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1 Introduction

In randomized clinical trials, there are often ancillary studies with outcome-dependent
sampling to identify baseline genetic markers that modify treatment effect. The TwoPha-
seInd package implements several methods we developed to estimate gene-treatment in-
teractions in randomized clinical trials, exploiting gene-treatment independence dictated
by randomization [3, 2, 4, 5]. Substantial reduction of variance can be achieved by ex-
ploiting gene-treatment independence for estimating gene-treatment interaction and sub-
group treatment effects. The sampling schemes considered in TwoPhaseInd include case-
only design, case-control sampling, and case-cohort sampling. For case-control sampling,
TwoPhaseInd provides two functions that compute two estimators- the semiparametric
maximum likelihood estimator (SPMLE) and the maximum estimated likelihood esti-
mator (MELE), both can exploit the gene-treatment independence [3]. For case-cohort
sampling, it provides a function (acoarm) to estimate parameters in a cox regression
model by a multi-step estimation procedure developed for augmented case-only designs
[5]. In this document we show examples of applying the functions in the TwoPhaseInd

package for various designs and estimators.

2 Case-only design

Case-only design can be used to estimate the gene-treatment interaction and subgroup
treatment effects in trials with rare failure events. A function “caseonly” is provided
in the package to estimate the treatment effect when biomarker=0 and the interaction
between treatment and biomarker.

The inputs of caseonly function - caseonly(data, treatment, BaselineMarker, extra,
fraction), include “data”, a data frame contains the case-only data; “treatment”, “Base-
lineMarker”, and “extra” are the column names of “data” that represent the randomized
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treatment assignment, the biomarker of interest, and extra variables to be adjusted
for respectively; “fraction” defines the randomization fraction of the active treatment
assignment.

We show an example of applying the function below. First we load the example
dataset:

> data(acodata)

> dim(acodata)

[1] 907 14

> str(acodata)

'data.frame': 907 obs. of 14 variables:

$ vacc1_evinf : int 1442 1489 913 920 1448 1465 377 1274 1472 1463 ...

$ f_evinf : int 0 0 0 0 0 0 0 0 0 0 ...

$ subcoh : logi TRUE FALSE FALSE FALSE TRUE FALSE ...

$ ptid : int 9601 9603 9605 9606 9607 9608 9609 9610 9613 9614 ...

$ f_treat : int 1 1 1 1 0 0 1 1 1 0 ...

$ fcgr2a.3 : num 0 NA NA NA NA NA NA NA NA NA ...

$ f_agele30 : int 0 0 0 0 1 0 0 0 1 1 ...

$ f_hsv_2 : num 0 1 0 0 0 0 0 0 0 0 ...

$ f_ad5gt18 : int 0 0 0 0 0 0 0 0 0 0 ...

$ f_crcm : num 1 1 1 1 1 1 1 1 1 1 ...

$ any_drug : num 1 1 1 0 0 0 0 1 0 0 ...

$ num_male_part_cat: num 0 0 0 1 0 0 0 0 0 0 ...

$ uias : num 0 1 1 1 1 0 0 0 0 0 ...

$ uras : num 0 0 0 0 1 0 0 0 0 0 ...

The data frame“acodata”was derived from the STEP trial [1, 7] to study the interac-
tions between the host immune gene Fc-gamma receptor and vaccine on HIV infection.
We will use part of the data for case-only estimation here and later use this data for the
augmented case-only estimation. It contains 907 participants and 14 variables. The key
variables include “vacc1 evinf”, the time to HIV infection; “f evinf”, the indicator vari-
able for HIV infection; “subcoh”, the indicator of whether the participant was selected
into the sub-cohort for genotyping; “ptid”, the participant identifier; “f treatment”, the
vaccine assignment variable; “fcgr2a.3”, the genotype of Fcγ receptor FcγRIIIa, the
biomarker of interest here; the rest of variables are other covariates that can be adjusted
for in the model.

We then extract the case-only data, and apply the function to it:

> cfit=caseonly(data=acodata[acodata[,2]==1,], ##dataset

+ treatment="f_treat", ##treatment variable

+ BaselineMarker="fcgr2a.3") ##biomarker

> cfit
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beta stder pVal

treatment effect when baselineMarker=0 0.6326707 0.4937756 0.2000912

treatment+baselineMarker interaction -0.2549794 0.3820834 0.5045551

The above outputs contain “beta” (the estimated parameter), “stder” (standard error
of the estimate), and “pVal” (p-value of the estimate=0) for the treatment effect when
biomarker=0 and the interaction between treatment and biomarker.

