
Package ‘TreeDist’
July 10, 2020

Type Package

Title Distances Between Phylogenetic Trees

Version 1.1.1

License GPL (>= 3)

Description Implements measures of tree similarity, including
information-based generalized Robinson-Foulds distances
(Phylogenetic Information Distance, Clustering Information Distance,
Matching Split Information Distance; Smith, 2020)
<doi:10.1093/bioinformatics/btaa614>;
Jaccard-Robinson-Foulds distances (Bocker et al. 2013)
<doi:10.1007/978-3-642-40453-5_13>,
including the Nye et al. (2006) metric <doi:10.1093/bioinformatics/bti720>;
the Matching Split Distance (Bogdanowicz & Giaro 2012)
<doi:10.1109/TCBB.2011.48>;
Maximum Agreement Subtree distances;
the Kendall-Colijn (2016) distance <doi:10.1093/molbev/msw124>, and the
Nearest Neighbour Interchange (NNI) distance, approximated per Li et al.
(1996) <doi:10.1007/3-540-61332-3_168>.
Calculates the median of a set of trees under any distance metric.

Copyright Incorporates Jonker-Volgenant Linear Assignment Problem
implementation by Roy Jonker, modified by Yong Yang after Yi
Cao.

URL https://ms609.github.io/TreeDist,

https://github.com/ms609/TreeDist

BugReports https://github.com/ms609/TreeDist/issues

Depends R (>= 3.4.0), stats

Imports ape (>= 5.0), colorspace, memoise, phangorn (>= 2.2.1),
TreeTools (>= 1.1.0)

Suggests bookdown, cluster, kdensity, knitr, MASS, Quartet, rmarkdown,
Rcpp, Rdpack, testthat, Ternary (>= 1.1.2), TreeDistData (>
0.1.0), TreeSearch, vdiffr

Additional_repositories https://ms609.github.io/packages

1

https://ms609.github.io/TreeDist
https://github.com/ms609/TreeDist
https://github.com/ms609/TreeDist/issues

2 R topics documented:

RdMacros Rdpack

VignetteBuilder knitr

LinkingTo Rcpp

SystemRequirements C++11

LazyData true

ByteCompile true

Encoding UTF-8

Language en-GB

X-schema.org-keywords phylogenetics, tree-distance

RoxygenNote 7.1.1

NeedsCompilation yes

Author Martin R. Smith [aut, cre, cph, prg]
(<https://orcid.org/0000-0001-5660-1727>),
Roy Jonker [prg, cph],
Yong Yang [ctb, cph],
Yi Cao [ctb, cph]

Maintainer Martin R. Smith <martin.smith@durham.ac.uk>

Repository CRAN

Date/Publication 2020-07-10 15:40:02 UTC

R topics documented:
AllSplitPairings . 3
ClusteringEntropy . 4
CompareAll . 6
Entropy . 7
JaccardRobinsonFoulds . 8
KendallColijn . 10
LAPJV . 12
MASTSize . 13
MatchingSplitDistance . 14
median.multiPhylo . 16
MeilaVariationOfInformation . 18
NNIDist . 19
NyeSimilarity . 21
PathDist . 24
Robinson-Foulds . 25
SplitEntropy . 28
SplitsCompatible . 29
SplitSharedInformation . 29
SplitwiseInfo . 31
SPRDist . 32
TreeDistance . 33
VisualizeMatching . 37

AllSplitPairings 3

Index 40

AllSplitPairings Variation of information for all split pairings

Description

Calculate the variation of clustering information (Meila 2007) for each possible pairing of non-
trivial splits on n leaves, tabulating the number of pairings with each similarity.

Usage

AllSplitPairings(n)

Arguments

n Integer specifying the number of leaves in a tree.

Value

AllSplitPairings() returns a named vector. The name of each element corresponds to a certain
variation of information, in bits; the value of each element specifies the number of pairings of non-
trivial splits that give rise to that variation of information. Split AB|CD is treated as distinct from
CD|AB. If pairing AB|CD=CD|AB is considered equivalent to CD|AB=CD|AB (etc), then values should
be divided by four.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

MeilÄƒ M (2007). “Comparing clusterings—an information based distance.” Journal of Multivari-
ate Analysis, 98(5), 873–895. doi: 10.1016/j.jmva.2006.11.013.

Smith MR (2020). “Information theoretic Generalized Robinson-Foulds metrics for comparing
phylogenetic trees.” Bioinformatics, online ahead of print. doi: 10.1093/bioinformatics/btaa614.

Examples

AllSplitPairings(6)
Treat equivalent splits as identical by dividing by four:
AllSplitPairings(6) / 4L

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://doi.org/10.1016/j.jmva.2006.11.013
https://doi.org/10.1093/bioinformatics/btaa614

4 ClusteringEntropy

ClusteringEntropy Clustering entropy of all splits within a tree

Description

Sum the entropy (ClusteringEntropy()) or information content (ClusteringInfo()) across each
split within a phylogenetic tree, treating each split as dividing the leaves of the tree into two clusters
(sensu Meila 2007; Vinh et al. 2010).

Usage

ClusteringEntropy(x)

ClusteringInfo(x)

S3 method for class 'phylo'
ClusteringEntropy(x)

S3 method for class 'list'
ClusteringEntropy(x)

S3 method for class 'multiPhylo'
ClusteringEntropy(x)

S3 method for class 'Splits'
ClusteringEntropy(x)

S3 method for class 'phylo'
ClusteringInfo(x)

S3 method for class 'list'
ClusteringInfo(x)

S3 method for class 'multiPhylo'
ClusteringInfo(x)

S3 method for class 'Splits'
ClusteringInfo(x)

Arguments

x A tree of class phylo, a list of trees, or a multiPhylo object.

Details

Clustering entropy addresses the question "how much information is contained in the splits within a
tree". Its approach is complementary to the phylogenetic information content, used in SplitwiseInfo().

ClusteringEntropy 5

In essence, it asks, given a split that subdivides the leaves of a tree into two partitions, how easy it
is to predict which partition a randomly drawn leaf belongs to.

Formally, the entropy of a split S that divides n leaves into two partitions of sizes a and b is given
by H(S) = - a/n log a/n - b/n log b/n.

Base 2 logarithms are conventionally used, such that entropy is measured in bits. Entropy denotes
the number of bits that are necessary to encode the outcome of a random variable: here, the random
variable is "what partition does a randomly selected leaf belong to".

An even split has an entropy of 1 bit: there is no better way of encoding an outcome than using one
bit to specify which of the two partitions the randomly selected leaf belongs to.

An uneven split has a lower entropy: membership of the larger partition is common, and thus less
surprising; it can be signified using fewer bits in an optimal compression system.

If this sounds confusing, let’s consider creating a code to transmit the cluster label of two randomly
selected leaves. One straightforward option would be to use

• 00 = ’Both leaves belong to partition A’

• 11 = ’Both leaves belong to partition B’

• 01 = ’First leaf in A, second in B‘

• 10 = ’First leaf in B, second in A‘

This code uses two bits to transmit the partition labels of two leaves. If partitions A and B are
equiprobable, this is the optimal code; our entropy – the average information content required per
leaf – is 1 bit.

Alternatively, we could use the (suboptimal) code

• 0 = ’Both leaves belong to partition A’

• 111 = ’Both leaves belong to partition B’

• 101 = ’First leaf in A, second in B‘

• 110 = ’First leaf in B, second in A‘

If A is much larger than B, then most pairs of leaves will require just a single bit (code 0). The ad-
ditional bits when 1+ leaf belongs to B may be required sufficiently rarely that the average message
requires fewer than two bits for two leaves, so the entropy is less than 1 bit. (The optimal coding
strategy will depend on the exact sizes of A and B.)

As entropy measures the bits required to transmit the cluster label of each leaf (Vinh et al. 2010: p.
2840), the information content of a split is its entropy multiplied by the number of leaves.

Value

Returns the sum of the entropies or (clustering) information content, in bits, of each split in x.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk

6 CompareAll

References

• MeilÄƒ M (2007). “Comparing clusterings—an information based distance.” Journal of Mul-
tivariate Analysis, 98(5), 873–895. doi: 10.1016/j.jmva.2006.11.013.

• Vinh NX, Epps J, Bailey J (2010). “Information theoretic measures for clusterings com-
parison: variants, properties, normalization and correction for chance.” Journal of Machine
Learning Research, 11, 2837–2854. doi: 10.1145/1553374.1553511.

