benefit of the surface. The points sould be in the off-diagonal of the surface, i.e.,
the user should provide points where y != y.pred. The first column must have
the true value (y), the second column the corresponding prediction (y.pred) and
the third column sets the utility cost or benefit of that point (y, y.pred). The user
should define as many points as possible. The minimum number of required
points are two. More specifically, the user must always set the surface values of
at least the points (minds, maxds) and (maxds, minds). See minds and maxds
description.

maxds The numeric upper bound of the target variable considered.

minds The numeric lower bound of the target variable considered.

eps Numeric value for the precision considered during the interpolation. Defaults to
0.1.

Details

The optimization process carried out by this function uses a method for conditional density es-
timation proposed by Rau M.M et al.(2015). Code for conditional density estimation (available
on github https://github.com/MarkusMichaelRau/OrdinalClassification) kindly contributed by M.
M. Rau with changes made by P.Branco. The optimization is achieved generalizing the method
proposed by Elkan (2001) for classification tasks. In regression, this process involves determin-
ing, for each test case, the maximum integral (for utility or benefit surfaces, or the minimum
if we have a cost surface) of the product of the conditional density function estimated and ei-
ther the utility, the benefit or the cost surface. The optimal prediction for a case q is given by:
y∗(q) = argmax[z]

∫
pdf(y|q).U(y, z)dy, where pdf(y|q) is the conditional densitiy estimation

for case q, and U(y,z) is the utility, benefit or cost surface evaluated on the true value y and predic-
tied value z.

UtilOptimRegress 57

Value

The function returns a vector with the predictions for the test data optimized using the surface
provided.

Author(s)

Paula Branco <paobranco@gmail.com>, Rita Ribeiro <rpribeiro@dcc.fc.up.pt> and Luis Torgo
<ltorgo@dcc.fc.up.pt>

References

Rau, M.M., Seitz, S., Brimioulle, F., Frank, E., Friedrich, O., Gruen, D. and Hoyle, B., 2015.
Accurate photometric redshift probability density estimation-method comparison and application.
Monthly Notices of the Royal Astronomical Society, 452(4), pp.3710-3725.

Elkan, C., 2001, August. The foundations of cost-sensitive learning. In International joint confer-
ence on artificial intelligence (Vol. 17, No. 1, pp. 973-978). LAWRENCE ERLBAUM ASSO-
CIATES LTD.

See Also

phi.control, UtilOptimClassif, UtilInterpol

Examples

Not run:
#Example using a utility surface:
data(Boston, package = "MASS")

tgt <- which(colnames(Boston) == "medv")
sp <- sample(1:nrow(Boston), as.integer(0.7*nrow(Boston)))
train <- Boston[sp,]
test <- Boston[-sp,]

control.parms <- phi.control(Boston[,tgt], method="extremes", extr.type="both")
the boundaries of the domain considered
minds <- min(train[,tgt])
maxds <- max(train[,tgt])

build m.pts to include at least (minds, maxds) and (maxds, minds) points
m.pts must only contain points in [minds, maxds] range.
m.pts <- matrix(c(minds, maxds, -1, maxds, minds, -1),

byrow=TRUE, ncol=3)

pred.res <- UtilOptimRegress(medv~., train, test, type = "util", strat = "interpol",
strat.parms=list(method = "bilinear"),
control.parms = control.parms,
m.pts = m.pts, minds = minds, maxds = maxds)

eval.util <- EvalRegressMetrics(test$medv, pred.res$optim, pred.res$utilRes,
thr=0.8, control.parms = control.parms)

58 UtilOptimRegress

train a normal model
model <- randomForest(medv~.,train)
normal.preds <- predict(model, test)

#obtain the utility of the new points (trues, preds)
NormalUtil <- UtilInterpol(test$medv, normal.preds, type="util",

control.parms = control.parms,
minds, maxds, m.pts, method = "bilinear")

#check the performance
eval.normal <- EvalRegressMetrics(test$medv, normal.preds, NormalUtil,

thr=0.8, control.parms = control.parms)

#check both results
eval.util
eval.normal

#check visually both predictions and the surface used
UtilInterpol(test$medv, normal.preds, type = "util", control.parms = control.parms,

minds, maxds, m.pts, method = "bilinear", visual=TRUE)

points(test$medv, normal.preds, col="green")
points(test$medv, pred.res$optim, col="blue")

another example now using points interpolation with splines
data(algae,package="DMwR")
ds <- algae[complete.cases(algae[,1:12]),1:12]
tgt <- which(colnames(ds) == "a1")
sp <- sample(1:nrow(ds), as.integer(0.7*nrow(ds)))
train <- ds[sp,]
test <- ds[-sp,]

control.parms <- phi.control(ds[,tgt], method="extremes", extr.type="both")

the boundaries of the domain considered
minds <- min(train[,tgt])
maxds <- max(train[,tgt])

build m.pts to include at least (minds, maxds) and (maxds, minds) points
m.pts <- matrix(c(minds, maxds, -1, maxds, minds, -1),

byrow=TRUE, ncol=3)

pred.res <- UtilOptimRegress(a1~., train, test, type = "util", strat = "interpol",
strat.parms=list(method = "splines"),
control.parms = control.parms,
m.pts = m.pts, minds = minds, maxds = maxds)

check the predictions
plot(test$a1, pred.res$optim)
assess the performance
eval.util <- EvalRegressMetrics(test$a1, pred.res$optim, pred.res$utilRes,

thr=0.8, control.parms = control.parms)
#

UtilOptimRegress 59

train a normal model
model <- randomForest(a1~.,train)
normal.preds <- predict(model, test)