3 Case-control design

We took a Women’s Health Initiative (WHI) biomarker study to illustrate our methods
for case-control sampling. Twenty nine biomarkers were picked by WHI investigators as
markers that are possibly associated with either stroke, venous thrombotic disease, or
myocardial infarction. A comprehensive analysis of these samples was published by [6].
The results of this particular biomarker example using our methods were also shown in
[3]. The methodologies for estimating SPMLE and MELE can be found in [3].

3.1 SPMLE

The spmle function computes semiparametric likelihood estimate for a logistic model
under case-control sampling, using or not using gene-treatment independence. The latter
is mostly pedagogical to show the efficiency gain of using the independence.

The inputs of spmle function - spmle(data, response, treatment, BaselineMarker,
extra, phase, ind, ...), include“data”, a data frame to store all the input data; “response”,
“treatment”,“BaselineMarker”, and“extra”are the column names of“data”that represent
response variable, the randomized treatment assignment, the biomarker of interest, and
extra variables to be adjusted for respectively; “phase” is the column name of phase
indicator; “ind” is a logical flag (TURE or FALSE) to indicate if incorporating the
independence between the randomized treatment and biomarker.

We illustrate a few examples of applying spmle below. First we load the example
dataset:

> data(whiBioMarker)

> dim(whiBioMarker)

[1] 16608 10

> str(whiBioMarker)

'data.frame': 16608 obs. of 10 variables:

$ stroke : num 0 0 0 0 0 0 1 0 0 1 ...

$ hrtdisp: num 1 1 0 1 1 1 1 1 0 1 ...

$ papbl : num NA NA NA NA NA NA NA NA NA NA ...
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$ age : num 64 62 62 60 54 57 77 68 73 64 ...

$ dias : num 74 70 70 79 70 88 62 60 60 67 ...

$ hyp : Factor w/ 3 levels "Missing","No",..: 2 2 2 2 3 3 2 2 2 2 ...

$ syst : num 116 135 133 133 119 ...

$ diabtrt: Factor w/ 3 levels "Missing","No",..: 2 2 2 2 2 2 2 2 2 2 ...

$ lmsepi : Factor w/ 5 levels "2 - <4 episodes per week",..: 5 4 1 4 1 5 5 4 2 2 ...

$ phase : num 1 1 1 1 1 1 1 1 1 1 ...

The example dataset “whiBioMarker” was used in WHI hormone trial to study the
interaction between biomarker and hormone therapy (estrogen plus progestin) on stroke.
It contains 10 variables and 16608 participants. The key variables include “stroke”,
the response variable for whether the participant have stroke; “hrtdisp”, the hormone
treatment variable; “papbl”, the plasmin-antiplasmin complex, the biomarker example
here; “age”, the age of a participant; “dias”, diastolic blood pressure; “hyp”, whether
the participant have hypertension; “syst”, systolic blood pressure; “diabtrt”, whether the
participant have diabetes; “lmsepi”, physical activity per week of a participant; “phase”,
the indicator if the biomarker been measured on an applicant (1: not measured, 2:
measured. Usually it is expensive to measure biomarkers, and they are measured only
on some applicants).

Here is an example code for estimating SPMLE without exploiting independent and
with several covariates included in the model:

> spmleNonIndExtra <- spmle(data=whiBioMarker, ## dataset

+ response="stroke", ## response variable

+ treatment="hrtdisp", ## treatment variable

+ BaselineMarker="papbl", ## biomarker

+ extra=c(

+ "age"

+ , "dias"

+ , "hyp"

+ , "syst"

+ , "diabtrt"

+ , "lmsepi"

+ ), ## extra variable(s)

+ phase="phase", ## phase indicator

+ ind=FALSE ## independent or non-indepentent

+ )