See Also

Other information functions: SplitEntropy(), SplitSharedInformation(), SplitwiseInfo()

Examples

Clustering entropy of an even split = 1 bit
ClusteringEntropy(TreeTools::as.Splits(c(rep(TRUE, 4), rep(FALSE, 4))))

Clustering entropy of an uneven split < 1 bit
ClusteringEntropy(TreeTools::as.Splits(c(rep(TRUE, 2), rep(FALSE, 6))))

tree1 <- TreeTools::BalancedTree(8)
tree2 <- TreeTools::PectinateTree(8)

ClusteringInfo(tree1)
ClusteringEntropy(tree1)
ClusteringInfo(list(one = tree1, two = tree2))

ClusteringInfo(tree1) + ClusteringInfo(tree2)
ClusteringEntropy(tree1) + ClusteringEntropy(tree2)
ClusteringInfoDistance(tree1, tree2)
MutualClusteringInfo(tree1, tree2)

CompareAll Distances between each pair of trees

Description

Calculate the distance between each tree in a list, and each other tree in the same list.

Usage

CompareAll(x, Func, FUN.VALUE = Func(x[[1]], x[[1]]), ...)

Arguments

x List of trees, in the format expected by Func().
Func distance function returning distance between two trees, e.g. path.dist().
FUN.VALUE Format of output of Func(), to be passed to vapply(). If unspecified, calculated

by running Func(x[[1]],x[[1]]).
... Additional parameters to pass to Func().

https://doi.org/10.1016/j.jmva.2006.11.013
https://doi.org/10.1145/1553374.1553511

Entropy 7

Details

CompareAll() is not limited to tree comparisons: Func can be any symmetric function.

Value

CompareAll() returns a distance matrix of class dist detailing the distance between each pair of
trees. Identical trees are assumed to have zero distance.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

Examples

Generate a list of trees to compare
library('TreeTools', quietly = TRUE, warn.conflicts = FALSE)
trees <- list(bal1 = BalancedTree(1:8),

pec1 = PectinateTree(1:8),
pec2 = PectinateTree(c(4:1, 5:8)))

Compare each tree with each other tree
CompareAll(trees, NNIDist)

Providing FUN.VALUE yields a modest speed gain:
dist <- CompareAll(trees, NNIDist, FUN.VALUE = integer(7))

View distances as a matrix
as.matrix(dist$lower)

Entropy Entropy in bits

Description

Calculate the entropy of a vector of probabilities, in bits. Probabilities should sum to one. Proba-
bilities equalling zero will be ignored.

Usage

Entropy(...)

Arguments

... Numerics or numeric vector specifying probabilities of outcomes.

Value

Entropy() returns the entropy of the specified probabilities, in bits.

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk

8 JaccardRobinsonFoulds

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

Examples

Entropy(1/2, 0, 1/2) # = 1
Entropy(rep(1/4, 4)) # = 2

JaccardRobinsonFoulds Jaccard-Robinson-Foulds metric

Description

Calculate the Jaccard-Robinson-Foulds metric (Böcker et al. 2013), a Generalized Robinson-Foulds
metric.

Usage

JaccardRobinsonFoulds(
tree1,
tree2 = tree1,
k = 1L,
allowConflict = TRUE,
similarity = FALSE,
normalize = FALSE,
reportMatching = FALSE

)

JaccardSplitSimilarity(
splits1,
splits2,
nTip = attr(splits1, "nTip"),
k = 1L,
allowConflict = TRUE,
reportMatching = FALSE

)

Arguments

tree1 Trees of class phylo, with leaves labelled identically, or lists of such trees to
undergo pairwise comparison.

tree2 Trees of class phylo, with leaves labelled identically, or lists of such trees to
undergo pairwise comparison.

k An arbitrary exponent to which to raise the Jaccard index. Integer values greater
than one are anticipated by Böcker et al. The Nye et al. metric uses k = 1. As k
increases towards infinity, the metric converges to the Robinson-Foulds metric.

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://ms609.github.io/TreeDist/articles/Generalized-RF.html#jaccard-robinson-foulds-metric
https://ms609.github.io/TreeDist/articles/Robinson-Foulds.html#generalized-robinson-foulds-distances
https://ms609.github.io/TreeDist/articles/Robinson-Foulds.html#generalized-robinson-foulds-distances

JaccardRobinsonFoulds 9

allowConflict Logical specifying whether to allow conflicting splits to be paired. If FALSE,
such pairings will be allocated a similarity score of zero.

similarity Logical specifying whether to report the result as a tree similarity, rather than a
difference.

normalize If a numeric value is provided, this will be used as a maximum value against
which to rescale results. If TRUE, results will be rescaled against a maximum
value calculated from the specified tree sizes and topology, as specified in the
’Normalization’ section below. If FALSE, results will not be rescaled.

reportMatching Logical specifying whether to return the clade matchings as an attribute of the
score.

splits1 Logical matrices where each row corresponds to a leaf, either listed in the same
order or bearing identical names (in any sequence), and each column corre-
sponds to a split, such that each leaf is identified as a member of the ingroup
(TRUE) or outgroup (FALSE) of the respective split.

splits2 Logical matrices where each row corresponds to a leaf, either listed in the same
order or bearing identical names (in any sequence), and each column corre-
sponds to a split, such that each leaf is identified as a member of the ingroup
(TRUE) or outgroup (FALSE) of the respective split.

nTip (Optional) Integer specifying the number of leaves in each split.

Details

In short, the Jaccard-Robinson-Foulds metric is a generalized Robinson-Foulds metric: it finds the
optimal matching that pairs each split in one tree with a similar split in the second. Matchings are
scored according to the size of the largest split that is consistent with both of them, normalized
against the Jaccard index, and raised to an arbitrary exponent. A more detailed explanation is
provided in the vignettes.

By default, conflicting splits may be paired.

Note that the settings k = 1, allowConflict = TRUE, similarity = TRUE give the similarity metric of
Nye et al. (2006); a slightly faster implementation of this metric is available as NyeSimilarity().

The examples section below details how to visualize matchings with non-default parameter values.

Value

JaccardRobinsonFoulds() returns an array of numerics providing the distances between each pair
of trees in tree1 and tree2, or splits1 and splits2.

Normalization

If normalize = TRUE, then results will be rescaled from zero to one by dividing by the maximum
possible value for trees of the given topologies, which is equal to the sum of the number of splits in
each tree. You may wish to normalize instead against the maximum number of splits present in a
pair of trees with n leaves, by specifying normalize = n -3.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

https://ms609.github.io/TreeDist/articles/Generalized-RF.html#jaccard-robinson-foulds-metric
https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk

10 KendallColijn

References

• Nye TMW, LiÃ² P, Gilks WR (2006). “A novel algorithm and web-based tool for com-
paring two alternative phylogenetic trees.” Bioinformatics, 22(1), 117–119. doi: 10.1093/
bioinformatics/bti720.

• BÃ¶cker S, Canzar S, Klau GW (2013). “The generalized Robinson-Foulds metric.” In Dar-
ling A, Stoye J (eds.), Algorithms in Bioinformatics. WABI 2013. Lecture Notes in Computer
Science, vol 8126, 156–169. Springer, Berlin, Heidelberg. doi: 10.1007/9783642404535_13.

See Also

Other tree distances: KendallColijn(), MASTSize(), MatchingSplitDistance(), NNIDist(),
NyeSimilarity(), PathDist(), Robinson-Foulds, SPRDist(), TreeDistance()

Examples

set.seed(2)
tree1 <- ape::rtree(10)
tree2 <- ape::rtree(10)
JaccardRobinsonFoulds(tree1, tree2, k = 2, allowConflict = FALSE)
JaccardRobinsonFoulds(tree1, tree2, k = 2, allowConflict = TRUE)

JRF2 <- function (tree1, tree2, ...)
JaccardRobinsonFoulds(tree1, tree2, k = 2, allowConflict = FALSE, ...)

VisualizeMatching(JRF2, tree1, tree2, matchZeros = FALSE)

KendallColijn Kendall-Colijn distance

Description

Calculate the Kendall-Colijn tree distance, a measure related to the path difference.

Usage

KendallColijn(tree1, tree2 = tree1)

KCVector(tree)

Arguments

tree1, tree2 Trees of class phylo, with leaves labelled identically, or lists of such trees to
undergo pairwise comparison.

tree A tree of class phylo.

https://doi.org/10.1093/bioinformatics/bti720
https://doi.org/10.1093/bioinformatics/bti720
https://doi.org/10.1007/978-3-642-40453-5_13

KendallColijn 11

Details

The Kendall-Colijn distance works by measuring, for each pair of leaves, the distance from the most
recent common ancestor of those leaves and the root node. For a given tree, this produces a vector
of values recording the distance-from-the-root of each most recent common ancestor of each pair
of leaves.

Two trees are compared by taking the Euclidian distance between the respective vectors. This is
calculated by taking the square root of the sum of the squares of the differences between the vectors.

This metric emphasizes the position of the root; the path difference instead measures the distance
of the last common ancestor of each pair of leaves from the leaves themselves, i.e. the length of the
path from one leaf to another.