#obtain the utility of the new points (trues, preds)
NormalUtil <- UtilInterpol(test$medv, normal.preds, type = "util",

control.parms = control.parms,
minds, maxds, m.pts, method="splines")

#check the performance
eval.normal <- EvalRegressMetrics(test$medv, normal.preds, NormalUtil,

thr=0.8, control.parms = control.parms)

eval.util
eval.normal

observe the utility surface with the normal preds
UtilInterpol(test$a1, normal.preds, type="util", control.parms = control.parms,

minds, maxds, m.pts, method="splines", visual=TRUE)
add the optim preds
points(test$a1, pred.res$optim, col="green")

Example using a cost surface:
data(Boston, package = "MASS")

tgt <- which(colnames(Boston) == "medv")
sp <- sample(1:nrow(Boston), as.integer(0.7*nrow(Boston)))
train <- Boston[sp,]
test <- Boston[-sp,]

if using interpolation methods for COST surface, the control.parms can be set to NULL
the boundaries of the domain considered
minds <- min(train[,tgt])
maxds <- max(train[,tgt])

build m.pts to include at least (minds, maxds) and (maxds, minds) points
m.pts <- matrix(c(minds, maxds, 5, maxds, minds, 20),

byrow=TRUE, ncol=3)

pred.res <- UtilOptimRegress(medv~., train, test, type = "cost", strat = "interpol",
strat.parms = list(method = "bilinear"),
control.parms = NULL,
m.pts = m.pts, minds = minds, maxds = maxds)

check the predictions
plot(test$medv, pred.res$optim)

assess the performance
eval.util <- EvalRegressMetrics(test$medv, pred.res$optim, pred.res$utilRes,

type="cost", maxC = 20)
#
train a normal model
model <- randomForest(medv~.,train)
normal.preds <- predict(model, test)

60 UtilOptimRegress

#obtain the utility of the new points (trues, preds)
NormalUtil <- UtilInterpol(test$medv, normal.preds, type="cost", control.parms = NULL,

minds, maxds, m.pts, method="bilinear")
#check the performance
eval.normal <- EvalRegressMetrics(test$medv, normal.preds, NormalUtil,

type="cost", maxC = 20)

eval.normal
eval.util

check visually the surface and the predictions
UtilInterpol(test$medv, normal.preds, type="cost", control.parms = NULL,

minds, maxds, m.pts, method="bilinear",
visual=TRUE)

points(test$medv, pred.res$optim, col="blue")

End(Not run)

Index

∗Topic datasets
ImbC, 21
ImbR, 22

∗Topic distances evaluation
distances, 9

∗Topic evaluation metrics
EvalClassifMetrics, 12
EvalRegressMetrics, 14

∗Topic neighbours evaluation
neighbours, 27

∗Topic package
UBL-package, 2

∗Topic pre-processing classification
AdasynClassif, 4
CNNClassif, 7
ENNClassif, 10
GaussNoiseClassif, 17
ImpSampClassif, 23
NCLClassif, 25
OSSClassif, 29
RandOverClassif, 34
RandUnderClassif, 37
SmoteClassif, 41
TomekClassif, 46

∗Topic pre-processing regression
GaussNoiseRegress, 18
ImpSampRegress, 24
RandOverRegress, 35
RandUnderRegress, 39
SmoteRegress, 43

∗Topic relevance function
phi, 30
phi.control, 32

∗Topic utility optimization,
utility-based classification

UtilOptimClassif, 53
∗Topic utility optimization

UtilOptimRegress, 55
∗Topic utility surface

UtilInterpol, 48

AdasynClassif, 4

CNNClassif, 7, 30, 48

distances, 9, 28

ENNClassif, 10, 27
EvalClassifMetrics, 12, 54
EvalRegressMetrics, 14

GaussNoiseClassif, 17
GaussNoiseRegress, 18

ImbC, 21
ImbR, 22
ImpSampClassif, 6, 23
ImpSampRegress, 24

NCLClassif, 12, 25
neighbours, 10, 27

OSSClassif, 8, 29, 48

phi, 30, 32, 33, 49
phi.control, 13, 15, 31, 32, 49, 51, 56, 57

RandOverClassif, 6, 23, 34, 38, 42
RandOverRegress, 25, 35, 40, 45
RandUnderClassif, 23, 35, 37, 42
RandUnderRegress, 25, 37, 39, 45

SmoteClassif, 6, 18, 41
SmoteRegress, 20, 43

TomekClassif, 8, 30, 46

UBL-package, 2
UtilInterpol, 48, 57
UtilOptimClassif, 53, 57
UtilOptimRegress, 51, 54, 55

61

	UBL-package
	AdasynClassif
	CNNClassif
	distances
	ENNClassif
	EvalClassifMetrics
	EvalRegressMetrics
	GaussNoiseClassif
	GaussNoiseRegress
	ImbC
	ImbR
	ImpSampClassif
	ImpSampRegress
	NCLClassif
	neighbours
	OSSClassif
	phi
	phi.control
	RandOverClassif
	RandOverRegress
	RandUnderClassif
	RandUnderRegress
	SmoteClassif
	SmoteRegress
	TomekClassif
	UtilInterpol
	UtilOptimClassif
	UtilOptimRegress
	Index

