
Package ‘TimeWarp’
July 22, 2016

Type Package

Title Date Calculations and Manipulation

Version 1.0.15

Date 2016-07-19

Author Tony Plate, Jeffrey Horner, Lars Hansen

Maintainer Tony Plate <tplate@acm.org>

Depends R (>= 2.6)

Suggests scriptests, Holidays

Imports methods

Description Date sequence, relative date calculations, and date manipulation with business days
and holidays. Works with Date and POSIXt classes.

License GPL

NeedsCompilation no

Repository CRAN

Date/Publication 2016-07-22 23:21:38

R topics documented:
TimeWarp-package . 2
dateAlign . 3
dateDow . 5
dateFormat . 6
dateMatch . 7
dateParse . 8
dateSeq . 10
dateShift . 11
dateWarp . 12
holidays . 14
pitfalls . 16

Index 19

1

2 TimeWarp-package

TimeWarp-package Date sequence and manipulation with business days and holidays.

Description

A package for manipulating vectors of class Date. Support for other vectors and classes may be
added in the future.

The general idea with the behavior of functions from this package is that they should return an
object of the same class as they are given, e.g., dateWarp() applied to a vector of dates in character
format should return a vector of dates in character format, and dateWarp() applied to a Date class
vector should return a Date class vector.

This functionality is currently implemented for Date, character, POSIXct and POSIXlt classes.
For other classes, functions from this package will currently return a Date vector, but that may
change as other classes are added.

Version 1.0 of TimeWarp does not handle times on POSIXct and POSIXlt: the functions in TimeWarp
will return the same type of object stripped of times. This may change in the future.

Author(s)

Jeffrey Horner, Lars Hansen, Tony Plate

Maintainer: Tony Plate <tplate@acm.org>

See Also

dateWarp, dateAlign, dateSeq, dateMatch, and holidays.

The Holidays package loads a database of holidays into the TimeWarp package.

pitfalls describes some pitfalls with date class conversions.

On the use of Date, chron and POSIXt classes: Gabor Grothendieck and Thomas Petzoldt. R help
desk: Date and time classes in R. http://cran.r-project.org/doc/Rnews/Rnews_2004-1.pdf
(Has a helpful table of how to accomplish various tasks with the different classes.)

On the creation and use of the POSIXt classes (POSIXct and POSIXlt): Brian D. Ripley and Kurt
Hornik. Date-time classes. http://cran.r-project.org/doc/Rnews/Rnews_2001-2.pdf

Examples

library(Holidays)
View counts of registered holidays by year
sapply(as.character(1998:2012), function(y)

sapply(allHolidays(), function(h) length(holidays(y, h, silent=TRUE))))

Find US option expiration dates in 2011 (The pricing day, usually a Friday)

Technically speaking, standardized options expire on the Saturday
following the third Friday of the month. The reason that equity and
index options expire on this day is due to the fact that this day offers

http://cran.r-project.org/doc/Rnews/Rnews_2004-1.pdf
http://cran.r-project.org/doc/Rnews/Rnews_2001-2.pdf

dateAlign 3

the least number of scheduling conflicts, i.e. holidays.

When an options expiration date falls on a holiday, all trading dates
are moved earlier. For example, in 2008, options expiration date falls
on Good Friday. In this situation, options will still expire on
Saturday following Good Friday -- however the last trading day for
Equity options will be the Thursday preceding the Good Friday trading
holiday.

yy <- 2011
(d1 <- dateSeq(paste(yy, '-01-01', sep=''), len=12, by='months'))
(d2 <- dateAlign(d1, by='months', dir=-1))
(d3 <- dateAlign(d2, by='weeks', week.align=5))
(d4 <- dateWarp(d3, 14, by='days'))
(d5 <- dateAlign(d4, by='bizdays@NYSEC', dir=-1))

Find option expiration dates that have been shifted because they would have
occured on a holiday
yy <- 1990
d1 <- dateSeq(paste(yy, '-01-01', sep=''), len=288, by='months')
d2 <- dateAlign(d1, by='months', dir=-1)
d3 <- dateAlign(d2, by='weeks', week.align=5)
d4 <- dateWarp(d3, 14, by='days')
d5 <- dateAlign(d4, by='bizdays@NYSEC', dir=-1)
data.frame(holiday=d4, option.expiration=d5)[which(d4 != d5),]

dateAlign Date alignment

Description

Align a date vector the a day, bizday, month, week or year boundary. dateAlign() is a generic,
with methods for character, Date, POSIXct, and POSIXlt.