Value

KendallColijn() returns an array of numerics providing the distances between each pair of trees
in tree1 and tree2, or splits1 and splits2.

Functions

• KCVector: Creates a vector that characterises a rooted tree, as described in Kendall & Colijn
(2016).

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

Kendall M, Colijn C (2016). “Mapping phylogenetic trees to reveal distinct patterns of evolution.”
Molecular Biology and Evolution, 33(10), 2735–2743. doi: 10.1093/molbev/msw124.

See Also

treespace::treeDist is a more sophisticated, if more cumbersome, implementation that supports
lambda > 0, i.e. use of edge lengths in tree comparison.

Other tree distances: JaccardRobinsonFoulds(), MASTSize(), MatchingSplitDistance(), NNIDist(),
NyeSimilarity(), PathDist(), Robinson-Foulds, SPRDist(), TreeDistance()

Examples

KendallColijn(TreeTools::BalancedTree(8), TreeTools::PectinateTree(8))

set.seed(0)
KendallColijn(TreeTools::BalancedTree(8), lapply(rep(8, 3), ape::rtree))
KendallColijn(lapply(rep(8, 4), ape::rtree))

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://doi.org/10.1093/molbev/msw124
https://CRAN.R-project.org/package=treespace/vignettes/introduction.html

12 LAPJV

LAPJV Solve linear assignment problem using LAPJV

Description

Use the algorithm of Jonker & Volgenant (1987) to solve the Linear Sum Assignment Problem.

Usage

LAPJV(x)

Arguments

x Square matrix of costs.

Details

The Linear Assignment Problem seeks to match each row of a matrix with a column, such that the
cost of the matching is minimized.

The Jonker & Volgenant approach is a faster alternative to the Hungarian algorithm (Munkres 1957),
which is implemented in clue::solve_LSAP().

NB. At present, only square matrices are supported; if you need support for non-square matrices,
drop a note at issue #25 and I’ll prioritize development.

Value

A list with two entries: score, the score of the optimal matching; and matching, the columns
matched to each row of the matrix in turn.

Author(s)

C++ code by Roy Jonker, MagicLogic Optimization Inc. roy_jonker@magiclogic.com, with con-
tributions from Yong Yang yongyanglink@gmail.com, after Yi Cao

References

Jonker R, Volgenant A (1987). “A shortest augmenting path algorithm for dense and sparse linear
assignment problems.” Computing, 38, 325–340. doi: 10.1007/BF02278710.

Munkres J (1957). “Algorithms for the assignment and transportation problems.” Journal of the
Society for Industrial and Applied Mathematics, 5(1), 32–38. doi: 10.1137/0105003.

http://www.assignmentproblems.com/doc/LSAPIntroduction.pdf
https://github.com/ms609/TreeDist/issues/25
https://github.com/yongyanghz/LAPJV-algorithm-c/blob/master/LAPJV/lap.cpp
mailto:roy_jonker@magiclogic.com
mailto:yongyanglink@gmail.com
https://uk.mathworks.com/matlabcentral/profile/authors/69713-yi-cao
https://doi.org/10.1007/BF02278710
https://doi.org/10.1137/0105003

MASTSize 13

Examples

problem <- matrix(c(7, 9, 8, 9,
2, 8, 5, 7,
1, 6, 6, 9,
3, 6, 2, 2), 4, 4, byrow=TRUE)

LAPJV(problem)

MASTSize Maximum Agreement Subtree size

Description

Calculate the size or phylogenetic information content (Steel & Penny 2006) of the maximum agree-
ment subtree between two phylogenetic trees, i.e. the largest tree that can be obtained from both
tree1 and tree2 by deleting, but not rearranging, leaves, using the algorithm of Valiente (2009).

Usage

MASTSize(tree1, tree2 = tree1, rooted = TRUE)

MASTInfo(tree1, tree2 = tree1, rooted = TRUE)

Arguments

tree1, tree2 Trees of class phylo, or lists of such trees to undergo pairwise comparison.

rooted Logical specifying whether to treat the trees as rooted.

Details

Implemented for trees with up to 4096 tips. Contact the maintainer if you need to process larger
trees.

Value

MASTSize() returns an integer specifying the number of leaves in the maximum agreement subtree.

MASTInfo() returns a vector or matrix listing the phylogenetic information content, in bits, of the
maximum agreement subtree.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk

14 MatchingSplitDistance

References

Steel MA, Penny D (2006). “Maximum parsimony and the phylogenetic information in multistate
characters.” In Albert VA (ed.), Parsimony, Phylogeny, and Genomics, 163–178. Oxford University
Press, Oxford.

Valiente G (2009). Combinatorial Pattern Matching Algorithms in Computational Biology using
Perl and R, CRC Mathematical and Computing Biology Series. CRC Press, Boca Raton.

See Also

phangorn::mast(), a slower implementation that also lists the leaves contained within the subtree.

Other tree distances: JaccardRobinsonFoulds(), KendallColijn(), MatchingSplitDistance(),
NNIDist(), NyeSimilarity(), PathDist(), Robinson-Foulds, SPRDist(), TreeDistance()

Examples

for as.phylo, BalancedTree, PectinateTree:
library('TreeTools', quietly = TRUE, warn.conflicts = FALSE)

MASTSize(PectinateTree(8), BalancedTree(8))
MASTInfo(PectinateTree(8), BalancedTree(8))

MASTSize(BalancedTree(7), as.phylo(0:3, 7))
MASTSize(as.phylo(0:3, 7), PectinateTree(7))

MASTInfo(BalancedTree(7), as.phylo(0:3, 7))
MASTInfo(as.phylo(0:3, 7), PectinateTree(7))

MASTSize(list(Bal = BalancedTree(7), Pec = PectinateTree(7)),
as.phylo(0:3, 7))

MASTInfo(list(Bal = BalancedTree(7), Pec = PectinateTree(7)),
as.phylo(0:3, 7))

CompareAll(as.phylo(0:4, 8), MASTSize)
CompareAll(as.phylo(0:4, 8), MASTInfo)

MatchingSplitDistance Matching Split Distance

Description

Calculate the Matching Split Distance (Bogdanowicz and Giaro 2012; Lin et al. 2012) for unrooted
binary trees.

https://ms609.github.io/TreeDist/articles/Generalized-RF.html#matching-split-distance

MatchingSplitDistance 15

Usage

MatchingSplitDistance(
tree1,
tree2 = tree1,
normalize = FALSE,
reportMatching = FALSE

)

MatchingSplitDistanceSplits(
splits1,
splits2,
nTip = attr(splits1, "nTip"),
normalize = TRUE,
reportMatching = FALSE

)

Arguments

tree1 Trees of class phylo, with leaves labelled identically, or lists of such trees to
undergo pairwise comparison.

tree2 Trees of class phylo, with leaves labelled identically, or lists of such trees to
undergo pairwise comparison.

normalize If a numeric value is provided, this will be used as a maximum value against
which to rescale results. If TRUE, results will be rescaled against a maximum
value calculated from the specified tree sizes and topology, as specified in the
’Normalization’ section below. If FALSE, results will not be rescaled.

reportMatching Logical specifying whether to return the clade matchings as an attribute of the
score.

splits1 Logical matrices where each row corresponds to a leaf, either listed in the same
order or bearing identical names (in any sequence), and each column corre-
sponds to a split, such that each leaf is identified as a member of the ingroup
(TRUE) or outgroup (FALSE) of the respective split.

splits2 Logical matrices where each row corresponds to a leaf, either listed in the same
order or bearing identical names (in any sequence), and each column corre-
sponds to a split, such that each leaf is identified as a member of the ingroup
(TRUE) or outgroup (FALSE) of the respective split.

nTip (Optional) Integer specifying the number of leaves in each split.

Value

MatchingSplitDistance() returns an array of numerics providing the distances between each pair
of trees in tree1 and tree2, or splits1 and splits2.

Normalization

A normalization value or function must be provided in order to return a normalized value. If you
are aware of a generalised formula, please let me know by creating a GitHub issue so that it can be
implemented.

https://github.com/ms609/TreeDist/issues/new

16 median.multiPhylo

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

Bogdanowicz D, Giaro K (2012). “Matching split distance for unrooted binary phylogenetic trees.”
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9(1), 150–160. doi: 10.1109/
TCBB.2011.48.

Lin Y, Rajan V, Moret BME (2012). “A metric for phylogenetic trees based on matching.” IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 4(9), 1014–1022. doi: 10.1109/TCBB.2011.157.