> spmleNonIndExtra

beta stder pVal

(Intercept) -3.9599 0.6756 4.602982e-09

hrtdisp (Treatment) 0.3698 0.1599 2.071078e-02

papbl (BaselineMarker) 2.3487 1.0565 2.620678e-02
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hrtdisp:papbl -4.1924 1.3313 1.637308e-03

age 1.3736 1.1935 2.497868e-01

dias -0.8499 0.9990 3.949167e-01

hypNo -0.7751 0.6229 2.133320e-01

hypYes -0.7607 0.6288 2.263832e-01

syst 3.3370 1.2286 6.603730e-03

diabtrtYes 0.8811 0.3707 1.746453e-02

lmsepi4+ episodes per week 0.0022 0.3927 9.954563e-01

lmsepiMissing -0.1904 0.6121 7.557121e-01

lmsepiNo activity 0.3231 0.4145 4.356103e-01

lmsepiSome activity 0.0659 0.3522 8.516191e-01

The above outputs contain “beta”, “stder”, and “pVal” for the estimated parameters of
the model.

Similarly we show an example of estimating SPMLE with exploiting independent
and with several covariates included in the model:

> spmleIndExtra <- spmle(data=whiBioMarker, ## dataset

+ response="stroke", ## response variable

+ treatment="hrtdisp", ## treatment variable

+ BaselineMarker="papbl", ## biomarker

+ extra=c(

+ "age"

+ , "dias"

+ , "hyp"

+ , "syst"

+ , "diabtrt"

+ , "lmsepi"

+ ), ## extra variable(s)

+ phase="phase", ## phase indicator

+ ind=TRUE ## independent or non-indepentent

+ )

> spmleIndExtra

beta stder pVal

(Intercept) -3.9647 0.6734 3.923845e-09

hrtdisp (Treatment) 0.3102 0.1467 3.440407e-02

papbl (BaselineMarker) 1.9058 0.9375 4.206694e-02

hrtdisp:papbl -3.8688 1.1590 8.435224e-04

age 1.7675 1.2051 1.424797e-01

dias -0.6402 0.9864 5.163626e-01

hypNo -0.8253 0.6189 1.823383e-01

hypYes -0.8161 0.6244 1.911675e-01
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syst 3.0481 1.2110 1.183348e-02

diabtrtYes 0.9493 0.3715 1.060836e-02

lmsepi4+ episodes per week 0.1714 0.3879 6.586897e-01

lmsepiMissing -0.1447 0.6089 8.121264e-01

lmsepiNo activity 0.3950 0.4085 3.336300e-01

lmsepiSome activity 0.1540 0.3488 6.588986e-01

3.2 MELE

The mele function computes semiparametric estimated likelihood estimate for a logistic
model under case-control sampling, using or not using gene-treatment independence. It
is slightly less efficient compared to the SPMLE, with less computation burden.

The inputs of mele function - mele(data, response, treatment, BaselineMarker, ex-
tra, phase, ind), are the same as those of spmle. Users need to provide a data frame
with column names of response, treatment, biomarker of interest, extra variables, phase
indicator. The independence flag indicates if incorporating the independence between
the randomized treatment and biomarker.

Here is an example of estimating MELE with exploiting independent and with several
covariates included in the model:

> melIndExtra <- mele(data=whiBioMarker, ## dataset

+ response="stroke", ## response variable

+ treatment="hrtdisp", ## treatment variable

+ BaselineMarker="papbl", ## biomarker

+ extra=c(

+ "age"

+ , "dias"

+ , "hyp" ##

+ , "syst"

+ , "diabtrt"

+ , "lmsepi"

+ ), ## extra variable(s)

+ phase="phase", ## phase indicator

+ ind=TRUE ## independent or non-indepentent

+ )

> melIndExtra

beta stder pVal

(Intercept) -3.8846 0.7172 6.089906e-08

hrtdisp (Treatment) 0.3083 0.1463 3.511160e-02

papbl (BaselineMarker) 1.8662 0.9282 4.436775e-02

hrtdisp:papbl -3.7931 1.1548 1.021672e-03

age 1.7872 1.2034 1.375141e-01
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dias -0.8270 1.0211 4.180127e-01

hypNo -0.8560 0.6636 1.971193e-01

hypYes -0.9329 0.6739 1.662278e-01

syst 3.3869 1.2285 5.834062e-03

diabtrtYes 0.9363 0.3711 1.164302e-02

lmsepi4+ episodes per week 0.1278 0.3903 7.434100e-01

lmsepiMissing -0.2114 0.6500 7.450406e-01

lmsepiNo activity 0.4480 0.4086 2.729547e-01

lmsepiSome activity 0.1385 0.3515 6.935112e-01

We also show an example of estimating MELE without exploiting independent and
with several covariates included in the model:

> melNoIndExtra <- mele(data=whiBioMarker, ## dataset

+ response="stroke", ## response variable

+ treatment="hrtdisp", ## treatment variable

+ BaselineMarker="papbl", ## biomarker

+ extra=c(

+ "age"

+ , "dias"

+ , "hyp"

+ , "syst"

+ , "diabtrt"

+ , "lmsepi"

+ ), ## extra variable(s)

+ phase="phase", ## phase indicator

+ ind=FALSE ## independent or non-indepentent

+ )

> melNoIndExtra

beta stder pVal

(Intercept) -3.9227 0.7239 5.999024e-08

hrtdisp (Treatment) 0.3190 0.1587 4.441772e-02

papbl (BaselineMarker) 2.0377 1.0557 5.358469e-02

hrtdisp:papbl -3.7559 1.3308 4.767720e-03

age 1.8170 1.2290 1.392979e-01

dias -1.0119 1.0309 3.263064e-01

hypNo -0.7987 0.6694 2.328199e-01

hypYes -0.9390 0.6790 1.666968e-01

syst 3.5970 1.2565 4.199987e-03

diabtrtYes 0.7687 0.3844 4.551940e-02

lmsepi4+ episodes per week 0.1654 0.3953 6.756095e-01

lmsepiMissing -0.2160 0.6578 7.426848e-01
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lmsepiNo activity 0.4793 0.4148 2.478730e-01

lmsepiSome activity 0.1717 0.3586 6.319940e-01

4 case-cohort design

For two-arm, placebo-controlled trials with rare failure time endpoints, we can augment
the case-only (ACO) design with random samples of controls from both arms, as in the
classical case-cohort sampling scheme, or with a random sample of controls from the
active treatment arm only. We show that these designs can identify all parameters in
a Cox model and that the efficient case-only estimator can be incorporated in a two-
step plug-in procedure[5]. A data example was shown in [5] incorporating case-only
estimators in the classical case-cohort design improves the precision of all estimated
parameters; sampling controls only in the active treatment arm attains a similar level of
efficiency. A function “acoarm” was provided for case-cohort studies.

The inputs of acoarm function - acoarm(data, svtime, event, treatment, Baseline-
Marker, id, subcohort, esttype, augment , extra), include “data”, a data frame for input
data; “svtime”, “event”, “treatment”“BaselineMarker”, “id”, “subcohort”, and “extra” are
column names of “data” that store survival time, indicator of failure event, treatment,
biomarker of interest, participant identifier, sub-cohort indicator, extra variables to be
adjusted for, respectively; “esttype” defines the option for methods used in case-cohort
model (1: Self-Prentice estimator, 0: Lin-Ying estimator); “augment” defines how the
controls augmented to case-only data (0: from the placebo arm, 1: from the active
treatment arm, or 2: from both arms).

We show a few examples to apply the function using the same data we used in the
case-only section:

First we load the example dataset:

> data(acodata)

> dim(acodata)

[1] 907 14

> str(acodata)

'data.frame': 907 obs. of 14 variables:

$ vacc1_evinf : int 1442 1489 913 920 1448 1465 377 1274 1472 1463 ...

$ f_evinf : int 0 0 0 0 0 0 0 0 0 0 ...

$ subcoh : logi TRUE FALSE FALSE FALSE TRUE FALSE ...

$ ptid : int 9601 9603 9605 9606 9607 9608 9609 9610 9613 9614 ...

$ f_treat : int 1 1 1 1 0 0 1 1 1 0 ...

$ fcgr2a.3 : num 0 NA NA NA NA NA NA NA NA NA ...

$ f_agele30 : int 0 0 0 0 1 0 0 0 1 1 ...

$ f_hsv_2 : num 0 1 0 0 0 0 0 0 0 0 ...
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$ f_ad5gt18 : int 0 0 0 0 0 0 0 0 0 0 ...

$ f_crcm : num 1 1 1 1 1 1 1 1 1 1 ...

$ any_drug : num 1 1 1 0 0 0 0 1 0 0 ...