Usage

dateAlign(x, by = "days", k.by = 1, direction = 1,
week.align = NULL, holidays = NULL, silent = FALSE,
optimize.dups=TRUE)

Arguments

x Date vector, or a character vector that can be converted to Date by dateParse.

by character string with the time unit of the time period. Can be one of "days",
"bizdays","weeks", "months", or "years".

k.by positive integer giving the number of the by units to align to. Ignored for
"bizdays" and "weeks".

direction integer with either -1 or 1, to align to the previous or next time that is an integer
number of the k.by * by units.

4 dateAlign

week.align if not NULL, and by is "weeks", an integer, 0 to 6 with 0 being Sunday, to
specify a weekday to align to.

holidays character string naming the holiday series (see holidays).

silent logical indicating whether or not to suppress warnings about arguments.

optimize.dups If TRUE, internally optimize by not performing the same computation multiple
times for duplicates. This does not change the return value.

Value

Date vector whose elements are moved up or down (according to direction) so that they lie on
integer multiples of k.by * by units of time starting from the beginning of the next bigger time unit
(e.g. if by = "days", then align to multiples of k.by days added to the first of the month. Note that
for "weeks", and "bizdays", k.by is assumed to be 1 and ignored; "weeks" without week.align
is equivalent to "days". Also note that k.by should be a divisor of the number of by units in the next
larger time unit, or NA values will result. The class of the returned value is the same as the class
of x for character, Date, POSIXct, and POSIXlt. For x of other classes, the class of the returned
value is Date, but this may change in the future.

Note

Alignment of dates can be thought of as a partition on date sequences where an input date is aligned
to the first date in a partition, if it is not already aligned. The direction of alignment determines
which partition to use for the alignment. If the direction is -1 then alignment happens in the partition
which the date falls in. If +1 then alignment happens in the partition just after the partition in which
the dates falls.

Author(s)

Lars Hansen, Tony Plate

See Also

dateShift, dateWarp, dateMatch, dateParse, dateSeq

Examples

dateAlign("2007/12/06", by = "days", k.by = 4, direction = -1)
date <- as.Date("2009/1/1") + -5:5
dateAlign(date, by = "days", silent = FALSE)
dateAlign(date, by = "days", k.by = 3, direction = -1)
dateAlign(date, by = "bizdays", k.by = 1, direction = 1)
library(Holidays)
dateAlign(date, by = "bizdays", k.by = 1, direction = 1, holidays =
"NYSEC")
dateAlign(date, by = "months", k.by = 2, direction = -1)
dateAlign(date, by = "years", k.by = 3, direction = -1)

dateDow 5

dateDow Formats a date/time as character and appends the day of week

Description

Formats a date/time as character and appends the day of week in the current locale. Is a generic
with currently on a default method.

Usage

dateDow(date)

Arguments

date A vector that can be interpreted as a date.

Details

For character values of date, parses the date using dateParse(date, dross.remove=TRUE) and
converts to day of week using weekdays(). For date of other classes, calls weekdays(date)
directly. Weekdays uses the locale LC_TIME to determine the language used.

Value

A character vector.

Note

To get the weekday expressed in English, do Sys.setlocale("LC_TIME", "C"). (This should
affect all language-dependent time formatting.)

Author(s)

Tony Plate <tplate@acm.org>

See Also

weekdays

Examples

dateDow(Sys.time())
dateDow(Sys.Date())
dateDow('2011-01-01')

6 dateFormat

dateFormat Converts a Date object to character data

Description

Converts a Date object to character data

Usage

dateFormat(date, format = NULL, optimize.dups=TRUE)

Arguments

date A vector of dates. Can be character data or some date object – anything that can
be handled by dateParse()

format A specification of the format. The default will print as "YYYY-MM-DD" under
both Windows and Linux.

optimize.dups If TRUE, internally optimize by not performing the same computation multiple
times for duplicates. This does not change the return value.

Details

Unfortunately, ’format.POSIXct’ does not have the same behavior on Linux and Windows. Here
are a few for the difference found in 2008:

1. Windows version does not recognize "%y" format.

2. Windows version does not recognize width arguments like "%02d".

3. Windows and Linux does not agree on the meaning of "%Y". Under Windows it means
"%04Y"; under Linux it prints with minimal width.