See Also

Other tree distances: JaccardRobinsonFoulds(), KendallColijn(), MASTSize(), NNIDist(),
NyeSimilarity(), PathDist(), Robinson-Foulds, SPRDist(), TreeDistance()

Examples

MatchingSplitDistance(lapply(rep(8, 5), ape::rtree), normalize = 16)

MatchingSplitDistance(TreeTools::BalancedTree(6),
TreeTools::PectinateTree(6),
reportMatching = TRUE)

VisualizeMatching(MatchingSplitDistance, TreeTools::BalancedTree(6),
TreeTools::PectinateTree(6))

median.multiPhylo Median of a set of trees

Description

Calculate the single binary tree that represents the geometric median – an ’average’ – of a forest of
tree topologies.

Usage

S3 method for class 'multiPhylo'
median(
x,
na.rm = FALSE,
Distance = ClusteringInfoDistance,
index = FALSE,
breakTies = TRUE,
...

)

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://doi.org/10.1109/TCBB.2011.48
https://doi.org/10.1109/TCBB.2011.48
https://doi.org/10.1109/TCBB.2011.157

median.multiPhylo 17

Arguments

x Object of class multiPhylo containing phylogenetic trees.

na.rm, ... Unused; included for consistency with default function..

Distance Function to calculate distances between each pair of trees in x.

index Logical: if TRUE, return the index of the median tree(s); if FALSE, return the tree
itself.

breakTies Logical: if TRUE, return a single tree with the minimum score; if FALSE, return
all tied trees.

Details

The geometric median is the tree that exhibits the shortest average distance from each other tree
topology in the set. It represents an ’average’ of a set of trees, though note that an unsampled
tree may be closer to the geometric ’centre of gravity’ of the input set – such a tree would not be
considered.

The result will depend on the metric chosen to calculate distances between tree topologies. In the
absence of a natural metric of tree topologies, the default choice is ClusteringInfoDistance() –
which discards branch length information. If specifying a different function, be sure that it returns
a difference, rather than a similarity.

Value

median() returns an object of class phylo corresponding to the geometric median of a set of trees:
that is, the tree whose average distance from all other trees in the set is lowest. If multiple trees
tie in their average distance, the first will be returned, unless breakTies = FALSE, in which case an
object of class multiPhylo containing all such trees will be returned.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

See Also

Consensus methods: ape::consensus(), TreeTools::ConsensusWithout()

Examples

library('TreeTools', quietly = TRUE, warn.conflicts = FALSE)
tenTrees <- as.phylo(1:10, nTip = 8)

Default settings:
median(tenTrees)

Robinson-Foulds distances include ties:
median(tenTrees, Distance = RobinsonFoulds, breakTies = FALSE)

Be sure to use a distance function, rather than a similarity:
NyeDistance <- function (...) NyeSimilarity(..., similarity = FALSE)

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk

18 MeilaVariationOfInformation

median(tenTrees, Distance = NyeDistance)

To analyse a list of trees that is not of class multiPhylo:
treeList <- lapply(1:10, as.phylo, nTip = 8)
class(treeList)
median(structure(treeList, class = 'multiPhylo'))

MeilaVariationOfInformation

Use variation of clustering information to compare pairs of splits

Description

Compare a pair of splits viewed as clusterings of taxa, using the variation of clustering information
proposed by Meila (2007).

Usage

MeilaVariationOfInformation(split1, split2)

MeilaMutualInformation(split1, split2)

Arguments

split1, split2 Logical vectors listing leaves in a consistent order, identifying each leaf as a
member of the ingroup (TRUE) or outgroup (FALSE) of the split in question.

Details

This is equivalent to the mutual clustering information (Vinh et al. 2010). For the total information
content, multiply the VoI by the number of leaves.

Value

MeilaVariationOfInformation() returns the variation of (clustering) information, measured in
bits.

MeilaMutualInformation() returns the mutual information, measured in bits.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

MeilÄƒ M (2007). “Comparing clusterings—an information based distance.” Journal of Multivari-
ate Analysis, 98(5), 873–895. doi: 10.1016/j.jmva.2006.11.013.

Vinh NX, Epps J, Bailey J (2010). “Information theoretic measures for clusterings comparison:
variants, properties, normalization and correction for chance.” Journal of Machine Learning Re-
search, 11, 2837–2854. doi: 10.1145/1553374.1553511.

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://doi.org/10.1016/j.jmva.2006.11.013
https://doi.org/10.1145/1553374.1553511

NNIDist 19

Examples

Maximum variation = information content of each split separately
A <- TRUE
B <- FALSE
MeilaVariationOfInformation(c(A, A, A, B, B, B), c(A, A, A, A, A, A))
Entropy(c(3, 3) / 6) + Entropy(c(0, 6) / 6)

Minimum variation = 0
MeilaVariationOfInformation(c(A, A, A, B, B, B), c(A, A, A, B, B, B))

Not always possible for two evenly-sized splits to reach maximum
variation of information
Entropy(c(3, 3) / 6) * 2 # = 2
MeilaVariationOfInformation(c(A, A, A,B ,B, B), c(A, B, A, B, A, B)) # < 2

Phylogenetically uninformative groupings contain spliting information
Entropy(c(1, 5) / 6)
MeilaVariationOfInformation(c(B, A, A, A, A, A), c(A, A, A, A, A, B))

NNIDist Approximate Nearest Neighbour Interchange distance

Description

Use the approach of Li et al. (1996) to approximate the Nearest Neighbour Interchange distance
(Robinson, 1971) between phylogenetic trees.

Usage

NNIDist(tree1, tree2 = tree1)

NNIDiameter(tree)

Arguments

tree1, tree2 Single trees of class phylo to undergo comparison.

tree Object of supported class representing a tree or list of trees, or an integer speci-
fying the number of leaves in a tree/trees.

Details

In brief, this approximation algorithm works by identifying edges in one tree that do not match
edges in the second. Each of these edges must undergo at least one NNI operation in order to
reconcile the trees. Edges that match in both trees need never undergo an NNI operation, and divide
each tree into smaller regions. By ’cutting’ matched edges into two, a tree can be divided into a
number of regions that solely comprise unmatched edges.

These regions can be viewed as separate trees that need to be reconciled. One way to reconcile
these trees is to conduct a series of NNI operations that reduce a tree to a pectinate (caterpillar) tree,

20 NNIDist

then to conduct an analogue of the mergesort algorithm. This takes at most n log n + O(n) NNI
operations, and provides a loose upper bound on the NNI score. The maximum number of moves
for an n-leaf tree (OEIS A182136) can be calculated exactly for small trees (Fack et al. 2002); this
provides a tighter upper bound, but is unavailable for n > 12. NNIDiameter() reports the limits on
this bound.

Leaves: 1 2 3 4 5 6 7 8 9 10 11 12 13
Diameter: 0 0 0 1 3 5 7 10 12 15 18 21 ?

Value

NNIDist() returns, for each pair of trees, a named vector containing three integers:

• lower is a lower bound on the NNI distance, and corresponds to the RF distance between the
trees.

• tight_upper is an upper bound on the distance, based on calculated maximum diameters for
trees with < 13 leaves. NA is returned if trees are too different to employ this approach.

• loose_upper is a looser upper bound on the distance, using n log n + O(n).

NNIDiameter() returns a matrix specifying (bounds on) the diameter of the NNI distance metric
on the specified tree(s). Columns correspond to:

• liMin:
n− 3

, a lower bound on the diameter (Li et al. 1996);
• fackMin: Lower bound on diameter following Fack et al. (2002), i.e.

log 2N !/4

;
• min: The larger of liMin and fackMin;
• exact: The exact value of the diameter, where n < 13;
• liMax: Upper bound on diameter following Li et al. (1996), i.e.

n log 2n+ O(n)

;
• fackMax: Upper bound on diameter following Fack et al. (2002), i.e. (

N − 2

) ceiling(
log 2n

)
– N;

• max: The smaller of liMax and fackMax;

where n is the number of leaves, and N the number of internal nodes, i.e.

n− 2

.

https://oeis.org/A182136

NyeSimilarity 21

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

Fack V, Lievens S, Van der Jeugt J (2002). “On the diameter of the rotation graph of binary coupling
trees.” Discrete Mathematics, 245(1-3), 1–18. doi: 10.1016/S0012365X(01)004186.

Li M, Tromp J, Zhang L (1996). “Some notes on the nearest neighbour interchange distance.” In
Goos G, Hartmanis J, Leeuwen J, Cai J, Wong CK (eds.), Computing and Combinatorics, vol-
ume 1090, 343–351. Springer, Berlin, Heidelberg. ISBN 978-3-540-61332-9 978-3-540-68461-9,
doi: 10.1007/3540613323_168.

Robinson D (1971). “Comparison of labeled trees with valency three.” Journal of Combinatorial
Theory, Series B, 11(2), 105–119. doi: 10.1016/00958956(71)900207.