$ num_male_part_cat: num 0 0 0 1 0 0 0 0 0 0 ...

$ uias : num 0 1 1 1 1 0 0 0 0 0 ...

$ uras : num 0 0 0 0 1 0 0 0 0 0 ...

Here is an example of ACO using controls from the placebo arm:

> rfit0 <- acoarm(data=acodata, ## dataset

+ svtime="vacc1_evinf", ## survival time

+ event="f_evinf", ## event

+ treatment="f_treat", ## treatment

+ BaselineMarker="fcgr2a.3", #biomarker

+ id="ptid", #participant id

+ subcohort="subcoh", #subcohort

+ esttype=1, ## use Self-Prentice method

+ augment=0, ## augment from placebo arm

+ extra=c("f_agele30"

+ ,"f_hsv_2"

+ ,"f_ad5gt18"

+ ,"f_crcm"

+ ,"any_drug"

+ ,"num_male_part_cat"

+ ,"uias"

+ ,"uras")) ## extra varibles

> rfit0

beta stder pVal

fcgr2a.3 (BaselineMarker) 0.1784 0.3871 0.64494332

f_treat (Treatment) 0.6327 0.4938 0.20009115

interatcion -0.2550 0.3821 0.50455514

f_agele30 0.3637 0.6260 0.56120036

f_hsv_2 1.6177 0.6588 0.01405904

f_ad5gt18 -0.2784 0.6874 0.68553494

f_crcm 0.5609 1.0100 0.57868519

any_drug 0.9704 0.6623 0.14286876

num_male_part_cat -1.7869 0.8573 0.03713643

uias 0.7115 0.5203 0.17145652

uras 0.9528 0.6391 0.13596896

Here is another example of ACO using controls from the active arm:
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> rfit1 <- acoarm(data=acodata, ## dataset

+ svtime="vacc1_evinf", ## survival time

+ event="f_evinf", ## event

+ treatment="f_treat", ## treatment

+ BaselineMarker="fcgr2a.3", #biomarker

+ id="ptid", #participant id

+ subcohort="subcoh", #subcohort

+ esttype=1, ## use Self-Prentice method

+ augment=1,## augment from active arm

+ extra=c("f_agele30"

+ ,"f_hsv_2"

+ ,"f_ad5gt18"

+ ,"f_crcm"

+ ,"any_drug"

+ ,"num_male_part_cat"

+ ,"uias"

+ ,"uras")) ## extra varibles

> rfit1

beta stder pVal

fcgr2a.3 (BaselineMarker) 0.2360 0.3765 0.53070424

f_treat (Treatment) 0.6327 0.4938 0.20009115

interatcion -0.2550 0.3821 0.50455514

f_agele30 0.1902 0.5041 0.70593304

f_hsv_2 0.8494 0.5389 0.11497257

f_ad5gt18 0.3646 0.4553 0.42326823

f_crcm -0.1616 0.5843 0.78213299

any_drug 1.0837 0.5540 0.05047852

num_male_part_cat 0.1792 0.6052 0.76711529

uias 0.0663 0.4531 0.88368210

uras 1.1437 0.4905 0.01972308

Here is an additional example of ACO using controls from both arms:

> rfit2 <- acoarm(data=acodata, ## dataset

+ svtime="vacc1_evinf", ## survival time

+ event="f_evinf", ## event

+ treatment="f_treat", ## treatment

+ BaselineMarker="fcgr2a.3", #biomarker

+ id="ptid", #participant id

+ subcohort="subcoh", #subcohort

+ esttype=1, ## use Self-Prentice method

+ augment=2,## augment from both arms
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+ extra=c("f_agele30"

+ ,"f_hsv_2"

+ ,"f_ad5gt18"

+ ,"f_crcm"

+ ,"any_drug"

+ ,"num_male_part_cat"

+ ,"uias"