This function tries to provide identical behavior under Linux and Windows and Mac. This function
formats any kind of data objects to character strings with the default format "%04Y-%02m-%02d"
under both Linux and Windows. It does this by choosing a system-specific default format and then
calling format().

Additional format specifications are also provided:

• ’%Q’ for quarter, as ’Q1’, etc (the value returned by quarters()

• ’%C’ for century, always 2 digits (e.g., ’20’ for 2013)

Value

The formatted dates as a vector of character data.

Author(s)

Tony Plate

dateMatch 7

Examples

dateFormat(as.Date('2001-02-13'), '%Y.%02m.%02d')

dateMatch Match Dates in a Table

Description

Return the indices of dates in a table that match, according to rules "before", "after", etc. dateMatch()
is a generic, with methods for character, Date, POSIXct, and POSIXlt.

Usage

dateMatch(x, table, how=c("NA", "before", "after", "nearest", "interp"),
error.how=c("NA", "drop", "nearest", "stop"),
nomatch=NA, offset=NULL, value=FALSE, optimize.dups=TRUE)

Arguments

x A "Date" vector, or a character vector that can be converted to "Date"

table A "Date" vector, or a character vector that can be converted to "Date". Must
be strictly increasing.

how A character string. Determines how values in x that do not have exact matches
in table are handled.

"before" the element in table that is just before
"after" the element in table that is just after
"nearest" the element in table that is nearest
"interp" an interpolated index
"NA" return the nomatch value

For convenience, how can specify both how and error.how separated with a pe-
riod, e.g., how="before.nearest" is equivalent to how="before" and error.how="nearest"

error.how A character string. Determines how to handle values in x that do not have exact
matches in table and for which the how rule fails (e.g. when how is one of
"before", "after", or "interp").

"NA" return the "nomatch" value
"drop" causes non-matched values to be dropped

"nearest" pick the nearest value in table.
"stop" stop with an error.

See the note on argument how for another way of specifying error.how. A value
for error.how is ignored if the value for how has a period in it.

nomatch The value to return for nomatch cases. If value=TRUE, then nomatch must be a
Date value, Otherwise it must be a numeric value. NA is the default.

8 dateParse

offset If an integer, this offset is added to the computed indices after matching. (Can
be an integer value represented as a float.) Non-integer and non-numeric val-
ues cause an error. It is possible that later on, character values may be al-
lowed to specify a computed offset to the values in x (e.g., something like
"+1 bizdays@NYSEC"). If the result is outside the range of indices of table, NA
is returned in those positions.

value If TRUE, the matching value in table is returned instead of the index.
optimize.dups If TRUE, internally optimize by not performing the same computation multiple

times for duplicates. This does not change the return value.

Details

Uses match and findInterval to perform matching.

Value

The indices of the matches for the elements of x in table, or the actual matching values from table
if value==TRUE. In the latter case, the class of the returned value is the same as the class of x for
character, Date, POSIXct, and POSIXlt. For x of other classes, the class of the returned value is
Date, but this may change in the future.

Examples

d1 <- dateParse(c("2001/01/10", "2001/03/12"))
d2 <- dateSeq(dateParse("2001/01/01"), by = "weeks", len = 20)
dateMatch(d1, dateParse(), how = "nearest", error.how = "drop")
dateMatch(d1, dateParse(), how = "nearest", error.how = "stop")
dateMatch(d1, dateParse(), how = "nearest.stop")
dateMatch(d1, d2, how = "after")
dateMatch(d1, d2, how = "after", offset = -3)
dateMatch(dateParse(c("2001/01/10", "2001/01/17", "2001/03/12")),
dateSeq(dateParse("2001/01/01"), by = "weeks", len = 20), how = "after",
offset = 10, value = TRUE)

dateParse Date Construction from Character Vectors

Description

Parse dates, automatically selecting one of three formats, returning a Date vector. The possible
formats are:

• yyyymmddno delimiters, 4 digits year, 2 digit month, 2 digit day
• yyyy/[m]m/[d]dwith delimiters, 4 digit year, 1 or 2 digit month, 1 or 2 digit day
• [m]m/[d]d/yyyywith delimiters, 1 or 2 digit month, 1 or 2 digit day, 4 digit year

Delimiters are discovered automatically, but ’/’ and ’-’ are recommended.
Differs from Splus timeDate in that it automatically chooses the format and in that it stops or
returns NULL if any elements cannot be parsed. (timeDate silently returns NA for elements that
cannot be parsed.)