See Also

Other tree distances: JaccardRobinsonFoulds(), KendallColijn(), MASTSize(), MatchingSplitDistance(),
NyeSimilarity(), PathDist(), Robinson-Foulds, SPRDist(), TreeDistance()

Examples

library('TreeTools', quietly = TRUE, warn.conflicts = FALSE)

NNIDist(BalancedTree(7), PectinateTree(7))

NNIDist(BalancedTree(7), as.phylo(0:2, 7))
NNIDist(as.phylo(0:2, 7), PectinateTree(7))

NNIDist(list(bal = BalancedTree(7), pec = PectinateTree(7)),
as.phylo(0:2, 7))

CompareAll(as.phylo(30:33, 8), NNIDist)

NyeSimilarity Nye et al. (2006) tree comparison

Description

NyeSimilarity() and NyeSplitSimilarity() implement the Generalized Robinson-Foulds tree
comparison metric of Nye et al. (2006). In short, this finds the optimal matching that pairs each
branch from one tree with a branch in the second, where matchings are scored according to the size
of the largest split that is consistent with both of them, normalized against the Jaccard index. A
more detailed account is available in the vignettes.

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://doi.org/10.1016/S0012-365X(01)00418-6
https://doi.org/10.1007/3-540-61332-3_168
https://doi.org/10.1016/0095-8956(71)90020-7
https://ms609.github.io/TreeDist/articles/Robinson-Foulds.html#generalized-robinson-foulds-distances
https://ms609.github.io/TreeDist/articles/Generalized-RF.html#nye-et-al--tree-similarity-metric

22 NyeSimilarity

Usage

NyeSimilarity(
tree1,
tree2 = tree1,
similarity = TRUE,
normalize = FALSE,
normalizeMax = !is.logical(normalize),
reportMatching = FALSE

)

NyeSplitSimilarity(
splits1,
splits2,
nTip = attr(splits1, "nTip"),
reportMatching = FALSE

)

Arguments

tree1 Trees of class phylo, with leaves labelled identically, or lists of such trees to
undergo pairwise comparison.

tree2 Trees of class phylo, with leaves labelled identically, or lists of such trees to
undergo pairwise comparison.

similarity Logical specifying whether to report the result as a tree similarity, rather than a
difference.

normalize If a numeric value is provided, this will be used as a maximum value against
which to rescale results. If TRUE, results will be rescaled against a maximum
value calculated from the specified tree sizes and topology, as specified in the
’Normalization’ section below. If FALSE, results will not be rescaled.

normalizeMax When calculating similarity, normalize against the maximum number of splits
that could have been present (TRUE), or the number of splits that were actually
observed (FALSE)? Defaults to the number of splits in the better-resolved tree;
set normalize = pmin.int to use the number of splits in the less resolved tree.

reportMatching Logical specifying whether to return the clade matchings as an attribute of the
score.

splits1 Logical matrices where each row corresponds to a leaf, either listed in the same
order or bearing identical names (in any sequence), and each column corre-
sponds to a split, such that each leaf is identified as a member of the ingroup
(TRUE) or outgroup (FALSE) of the respective split.

splits2 Logical matrices where each row corresponds to a leaf, either listed in the same
order or bearing identical names (in any sequence), and each column corre-
sponds to a split, such that each leaf is identified as a member of the ingroup
(TRUE) or outgroup (FALSE) of the respective split.

nTip (Optional) Integer specifying the number of leaves in each split.

NyeSimilarity 23

Details

The measure is defined as a similarity score. If similarity = FALSE, the similarity score will be
converted into a distance by doubling it and subtracting it from the number of splits present in both
trees. This ensures consistency with JaccardRobinsonFoulds.

Note that NyeSimilarity(tree1,tree2) is equivalent to, but slightly faster than, JaccardRobinsonFoulds
(tree1,tree2,k = 1,allowConflict = TRUE).

Value

NyeSimilarity() returns an array of numerics providing the distances between each pair of trees
in tree1 and tree2, or splits1 and splits2.

Normalization

If normalize = TRUE and similarity = TRUE, then results will be rescaled from zero to one by
dividing by the mean number of splits in the two trees being compared.

You may wish to normalize instead against the number of splits present in the smaller tree, which
represents the maximum value possible for a pair of trees with the specified topologies (normalize
= pmin.int); the number of splits in the most resolved tree (normalize = pmax.int); or the maxi-
mum value possible for any pair of trees with n leaves, n - 3 (normalize = TreeTools::NTip(tree1)
-3L).

If normalize = TRUE and similarity = FALSE, then results will be rescaled from zero to one by
dividing by the total number of splits in the pair of trees being considered.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

Nye TMW, LiÃ² P, Gilks WR (2006). “A novel algorithm and web-based tool for comparing two al-
ternative phylogenetic trees.” Bioinformatics, 22(1), 117–119. doi: 10.1093/bioinformatics/bti720.

See Also

Other tree distances: JaccardRobinsonFoulds(), KendallColijn(), MASTSize(), MatchingSplitDistance(),
NNIDist(), PathDist(), Robinson-Foulds, SPRDist(), TreeDistance()

Examples

library('TreeTools')
NyeSimilarity(BalancedTree(8), PectinateTree(8))
VisualizeMatching(NyeSimilarity ,BalancedTree(8), PectinateTree(8))
NyeSimilarity(as.phylo(0:5, nTip = 8), PectinateTree(8))
NyeSimilarity(as.phylo(0:5, nTip = 8), similarity = FALSE)

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://doi.org/10.1093/bioinformatics/bti720

24 PathDist

PathDist Path distance

Description

Calculate the path distance between trees.

Usage

PathDist(tree1, tree2 = NULL)

Arguments

tree1, tree2 Trees of class phylo, with leaves labelled identically, or lists of such trees to
undergo pairwise comparison.

Details

This function is a wrapper for the function path.dist() in the phangorn package. It pre-processes
trees to ensure that their internal representation does not cause the path.dist() function to crash
R.

The path distance is also termed the cladistic difference or topological distance.

Use of the path distance is discouraged as it emphasizes shallow relationships at the expense of
deeper (and arguably more fundamental) relationships (Farris, 1973).

Value

PathDist() returns a vector or distance matrix of distances between trees.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

Farris JS (1973). “On comparing the shapes of taxonomic trees.” Systematic Zoology, 22(1), 50–54.
doi: 10.2307/2412378.

See Also

Other tree distances: JaccardRobinsonFoulds(), KendallColijn(), MASTSize(), MatchingSplitDistance(),
NNIDist(), NyeSimilarity(), Robinson-Foulds, SPRDist(), TreeDistance()

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://doi.org/10.2307/2412378

Robinson-Foulds 25

Examples

library('TreeTools')

PathDist(BalancedTree(7), PectinateTree(7))

PathDist(BalancedTree(7), as.phylo(0:2, 7))
PathDist(as.phylo(0:2, 7), PectinateTree(7))

PathDist(list(bal = BalancedTree(7), pec = PectinateTree(7)),
as.phylo(0:2, 7))

CompareAll(as.phylo(30:33, 8), PathDist)

Robinson-Foulds Robinson-Foulds distances, with adjustments for phylogenetic infor-
mation content

Description

Calculate the Robinson-Foulds distance, or the equivalent similarity measure, with options to (i) an-
notate matched splits; (ii) weight splits according to their phylogenetic information content (Smith
2020).

Usage

InfoRobinsonFoulds(
tree1,
tree2 = tree1,
similarity = FALSE,
normalize = FALSE,
reportMatching = FALSE

)

InfoRobinsonFouldsSplits(
splits1,
splits2,
nTip = attr(splits1, "nTip"),
reportMatching = FALSE

)

RobinsonFoulds(
tree1,
tree2 = tree1,
similarity = FALSE,
normalize = FALSE,
reportMatching = FALSE

)

26 Robinson-Foulds

RobinsonFouldsMatching(
tree1,
tree2 = tree1,
similarity = FALSE,
normalize = FALSE,
...

)

RobinsonFouldsSplits(
splits1,
splits2,
nTip = attr(splits1, "nTip"),
reportMatching = FALSE

)

Arguments

tree1 Trees of class phylo, with leaves labelled identically, or lists of such trees to
undergo pairwise comparison.

tree2 Trees of class phylo, with leaves labelled identically, or lists of such trees to
undergo pairwise comparison.

similarity Logical specifying whether to report the result as a tree similarity, rather than a
difference.

normalize If a numeric value is provided, this will be used as a maximum value against
which to rescale results. If TRUE, results will be rescaled against a maximum
value calculated from the specified tree sizes and topology, as specified in the
’Normalization’ section below. If FALSE, results will not be rescaled.

reportMatching Logical specifying whether to return the clade matchings as an attribute of the
score.

splits1 Logical matrices where each row corresponds to a leaf, either listed in the same
order or bearing identical names (in any sequence), and each column corre-
sponds to a split, such that each leaf is identified as a member of the ingroup
(TRUE) or outgroup (FALSE) of the respective split.

splits2 Logical matrices where each row corresponds to a leaf, either listed in the same
order or bearing identical names (in any sequence), and each column corre-
sponds to a split, such that each leaf is identified as a member of the ingroup
(TRUE) or outgroup (FALSE) of the respective split.

nTip (Optional) Integer specifying the number of leaves in each split.