+ ,"uras")) ## extra varibles

> rfit2

beta stder pVal

fcgr2a.3 (BaselineMarker) 0.1904 0.3119 0.5414829219

f_treat (Treatment) 0.6327 0.4938 0.2000911539

interatcion -0.2550 0.3821 0.5045551427

f_agele30 0.0740 0.3436 0.8293998716

f_hsv_2 1.2066 0.3981 0.0024400419

f_ad5gt18 0.1039 0.3728 0.7804757254

f_crcm 0.1086 0.4375 0.8039160862

any_drug 1.1332 0.3709 0.0022464789

num_male_part_cat -0.4866 0.4127 0.2383614665

uias 0.2364 0.3324 0.4769372489

uras 1.1534 0.3458 0.0008510074

5 apply to whole-genome data

The functions in the package can be applied to whole-genome SNP data. We applied the
functions of caseonly, spmle, and mele to a more comprehensive dataset from WHI trial
to estimate the interaction between biomarkers (SNPs) and hormone therapy (estrogen
plus progestin) on type II diabetes. In total 21047 applicants in the trial were included,
and 3147 of them have genome-wide SNP data. We used 78081 SNPs on chromosome 1
to show the package is scalable to whole-genome analysis.

The results are shown in the below. The quantile-quantile plots in the upper panels
(Figure A, B, C) compare the distribution of observed p-values with that of a uniform-
distributed p-values. Although there is no signficant p-value, the q-q line is right in
the diagonal direction, suggesting the algorithm works well in estimation for all three
methods. The first two graphics in the lower panels of Figure 1 (Figure D, E) shows the
estimated variances of SNP-treatment interaction, using or without the independence
between treatment and the SNP, suggesting that using independence yields a much more
precise estimates of interaction. The last graph in the lower panel (Figure F) shows the
comparison of the case-only estimator and the SPMLE estimator, suggesting the two
agrees well in efficiency of estimation since type II diabete is relative rare in the WHI
hormone trial.
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6 session information

The version number of R and packages loaded for generating the vignette were:

R version 3.1.2 (2014-10-31)

Platform: x86_64-apple-darwin13.4.0 (64-bit)

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] TwoPhaseInd_1.1.0

loaded via a namespace (and not attached):

[1] splines_3.1.2 survival_2.38-3 tools_3.1.2

References

[1] Susan P Buchbinder, Devan V Mehrotra, Ann Duerr, Daniel W Fitzgerald, Robin
Mogg, David Li, Peter B Gilbert, Javier R Lama, Michael Marmor, Carlos del
Rio, M Juliana McElrath, Danilo R Casimiro, Keith M Gottesdiener, Jeffrey A

12



Chodakewitz, Lawrence Corey, and Michael N Robertson. Efficacy assessment of a
cell-mediated immunity hiv-1 vaccine (the step study): a double-blind, randomised,
placebo-controlled, test-of-concept trial. Lancet, 372(9653):1881–1893, 11 2008.

[2] J. Y. Dai, C. Kooperberg, M. LeBlanc, and R. L. Prentice. Two-stage testing pro-
cedures with independent filtering for genome-wide gene-environment interaction.
Biometrika, 99(4):929–944, 2012.

[3] J. Y. Dai, M. LeBlanc, and C. Kooperberg. Semiparametric estimation exploiting
covariate independence in two-phase randomized trials. Biometrics, 65(1):178–187,
Mar 2009.

[4] J. Y. Dai, S. S. Li, and P. B. Gilbert. Case-only methods for competing risks models
with application to assessing differential vaccine efficacy by viral and host genetics.
Biostatistics, 15(1):196–203, 2014.

[5] J. Y. Dai, X. C. Zhang, C. Y. Wang, and C. Kooperberg. Augmented case-only
designs for randomized clinical trials with failure time endpoints. Biometrics, 2016.

[6] C. Kooperberg, M. Cushman, J. Hsia, J. G. Robinson, A. K. Aragaki, J. K. Lynch,
A. E. Baird, K. C. Johnson, L. H. Kuller, S. A. Beresford, and B. Rodriguez. Can
biomarkers identify women at increased stroke risk? the women’s health initiative
hormone trials. PLoS clinical trials, 2(6):e28, Jun 15 2007.

[7] J. P. Pandey, A. M. Namboodiri, S. Bu, J. Tapsoba, A. Sato, and J. Y. Dai. Im-
munoglobulin genes and the acquisition of hiv infection in a randomized trial of
recombinant adenovirus hiv vaccine. Virology, 441(1):70–74, 2013.

13


	Introduction
	Case-only design
	Case-control design
	SPMLE
	MELE

	case-cohort design
	apply to whole-genome data
	session information