dateParse 9

Usage

dateParse(x, format = NULL, stop.on.error = TRUE, quick.try = TRUE,
dross.remove = FALSE, na.strings = c("NA", ""), ymd8 = TRUE,
use.cache = TRUE, optimize.dups=TRUE)

Arguments

x A character, factor, timeDate or numeric vector.

format Force the use of this date format for parsing x.

stop.on.error Should this function stop with an error when x cannot be parse consistently, or
should it return NULL?

quick.try Should this function do a quick try on parsing just few elements of x (with the
goal of failing fast)?

dross.remove Should extra characters around the date be allowed and automatically removed?
The extracted date is the first substring that can be found consistently in all
elements of x.

na.strings Strings that should be treated as NA values.

ymd8 Should an 8-digit format with no separators be tried? Default is TRUE (there is
potential for confusion with numeric security identifiers, but this is likely to be
a problem, supply ymd8 in the particular case).

use.cache Try matching against cached values instead of using strptime? When this
works, it is 10 to 15 times faster.

optimize.dups If TRUE, internally optimize by not performing the same computation multiple
times for duplicates. This does not change the return value.

Details

If any elements of x cannot be interpreted as a valid date this function either returns NULL or stops
with an error (depending on the value supplied for the arugment stop.on.error). This is different
from the behavior of timeDate() and timeCalandar which return NA elements in their results.
This behavior is not appropriate for dateParse() because of its ability to guess the format, and
its assumption that all elements have the same format – if different elements had different formats
there would not be a unique way of saying which dates were invalid.

Numeric vectors are interpreted as having the date spelled out in digits, e.g., the integer 20010228
is interpreted as the date "2001/02/28".

Value

A Date vector, or NULL.

Examples

dateParse("2001-02-14")
dateParse("2/14/2002")
dateParse(c("1962/06/20", "1962/10/30","NA"))
dateParse(c("19620620", "19621030", "NA"), ymd8 = TRUE)

10 dateSeq

dateParse(factor(c("2001/01/01", "2001/01/03", "2001/01/01")))
Possibly unexpected values in conversion from POSIXct to Date
Sys.setenv('TZ'='EST')
x <- as.POSIXct('2011-12-10 16:55:26 EST')+(0:9)*3600
Date rolls to the next day after 19:00 hours for EST
(because that it the time the next day is dawning in UTC)
data.frame(x, as.Date(x))
This is the way to get as.Date() to do the sensible thing
data.frame(x, as.Date(x, tz='EST'))

dateSeq Create a sequence of Dates

Description

Generate a sequence of dates. Based on seq.Date, but adds support for business day and holiday
sequencing. dateSeq() is a generic, with methods for character, Date, POSIXct, and POSIXlt.

Usage

dateSeq(from = NULL, to = NULL, year = NULL,
by = "days", k.by = 1, length.out = NULL,
holidays = NULL, align.by = TRUE, extend = FALSE,
range = NULL, week.align = NULL)

Arguments

from starting value of the sequence, a Date object, or number or character string rec-
ognized by dateParse.

to ending value of the sequence, a Date object, or number or character string rec-
ognized by dateParse.

year an alternative to supplying from and to, create a sequence of dates from the
given year.

by spacing between successive values in the sequence. Can be one of "days",
"bizdays", "weeks", "months", or "years".
An alternative way to specify by is with a character string that encodes the k.by,
by, and the named holidays, e.g "+1 bizdays@NYSEC" says to create a se-
quence whose elements are 1 business day apart and exclude NYSEC holidays.

k.by non-zero integer giving the width of the interval between consecutive values in
the sequence in terms of the units given in by.

length.out the length of the sequence, before additions and exceptions are included.

holidays character string describing the holidays to exclude from the sequence when
by="bizdays" (see holidays).

align.by if TRUE, adjust the sequence so that each element is on a whole number of the
by * k.by units.

dateShift 11

extend if TRUE and align.by is also TRUE, instead of making the entire sequence lie
between from and to, make it extend just past from and to to the next aligned
values.

range a two-element character or Date vector: an alternate way to specify from and
to.

week.align if by is "weeks", specify the weekday to align to, given as number, 0 to 6 with
0 being Sunday.

Value

A vector of dates. The class of the returned value is the same as the class of from for character,
Date, POSIXct, and POSIXlt. For from of other classes, the class of the returned value is Date, but
this may change in the future.