... Not used.

Details

Note that if reportMatching = TRUE, the pairScores attribute returns a logical matrix specifying
whether each pair of splits is identical.

InfoRobinsonFoulds() calculates the tree similarity or distance by summing the phylogenetic
information content of all splits that are (or are not) identical in both trees. Consequently, splits that

Robinson-Foulds 27

are more likely to be identical by chance alone make a smaller contribution to overall tree distance,
because their similarity is less remarkable.

Value

RobinsonFoulds() and InfoRobinsonFoulds() return an array of numerics providing the dis-
tances between each pair of trees in tree1 and tree2, or splits1 and splits2.

Functions

• RobinsonFouldsMatching: Matched splits, intended for use with VisualizeMatching().

Normalization

• RobinsonFoulds() is normalized against the total number of splits that are present.
• InfoRobinsonFoulds() is normalized against the sum of the phylogenetic information of all

splits in both trees, treated independently.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

Robinson DF, Foulds LR (1981). “Comparison of phylogenetic trees.” Mathematical Biosciences,
53(1-2), 131–147. doi: 10.1016/00255564(81)900432.

Steel MA, Penny D (2006). “Maximum parsimony and the phylogenetic information in multistate
characters.” In Albert VA (ed.), Parsimony, Phylogeny, and Genomics, 163–178. Oxford University
Press, Oxford.

Smith MR (2020). “Information theoretic Generalized Robinson-Foulds metrics for comparing
phylogenetic trees.” Bioinformatics, online ahead of print. doi: 10.1093/bioinformatics/btaa614.

See Also

Display paired splits: VisualizeMatching()

Other tree distances: JaccardRobinsonFoulds(), KendallColijn(), MASTSize(), MatchingSplitDistance(),
NNIDist(), NyeSimilarity(), PathDist(), SPRDist(), TreeDistance()

Examples

For BalancedTree, PectinateTree, as.phylo:
library('TreeTools', quietly = TRUE, warn.conflicts = FALSE)
balanced7 <- BalancedTree(7)
pectinate7 <- PectinateTree(7)
RobinsonFoulds(balanced7, pectinate7)
RobinsonFoulds(balanced7, pectinate7, normalize = TRUE)
VisualizeMatching(RobinsonFouldsMatching, balanced7, pectinate7)

InfoRobinsonFoulds(balanced7, pectinate7)
VisualizeMatching(InfoRobinsonFoulds, balanced7, pectinate7)

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://doi.org/10.1016/0025-5564(81)90043-2
https://doi.org/10.1093/bioinformatics/btaa614

28 SplitEntropy

SplitEntropy Entropy of two splits

Description

Calculate the entropy, joint entropy, entropy distance and information content of two splits, treating
each split as a division of n leaves into two groups. Further details are available in a vignette,
MacKay (2003) and Meila (2007).

Usage

SplitEntropy(split1, split2 = split1)

Arguments

split1, split2 Logical vectors listing leaves in a consistent order, identifying each leaf as a
member of the ingroup (TRUE) or outgroup (FALSE) of the split in question.

Value

A numeric vector listing, in bits:

• H1 The entropy of split 1;
• H2 The entropy of split 2;
• H12 The joint entropy of both splits;
• I The mutual information of the splits;
• Hd The entropy distance (variation of information) of the splits.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

MacKay DJC (2003). Information Theory, Inference, and Learning Algorithms. Cambridge Uni-
versity Press, Cambridge. https://www.inference.org.uk/itprnn/book.pdf.

MeilÄƒ M (2007). “Comparing clusterings—an information based distance.” Journal of Multivari-
ate Analysis, 98(5), 873–895. doi: 10.1016/j.jmva.2006.11.013.

See Also

Other information functions: ClusteringEntropy(), SplitSharedInformation(), SplitwiseInfo()

Examples

A <- TRUE
B <- FALSE
SplitEntropy(c(A, A, A, B, B, B), c(A, A, B, B, B, B))

https://ms609.github.io/TreeDist/articles/information.html
https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://www.inference.org.uk/itprnn/book.pdf
https://doi.org/10.1016/j.jmva.2006.11.013

SplitsCompatible 29

SplitsCompatible Are splits compatible?

Description

Determine whether splits are compatible (concave); i.e. they can both occur on a single tree.

Usage

SplitsCompatible(split1, split2)

Arguments

split1, split2 Logical vectors listing leaves in a consistent order, identifying each leaf as a
member of the ingroup (TRUE) or outgroup (FALSE) of the split in question.

Value

SplitsCompatible() returns a logical specifying whether the splits provided are compatible with
one another.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

Examples

A <- TRUE
B <- FALSE
SplitsCompatible(c(A, A, A, B, B, B),

c(A, A, B, B, B, B))
SplitsCompatible(c(A, A, A, B, B, B),

c(A, A, B, B, B, A))

SplitSharedInformation

Shared information content of two splits

Description

Calculate the phylogenetic information shared, or not shared, between two splits. See the accom-
panying vignette for definitions.

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://ms609.github.io/TreeDist/articles/information.html
https://ms609.github.io/TreeDist/articles/information.html

30 SplitSharedInformation

Usage

SplitSharedInformation(n, A1, A2 = A1)

SplitDifferentInformation(n, A1, A2 = A1)

TreesConsistentWithTwoSplits(n, A1, A2 = A1)

LnTreesConsistentWithTwoSplits(n, A1, A2 = A1)

Arguments

n Integer specifying the number of leaves

A1, A2 Integers specifying the number of taxa in A1 and A2, once the splits have been
arranged such that A1 fully overlaps with A2.

Details

Split S1 divides n leaves into two splits, A1 and B1. Split S2 divides the same leaves into the splits
A2 and B2.

Splits must be named such that A1 fully overlaps with A2: that is to say, all taxa in A1 are also in
A2, or vice versa. Thus, all taxa in the smaller of A1 and A2 also occur in the larger.

Value

TreesConsistentWithTwoSplits() returns the number of unrooted bifurcating trees consistent
with two splits.

SplitSharedInformation() returns the phylogenetic information that two splits have in common,
in bits.

SplitDifferentInformation() returns the amount of phylogenetic information distinct to one of
the two splits, in bits.

Functions

• SplitDifferentInformation: Different information between two splits.

• TreesConsistentWithTwoSplits: Number of trees consistent with two splits.

• LnTreesConsistentWithTwoSplits: Natural logarithm of TreesConsistentWithTwoSplits.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

MeilÄƒ M (2007). “Comparing clusterings—an information based distance.” Journal of Multivari-
ate Analysis, 98(5), 873–895. doi: 10.1016/j.jmva.2006.11.013.

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://doi.org/10.1016/j.jmva.2006.11.013

SplitwiseInfo 31

See Also

Other information functions: ClusteringEntropy(), SplitEntropy(), SplitwiseInfo()

Examples

Eight leaves, labelled A to H.
Split 1: ABCD|EFGH
Split 2: ABC|DEFGH
Let A1 = ABCD (four taxa), and A2 = ABC (three taxa).
A1 and A2 overlap (both contain ABC).

TreesConsistentWithTwoSplits(n = 8, A1 = 4, A2 = 3)
SplitSharedInformation(n = 8, A1 = 4, A2 = 3)
SplitDifferentInformation(n = 8, A1 = 4, A2 = 3)

If splits are identical, then their shared information is the same
as the information of either split:
SplitSharedInformation(n = 8, A1 = 3, A2 = 3)
TreeTools::SplitInformation(3, 5)

SplitwiseInfo Information content of splits within a tree

Description

Sum the phylogenetic information content for all splits within a phylogenetic tree. This value will
be greater than the total information content of the tree where a tree contains multiple splits, as
these splits will contain mutual information.

Usage

SplitwiseInfo(x)

Arguments

x A tree of class phylo, a list of trees, or a multiPhylo object.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

See Also

An introduction to the phylogenetic information content of a split is given in SplitInformation()
and in a package vignette.
Other information functions: ClusteringEntropy(), SplitEntropy(), SplitSharedInformation()

Examples

SplitwiseInfo(TreeTools::PectinateTree(8))

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://ms609.github.io/TreeTools/reference/SplitInformation.html
https://ms609.github.io/TreeDist/articles/information.html

32 SPRDist

SPRDist Approximate Subtree Prune and Regraft distance

Description

Approximate the Subtree Prune and Regraft (SPR) distance.