Examples

dateSeq("2008-12-20", "2009-1-10")
dateSeq("2008-12-20", "2009-1-10", by = "days", k.by = 2)
library(Holidays)
dateSeq("2008-12-20", "2009-1-10", by = "bizdays", holidays = "NYSEC")
dateSeq(from = "1960-01-01", to = "1960-01-20", by = "weeks", week.align
= 0, extend = TRUE)
dateSeq(from = "2000/01/14", length.out = 5, by = "bizdays", holidays = 'NYSEC')

dateShift Date shifting

Description

Shift a date vector a number of days, bizdays, months, weeks or years. dateShift() is a generic,
with methods for character, Date, POSIXct, and POSIXlt.

Usage

dateShift(x, by = "days", k.by = 1, direction = 1, holidays = NULL,
silent = FALSE, optimize.dups=TRUE)

Arguments

x Date vector, or a character vector that can be converted to Date by dateParse.
by character string with the time unit of the shifts. Can be one of "days", "bizdays","weeks",

"months", or "years".
k.by positive integer with the number of by time units to shift.
direction integer with the direction to shift. A value of 1 for the future, and -1 for the past.
holidays character string naming the holiday series (see holidays).
silent logical indicating whether or not to suppress warnings about arguments.
optimize.dups If TRUE, internally optimize by not performing the same computation multiple

times for duplicates. This does not change the return value.

12 dateWarp

Value

Date vector that is a time shifted version of the input dates. If shifting by "bizdays", weekends and
holidays will be skipped. The class of the returned value is the same as the class of x for character,
Date, POSIXct, and POSIXlt. For x of other classes, the class of the returned value is Date, but this
may change in the future.

Author(s)

Lars Hansen, Tony Plate

See Also

dateAlign, dateWarp, dateMatch, dateParse, dateSeq

Examples

dateShift("2007/12/06", by = "days", k.by = 7, direction = -1)
date <- as.Date("2009/1/1") + -5:5
dateShift(date, by = "days", silent = TRUE)
library(Holidays)
dateShift(date, by = "bizdays", k.by = 5, holidays = "NYSEC")
dateShift(date, by = "weeks", k.by = 2)
dateShift(date, by = "months", k.by = "3", direction = "-1")
dateShift(date, by = "years", k.by = 1, direction = 1)

dateWarp Date vector shifting and alignment

Description

Perform multiple shifts and alignments on Date vectors. dateWarp() is a generic, with methods
for character, factor, Date, POSIXct, and POSIXlt.

Usage

dateWarp(date, spec, holidays = NULL, by = NULL, direction = 1,
duplicates.keep = TRUE, optimize.dups=TRUE)

dateWarpAppend(date, ..., where = c("sorted", "start", "end"), empty.ok = FALSE,
duplicates.ok = FALSE)

Arguments

date a Date vector, or a character vector that can be converted to Date by dateParse.

spec a specification of shifts and alignment tranformations. See ‘Details’.

holidays a character string naming the holiday series (see holidays).

by how to warp. Can be one of "days", "bizdays", "weeks", "months", or
"years". "bizdays" can contain a holiday specification like: "bizdays@NYSEC"

dateWarp 13

direction which direction to warp. a numeric value of 1 for the future, and -1 for the past
(be careful about using variables for this value, for if it’s value is negative and
you place a minus sign in front of the variable, you’ll go back to the future).

duplicates.keep

logical indicating whether or not to keep duplicate dates.
... arguments to pass to dateWarp.
where character string. can be "sorted" to sort the result instead of append, "start"

to prepend, or "end" to append.
empty.ok is it okay for the dates argument to be empty?
duplicates.ok logical indicating whether or not to keep duplicate dates.
optimize.dups If TRUE, internally optimize by not performing the same computation multiple

times for duplicates. This does not change the return value.

Details

spec specify tranformations in several ways:

• integer vector by which to shift the current Date object. The units of the shift are specified by
the by argument. If the shift contains more than one element, this will transform a single Date
object into a multiple-element Date object. It is an error to apply a multiple-element shift to a
multiple element Date object.

• character data of the form "+3 bizdays@NYSEC", "+3 bizdays", or "+3". ’by’ and ’holi-
days’ specifications are extracted from the string as appropriate, and override any previously
specified or given in arguments.

• a named list of elements. The elements can be lists or vectors. The names on the elements
specify instructions:
unique the actual value of the list element is ignored. The action is to remove duplicates from

the results, i.e., make the dates unique.
latest the value of the list element is a Date or a character that can be converted to a Date

with dateParse. The dates will be clipped to be no later than the specified Date.
earliest the value of the list element is a Date or a character that can be converted to a Date

with dateParse. The dates will be clipped to be no earlier than the specified Date.
shift the spec list element is a list that will be used as arguments to a call of dateShift. If

any are not specified in the list, the values of the by, holidays, and direction arguments
given to dateWarp() are passed to dateShift.

align the spec list element is a list that will be used as arguments to a call of dateAlign. If
any are not specified in the list, the values of the by, holidays, and direction arguments
given to dateWarp() are passed to dateShift.

If not all arguments are not provided, the dateWarp arguments will be used instead.

Value

A date vector that is a transformed version of the input dates. Multiple shift or alignment transfor-
mations can be specified. If more that one is given, each vill be applied in turn to the result of the
previous one. The class of the returned value is the same as the class of date for character, Date,
POSIXct, and POSIXlt. For date of other classes, the class of the returned value is Date, but this
may change in the future.

14 holidays

Author(s)

Lars Hansen, Tony Plate

See Also

dateAlign, dateShift, dateMatch, dateParse, and dateSeq

The Holidays package contains holidays data, which is registered with the TimeWarp package when
the Holidays package is loaded.

Examples

library(Holidays)
dates <- dateSeq("2001/12/20", by = 'bizdays', len = 9, holidays = "NYSEC")
dateWarp(dates, -1:1, by = "bizdays", holidays = "NYSEC", duplicates.keep = FALSE)
dateWarp(dates, "+1 bizdays@NYSEC")
dateWarp(dates, list(0:6), by = "bizdays@NYSEC")
dateWarp(dates, list(-1:1, unique = TRUE), by = "bizdays")
dateWarp(dates, list(latest = "2001/12/25"))
x <- dateSeq("2001/01/01", len = 4, by = "weeks")
dateWarp(dates, list(align = list(to = x, how = "after")))
dateWarp(dates, list(shift = list(by = "bizdays", k.by = 2, direction = 1, holidays = "NYSEC"),

shift = 2),
by = "days", direction = -1,

holidays = "NONE")
dateWarp(dates, hol = "NYSEC",

list(shift = list(k.by = 1, by = "months"),
shift=list(k.by = -1, by = "bizdays")))

dateWarp(dates, list(align = list(by = "bizdays"),
shift = list(by = "months", k.by = 2), holidays = "JPNEX"))

Options expirations dates in 2008
(d1 <- dateSeq('2008-01-01', len=12, by='months'))
(d2 <- dateAlign(d1, by='months', dir=-1))
(d3 <- dateAlign(d2, by='weeks', week.align=5))
(d4 <- dateWarp(d3, 14, by='days'))
(d5 <- dateAlign(d4, by='bizdays@NYSEC', dir=-1))
Version that uses a list 'spec' to dateWarp
dateWarp(d1, list(align=list(by='months', dir=-1),

align=list(by='weeks', week.align=5),
shift=list(by='days', 14),
align=list(by='bizdays@NYSEC', dir=-1)))

In 2008 the March options expiration is a Thursday because Friday was a holiday
dateDow(d5)

holidays TimeWarp Holiday Database

Description

Functions for querying and manipulating the TimeWarp holiday database

holidays 15

Usage

holidays(years, type, silent = FALSE)
addToHolidays(type,dates)
registerHolidays(type,dates)
unregisterHolidays(type,dates)
allHolidays()
isHoliday(dates, type)

Arguments

years numeric vector of years for which to return holiday dates.

type character string, name of the holiday.

dates a Date vector, or a character vector that can be converted to Date by dateParse.

silent do not display warnings.

Details

The TimeWarp holidays database is implemented as an internal named, or type’d, list of data.frame’s.

To create a new type of holiday, use registerHolidays. unregisterHolidays will delete the
holiday named by type, and addToHolidays will add new days to an existing type of holiday.

allHolidays returns a character vector of all the known holiday types.

Value

holidays returns a Date vector of holidays that fall within the years argument for the given holiday
type.

addToHolidays and registerHolidays invisibly return a copy of the data.frame for the given
type.

unregisterHolidays invisibly returns NULL.

allHolidays returns a character vector of all holiday type’s known to the database.

isHoliday returns a logical vector with TRUE of all holidays in input.