Usage

SPRDist(tree1, tree2 = NULL, symmetric = TRUE)

Arguments

tree1, tree2 Trees of class phylo, with leaves labelled identically, or lists of such trees to
undergo pairwise comparison.

symmetric Logical specifying whether to produce a better heuristic by calculating the min-
imum of SPRDist(t1,t2) and SPRDist(t2,t1), which are not guaranteed to
be equal due to the heuristic nature of the approximation (see phangorn#97). Set
to FALSE for the faster approximation, as implemented in ’phangorn’.

Details

SPRDist() is a wrapper for the function SPR.dist() in the phangorn package. It pre-processes
trees to ensure that their internal representation does not cause the SPR.dist() function to crash R,
and allows an improved (but slower) symmetric heuristic.

A memory leak is present in phangorn v2.5.5. To avoid a drain on system resources, install the
latest version of phangorn with devtools::install_github('KlausVigo/phangorn').

Value

SPRDist() returns a vector or distance matrix of distances between trees.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

See Also

Other tree distances: JaccardRobinsonFoulds(), KendallColijn(), MASTSize(), MatchingSplitDistance(),
NNIDist(), NyeSimilarity(), PathDist(), Robinson-Foulds, TreeDistance()

https://github.com/KlausVigo/phangorn/issues/97
https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk

TreeDistance 33

Examples

library('TreeTools', quietly = TRUE, warn.conflicts = FALSE)

SPRDist(BalancedTree(7), PectinateTree(7))

SPRDist(BalancedTree(7), as.phylo(0:2, 7))
SPRDist(as.phylo(0:2, 7), PectinateTree(7))

SPRDist(list(bal = BalancedTree(7), pec = PectinateTree(7)),
as.phylo(0:2, 7))

CompareAll(as.phylo(30:33, 8), SPRDist)

TreeDistance Information-based generalized Robinson-Foulds distances

Description

Calculate tree similarity and distance measures based on the amount of phylogenetic or clustering
information that two trees hold in common, as proposed in Smith (2020).

Usage

TreeDistance(tree1, tree2 = tree1)

SharedPhylogeneticInfo(
tree1,
tree2 = tree1,
normalize = FALSE,
reportMatching = FALSE

)

DifferentPhylogeneticInfo(
tree1,
tree2 = tree1,
normalize = FALSE,
reportMatching = FALSE

)

PhylogeneticInfoDistance(
tree1,
tree2 = tree1,
normalize = FALSE,
reportMatching = FALSE

)

ClusteringInfoDistance(

34 TreeDistance

tree1,
tree2 = tree1,
normalize = FALSE,
reportMatching = FALSE

)

ExpectedVariation(tree1, tree2, samples = 10000)

MutualClusteringInfo(
tree1,
tree2 = tree1,
normalize = FALSE,
reportMatching = FALSE

)

SharedPhylogeneticInfoSplits(
splits1,
splits2,
nTip = attr(splits1, "nTip"),
reportMatching = FALSE

)

MutualClusteringInfoSplits(
splits1,
splits2,
nTip = attr(splits1, "nTip"),
reportMatching = FALSE

)

MatchingSplitInfo(
tree1,
tree2 = tree1,
normalize = FALSE,
reportMatching = FALSE

)

MatchingSplitInfoDistance(
tree1,
tree2 = tree1,
normalize = FALSE,
reportMatching = FALSE

)

MatchingSplitInfoSplits(
splits1,
splits2,
nTip = attr(splits1, "nTip"),
reportMatching = FALSE

TreeDistance 35

)

Arguments

tree1, tree2 Trees of class phylo, with leaves labelled identically, or lists of such trees to
undergo pairwise comparison.

normalize If a numeric value is provided, this will be used as a maximum value against
which to rescale results. If TRUE, results will be rescaled against a maximum
value calculated from the specified tree sizes and topology, as specified in the
’Normalization’ section below. If FALSE, results will not be rescaled.

reportMatching Logical specifying whether to return the clade matchings as an attribute of the
score.

samples Integer specifying how many samplings to obtain; accuracy of estimate increases
with sqrt(samples).

splits1, splits2

Logical matrices where each row corresponds to a leaf, either listed in the same
order or bearing identical names (in any sequence), and each column corre-
sponds to a split, such that each leaf is identified as a member of the ingroup
(TRUE) or outgroup (FALSE) of the respective split.

nTip (Optional) Integer specifying the number of leaves in each split.

Details

Generalized Robinson-Foulds distances calculate tree similarity by finding an optimal matching
that the similarity between a split on one tree and its pair on a second, considering all possible ways
to pair splits between trees (including leaving a split unpaired).

The methods implemented here use the concepts of entropy and information (MacKay 2003) to
assign a similarity score between each pair of splits.

The returned tree similarity measures state the amount of information, in bits, that the splits in two
trees hold in common when they are optimally matched, following Smith (2020). The complemen-
tary tree distance measures state how much information is different in the splits of two trees, under
an optimal matching.

Value

If reportMatching = FALSE, the functions return a numeric vector specifying the requested simi-
larities or differences.

If reportMatching = TRUE, the functions additionally return details of which clades are matched in
the optimal matching, which can be viewed using VisualizeMatching().

Concepts of information

The phylogenetic (Shannon) information content and entropy of a split are defined in a separate
vignette.

Using the mutual (clustering) information (Meila 2007, Vinh et al. 2010) of two splits to quantify
their similarity gives rise to the Mutual Clustering Information measure (MutualClusteringInfo(),
MutualClusteringInfoSplits()); the entropy distance gives the Clustering Information Distance

https://ms609.github.io/TreeDist/articles/Robinson-Foulds.html#generalized-robinson-foulds-distances
https://ms609.github.io/TreeDist/articles/information.html
https://ms609.github.io/TreeDist/articles/information.html
https://ms609.github.io/TreeDist/articles/information.html

36 TreeDistance

(ClusteringInfoDistance()). This approach is optimal in many regards, and is implemented
with normalization in the convenience function TreeDistance().

Using the amount of phylogenetic information common to two splits to measure their similarity
gives rise to the Shared Phylogenetic Information similarity measure (SharedPhylogeneticInfo(),
SharedPhylogeneticInfoSplits()). The amount of information distinct to each of a pair of splits
provides the complementary Different Phylogenetic Information distance metric (DifferentPhylogeneticInfo()).

The Matching Split Information measure (MatchingSplitInfo(), MatchingSplitInfoSplits())
defines the similarity between a pair of splits as the phylogenetic information content of the most
informative split that is consistent with both input splits; MatchingSplitInfoDistance() is the
corresponding measure of tree difference. (More information here.)

Conversion to distances:
To convert similarity measures to distances, it is necessary to subtract the similarity score from
a maximum value. In order to generate distance metrics, these functions subtract the similarity
twice from the total information content (SPI, MSI) or entropy (MCI) of all the splits in both trees
(Smith 2020).

Normalization:
If normalize = TRUE, then results will be rescaled such that distance ranges from zero to (in
principle) one. The maximum distance is the sum of the information content or entropy of each
split in each tree; the maximum similarity is half this value. (See Vinh et al. (2010, table 3) and
Smith (2020) for alternative normalization possibilities.)
Note that a distance value of one (= similarity of zero) will seldom be achieved, as even the most
different trees exhibit some similarity. It may thus be helpful to rescale the normalized value
such that the expected distance between a random pair of trees equals one. This can be calculated
with ExpectedVariation(); or see package ’TreeDistData’ for a compilation of expected values
under different metrics for trees with up to 200 leaves.
Alternatively, to scale against the information content or entropy of all splits in the most or least
informative tree, use normalize = pmax or pmin respectively. To calculate the relative similarity
against a reference tree that is known to be ’correct’, use normalize = ``SplitwiseInfo(trueTree)
(SPI, MSI) or ClusteringEntropy(trueTree) (MCI).

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

• MacKay DJC (2003). Information Theory, Inference, and Learning Algorithms. Cambridge
University Press, Cambridge. https://www.inference.org.uk/itprnn/book.pdf.

• MeilÄƒ M (2007). “Comparing clusterings—an information based distance.” Journal of Mul-
tivariate Analysis, 98(5), 873–895. doi: 10.1016/j.jmva.2006.11.013.

• Smith MR (2020). “Information theoretic Generalized Robinson-Foulds metrics for compar-
ing phylogenetic trees.” Bioinformatics, online ahead of print. doi: 10.1093/bioinformatics/
btaa614.