Examples

Create a holiday type of New Year days for the 20th century.
registerHolidays('NEWYEAR', as.Date(ISOdate(1900:2000,1,1)))

Return all New Year days for the 1990's
holidays(1990:2000,'NEWYEAR')

View counts of registered holidays by year
sapply(as.character(1998:2012), function(y)

sapply(allHolidays(), function(h) length(holidays(y, h, silent=TRUE))))

16 pitfalls

pitfalls Pitfalls in date class conversions

Description

Direct conversion between Date and POSIXt classes using the as.* can give probably undesired
results unless great care is taken with supplying appropriate time zones where needed.

It is generally easier to convert dates between Date and POSIXt using character formatted dates as
an intermediate representation.

Note that what is described as "not sensible" behavior here is NOT INCONSISTENT with the
documentation for as.POSIXct and as.POSIXlt.

Details

> # Behavior depends on the timezone of the system
> Sys.setenv(TZ='EST')
> Sys.timezone()
[1] "EST"
>
> # Get some POSIXct times that span 9 hours over an evening and
> # the following morning.
> x <- as.POSIXct('2011-12-10 16:55:26 EST', tz='EST')+(0:9)*3600
>
> # The first 8 date/times are in the evening of Dec 10, the last 2 in the
> # morning of Dec 11 (in EST).
>
> as.character(x)
[1] "2011-12-10 16:55:26" "2011-12-10 17:55:26" "2011-12-10 18:55:26"
[4] "2011-12-10 19:55:26" "2011-12-10 20:55:26" "2011-12-10 21:55:26"
[7] "2011-12-10 22:55:26" "2011-12-10 23:55:26" "2011-12-11 00:55:26"
[10] "2011-12-11 01:55:26"

>
> # Not sensible direction conversion POSIXct->Date.
> # Times after 7pm in the POSIXct object turn up as the next day in
> # the Date Object. (They are interpreted as a time-of-day in GMT
> # and 7pm EST is 12 midnight GMT.)
> as.Date(x)
[1] "2011-12-10" "2011-12-10" "2011-12-10" "2011-12-11" "2011-12-11"
[6] "2011-12-11" "2011-12-11" "2011-12-11" "2011-12-11" "2011-12-11"

>
> # Another way of looking at the as.Date(POSIXct)
>
> data.frame(as.character(x), as.Date(as.character(x)), as.Date(x), check.names=F)

as.character(x) as.Date(as.character(x)) as.Date(x)
1 2011-12-10 16:55:26 2011-12-10 2011-12-10
2 2011-12-10 17:55:26 2011-12-10 2011-12-10

pitfalls 17

3 2011-12-10 18:55:26 2011-12-10 2011-12-10
4 2011-12-10 19:55:26 2011-12-10 2011-12-11
5 2011-12-10 20:55:26 2011-12-10 2011-12-11
6 2011-12-10 21:55:26 2011-12-10 2011-12-11
7 2011-12-10 22:55:26 2011-12-10 2011-12-11
8 2011-12-10 23:55:26 2011-12-10 2011-12-11
9 2011-12-11 00:55:26 2011-12-11 2011-12-11
10 2011-12-11 01:55:26 2011-12-11 2011-12-11
>
> # as.Date(POSIXlt) works differently from as.Date(POSIXct)
>
> data.frame(as.character(x), as.Date(x), as.Date(as.POSIXlt(x)), check.names=F)

as.character(x) as.Date(x) as.Date(as.POSIXlt(x))
1 2011-12-10 16:55:26 2011-12-10 2011-12-10
2 2011-12-10 17:55:26 2011-12-10 2011-12-10
3 2011-12-10 18:55:26 2011-12-10 2011-12-10
4 2011-12-10 19:55:26 2011-12-11 2011-12-10
5 2011-12-10 20:55:26 2011-12-11 2011-12-10
6 2011-12-10 21:55:26 2011-12-11 2011-12-10
7 2011-12-10 22:55:26 2011-12-11 2011-12-10
8 2011-12-10 23:55:26 2011-12-11 2011-12-10
9 2011-12-11 00:55:26 2011-12-11 2011-12-11
10 2011-12-11 01:55:26 2011-12-11 2011-12-11
>
> # Sensible conversion POSIXct->character->Date.
> as.Date(as.character(x))
[1] "2011-12-10" "2011-12-10" "2011-12-10" "2011-12-10" "2011-12-10"
[6] "2011-12-10" "2011-12-10" "2011-12-10" "2011-12-11" "2011-12-11"