• Vinh NX, Epps J, Bailey J (2010). “Information theoretic measures for clusterings com-
parison: variants, properties, normalization and correction for chance.” Journal of Machine
Learning Research, 11, 2837–2854. doi: 10.1145/1553374.1553511.

https://ms609.github.io/TreeDist/articles/Generalized-RF.html
https://ms609.github.io/TreeDistData/reference/randomTreeDistances.html
https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://www.inference.org.uk/itprnn/book.pdf
https://doi.org/10.1016/j.jmva.2006.11.013
https://doi.org/10.1093/bioinformatics/btaa614
https://doi.org/10.1093/bioinformatics/btaa614
https://doi.org/10.1145/1553374.1553511

VisualizeMatching 37

See Also

Other tree distances: JaccardRobinsonFoulds(), KendallColijn(), MASTSize(), MatchingSplitDistance(),
NNIDist(), NyeSimilarity(), PathDist(), Robinson-Foulds, SPRDist()

Examples

tree1 <- ape::read.tree(text='((((a, b), c), d), (e, (f, (g, h))));')
tree2 <- ape::read.tree(text='(((a, b), (c, d)), ((e, f), (g, h)));')
tree3 <- ape::read.tree(text='((((h, b), c), d), (e, (f, (g, a))));')

Best possible score is obtained by matching a tree with itself
DifferentPhylogeneticInfo(tree1, tree1) # 0, by definition
SharedPhylogeneticInfo(tree1, tree1)
SplitwiseInfo(tree1) # Maximum shared phylogenetic information

Best possible score is a function of tree shape; the splits within
balanced trees are more independent and thus contain less information
SplitwiseInfo(tree2)

How similar are two trees?
SharedPhylogeneticInfo(tree1, tree2) # Amount of phylogenetic information in common
VisualizeMatching(SharedPhylogeneticInfo, tree1, tree2) # Which clades are matched?

DifferentPhylogeneticInfo(tree1, tree2) # Distance measure
DifferentPhylogeneticInfo(tree2, tree1) # The metric is symmetric

Are they more similar than two trees of this shape would be by chance?
ExpectedVariation(tree1, tree2, sample=12)['DifferentPhylogeneticInfo', 'Estimate']

Every split in tree1 conflicts with every split in tree3
Pairs of conflicting splits contain clustering, but not phylogenetic,
information
SharedPhylogeneticInfo(tree1, tree3) # = 0
MutualClusteringInfo(tree1, tree3) # > 0

Converting trees to Splits objects can speed up multiple comparisons
splits1 <- TreeTools::as.Splits(tree1)
splits2 <- TreeTools::as.Splits(tree2)

SharedPhylogeneticInfoSplits(splits1, splits2)
MatchingSplitInfoSplits(splits1, splits2)
MutualClusteringInfoSplits(splits1, splits2)

VisualizeMatching Visualise a matching

Description

Depict the splits that are matched between two trees using a specified Generalized Robinson-Foulds
similarity measure.

https://ms609.github.io/TreeDist/articles/Generalized-RF.html

38 VisualizeMatching

Usage

VisualizeMatching(
Func,
tree1,
tree2,
setPar = TRUE,
precision = 3L,
Plot = plot.phylo,
matchZeros = TRUE,
plainEdges = FALSE,
edge.width = 1,
edge.color = "black",
...

)

Arguments

Func Function used to construct tree similarity.

tree1, tree2 Trees of class phylo, with identical leaf labels.

setPar Logical specifying whether graphical parameters should be set to display trees
side by side.

precision Integer specifying number of significant figures to display when reporting match-
ing scores.

Plot Function to use to plot trees.

matchZeros Logical specifying whether to pair splits with zero similarity (TRUE), or leave
them unpaired (FALSE).

plainEdges Logical specifying whether to plot edges with a uniform width and colour (TRUE),
or whether to draw edge widths according to the similarity of the associated
splits (FALSE).

edge.width, edge.color, ...

Additional parameters to send to Plot().

Details

Note that when visualizing a Robinson-Foulds distance (using Func = RobinsonFouldsMatching),
matched splits are assigned a similarity score of 1, which is deducted from the total number of
splits to calculate the Robinson-Foulds distance. Unmatched splits thus contribute one to total tree
distance.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

Examples

tree1 <- TreeTools::BalancedTree(6)
tree2 <- TreeTools::PectinateTree(6)

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk

VisualizeMatching 39

VisualizeMatching(RobinsonFouldsMatching, tree1, tree2)
VisualizeMatching(SharedPhylogeneticInfo, tree1, tree2, matchZeros = FALSE)

Index

∗ information functions
ClusteringEntropy, 4
SplitEntropy, 28
SplitSharedInformation, 29
SplitwiseInfo, 31

∗ pairwise tree distances
CompareAll, 6

∗ tree distances
JaccardRobinsonFoulds, 8
KendallColijn, 10
MASTSize, 13
MatchingSplitDistance, 14
NNIDist, 19
NyeSimilarity, 21
PathDist, 24
Robinson-Foulds, 25
SPRDist, 32
TreeDistance, 33

AllSplitPairings, 3
ape::consensus(), 17

ClusteringEntropy, 4, 28, 31
ClusteringInfo (ClusteringEntropy), 4
ClusteringInfoDist (TreeDistance), 33
ClusteringInfoDistance (TreeDistance),

33
ClusteringInfoDistance(), 17
CompareAll, 6

DifferentPhylogeneticInfo
(TreeDistance), 33

Entropy, 7
ExpectedVariation (TreeDistance), 33

InfoRobinsonFoulds (Robinson-Foulds), 25
InfoRobinsonFouldsSplits

(Robinson-Foulds), 25

JaccardRobinsonFoulds, 8, 11, 14, 16, 21,
23, 24, 27, 32, 37

JaccardSplitSimilarity
(JaccardRobinsonFoulds), 8

KCVector (KendallColijn), 10
KendallColijn, 10, 10, 14, 16, 21, 23, 24, 27,

32, 37

LAPJV, 12
LnTreesConsistentWithTwoSplits

(SplitSharedInformation), 29

MASTInfo (MASTSize), 13
MASTSize, 10, 11, 13, 16, 21, 23, 24, 27, 32, 37
MatchingSplitDistance, 10, 11, 14, 14, 21,

23, 24, 27, 32, 37
MatchingSplitDistanceSplits

(MatchingSplitDistance), 14
MatchingSplitInfo (TreeDistance), 33
MatchingSplitInfoDistance

(TreeDistance), 33
MatchingSplitInfoSplits (TreeDistance),

33
median.multiPhylo, 16
MeilaMutualInformation

(MeilaVariationOfInformation),
18

MeilaVariationOfInformation, 18
MutualClusteringInfo (TreeDistance), 33
MutualClusteringInformation

(TreeDistance), 33
MutualClusteringInfoSplits

(TreeDistance), 33

NNIDiameter (NNIDist), 19
NNIDist, 10, 11, 14, 16, 19, 23, 24, 27, 32, 37
NyeSimilarity, 10, 11, 14, 16, 21, 21, 24, 27,

32, 37
NyeSimilarity(), 9

40

INDEX 41

NyeSplitSimilarity (NyeSimilarity), 21

path.dist(), 6, 24
PathDist, 10, 11, 14, 16, 21, 23, 24, 27, 32, 37
phangorn::mast(), 14
phylo, 10
PhylogeneticInfoDistance

(TreeDistance), 33
pmax, 36
pmin, 36

Robinson-Foulds, 25
RobinsonFoulds (Robinson-Foulds), 25
RobinsonFouldsInfo (Robinson-Foulds), 25
RobinsonFouldsMatching

(Robinson-Foulds), 25
RobinsonFouldsSplits (Robinson-Foulds),

25

SharedPhylogeneticInfo (TreeDistance),
33

SharedPhylogeneticInfoSplits
(TreeDistance), 33

SplitDifferentInformation
(SplitSharedInformation), 29

SplitEntropy, 6, 28, 31
SplitsCompatible, 29
SplitSharedInformation, 6, 28, 29, 31
SplitwiseInfo, 6, 28, 31, 31
SplitwiseInfo(), 4
SPR.dist(), 32
SPRDist, 10, 11, 14, 16, 21, 23, 24, 27, 32, 37

TreeDistance, 10, 11, 14, 16, 21, 23, 24, 27,
32, 33

TreesConsistentWithTwoSplits
(SplitSharedInformation), 29

TreeTools::ConsensusWithout(), 17

vapply(), 6
VisualizeMatching, 37
VisualizeMatching(), 27, 35

	AllSplitPairings
	ClusteringEntropy
	CompareAll
	Entropy
	JaccardRobinsonFoulds
	KendallColijn
	LAPJV
	MASTSize
	MatchingSplitDistance
	median.multiPhylo
	MeilaVariationOfInformation
	NNIDist
	NyeSimilarity
	PathDist
	Robinson-Foulds
	SplitEntropy
	SplitsCompatible
	SplitSharedInformation
	SplitwiseInfo
	SPRDist
	TreeDistance
	VisualizeMatching
	Index