>
> # Can do this correctly multiple ways, direct POSIXct->Date works if
> # we supply tz='EST' to as.Date()
> all.equal(as.Date(as.character(x)), as.Date(x, tz='EST'))
[1] TRUE
> all.equal(as.Date(as.character(x)), as.Date(as.character(x), tz='EST'))
[1] TRUE
>
> (x.Date <- as.Date(as.character(x)))
[1] "2011-12-10" "2011-12-10" "2011-12-10" "2011-12-10" "2011-12-10"
[6] "2011-12-10" "2011-12-10" "2011-12-10" "2011-12-11" "2011-12-11"

>
> # Sensible conversion Date->character->POSIXct
> as.POSIXct(as.character(x.Date))
[1] "2011-12-10 EST" "2011-12-10 EST" "2011-12-10 EST" "2011-12-10 EST"
[5] "2011-12-10 EST" "2011-12-10 EST" "2011-12-10 EST" "2011-12-10 EST"
[9] "2011-12-11 EST" "2011-12-11 EST"

>
> # Not sensible direct conversion Date->POSIXct. (Unless we really want
> # the time in our zone corresponding to when it is midnight in GMT.)

18 pitfalls

> as.POSIXct(x.Date)
[1] "2011-12-09 19:00:00 EST" "2011-12-09 19:00:00 EST"
[3] "2011-12-09 19:00:00 EST" "2011-12-09 19:00:00 EST"
[5] "2011-12-09 19:00:00 EST" "2011-12-09 19:00:00 EST"
[7] "2011-12-09 19:00:00 EST" "2011-12-09 19:00:00 EST"
[9] "2011-12-10 19:00:00 EST" "2011-12-10 19:00:00 EST"

>
> # Probably sensible direction conversion Date->POSIXlt -- if this stops
> # being sensible, check code in date*.POSIXlt methods
> as.POSIXlt(x.Date)
[1] "2011-12-10 UTC" "2011-12-10 UTC" "2011-12-10 UTC" "2011-12-10 UTC"
[5] "2011-12-10 UTC" "2011-12-10 UTC" "2011-12-10 UTC" "2011-12-10 UTC"
[9] "2011-12-11 UTC" "2011-12-11 UTC"

>
> # 'tz' argument on as.POSIXlt() is ignored for conversion from Date
> attr(as.POSIXlt(x.Date, tz='UTC'), 'tzone')
[1] "UTC"
> attr(as.POSIXlt(x.Date, tz='GMT'), 'tzone')
[1] "UTC"
> attr(as.POSIXlt(x.Date, tz='EST'), 'tzone')
[1] "UTC"
> all.equal(as.POSIXlt(x.Date), as.POSIXlt(x.Date, tz='UTC'))
[1] TRUE
> all.equal(as.POSIXlt(x.Date), as.POSIXlt(x.Date, tz='GMT'))
[1] TRUE
> all.equal(as.POSIXlt(x.Date), as.POSIXlt(x.Date, tz='EST'))
[1] TRUE
>

Index

∗Topic misc
dateDow, 5

∗Topic package
TimeWarp-package, 2

∗Topic utilities
dateAlign, 3
dateFormat, 6
dateMatch, 7
dateParse, 8
dateSeq, 10
dateShift, 11
dateWarp, 12
holidays, 14
pitfalls, 16

addToHolidays (holidays), 14
allHolidays (holidays), 14
as.POSIXct, 16
as.POSIXlt, 16

data.frame, 15
Date, 3, 7–12, 15
dateAlign, 2, 3, 12–14
dateDow, 5
dateFormat, 6
dateMatch, 2, 4, 7, 12, 14
dateParse, 3, 4, 8, 10–15
dateSeq, 2, 4, 10, 12, 14
dateShift, 4, 11, 13, 14
dateWarp, 2, 4, 12, 12
dateWarpAppend (dateWarp), 12

gotchas (pitfalls), 16

Holidays, 2
holidays, 2, 4, 10–12, 14

isHoliday (holidays), 14

NULL, 15

pitfalls, 2, 16

registerHolidays (holidays), 14

seq.Date, 10

TimeWarp (TimeWarp-package), 2
TimeWarp-package, 2

unregisterHolidays (holidays), 14

weekdays, 5

19

	TimeWarp-package
	dateAlign
	dateDow
	dateFormat
	dateMatch
	dateParse
	dateSeq
	dateShift
	dateWarp
	holidays
	pitfalls
	Index

