Package 'TestDimorph'

April 23, 2020

Type Package

Title Analysis Of The Interpopulation Difference In Degree of Sexual Dimorphism Using Summary Statistics

Version 0.3.1

Maintainer Bassam A. Abulnoor

 das12@fayoum.edu.eg>

Description Provides two approaches of comparison; the univariate and the multivariate analysis in two or more populations. Since the main obstacle of performing systematic comparisons in anthropological studies is the absence of raw data, the current package offer a solution for this problem by allowing the use of published summary statistics of metric data (mean, standard deviation and sex specific sample size) as illustrated by the works of Greene, D. L. (1989) <doi:10.1002/ajpa.1330790113> and Konigsberg, L. W. (1991) <doi:10.1002/ajpa.1330840110>.

Imports

Rfast,plyr,stats,utils,reshape2,purrr,dplyr,caret,rlang,MASS,klaR,corrplot,truncnorm,stringr,ggplot2,plotROC,DescTools,t

Suggests testthat (>= 2.1.0), AnthropMMD, Rdpack

Depends R (>= 2.10)

RdMacros Rdpack

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

Language en-US

URL https://github.com/bassam-abulnoor/TestDimorph

BugReports https://github.com/bassam-abulnoor/TestDimorph/issues

NeedsCompilation no

Author Bassam A. Abulnoor [aut, cre] (https://orcid.org/0000-0003-4351-2754), MennattAllah H. Attia [aut] (https://orcid.org/0000-0003-4052-1575)

Lyle W. Konigsberg [ctb, dtc] (https://orcid.org/0000-0003-4052-1575)

Repository CRAN

Date/Publication 2020-04-23 12:40:02 UTC

2 AccuModel

R topics documented:

cuModel	2
vSS	4
boon.parms_df	5
boon.parms_list	
iract_sum	
wells	8
ıltivariate	
wGen	
ivariate	15

Index 17

AccuModel

Evaluation Of Sex-prediction Accuracy

Description

Testing and visualization of the accuracy of different sex prediction models using the confusionMatrix and roc curves

Usage

```
AccuModel(
    f,
    x,
    y,
    Sex = 1,
    Pop = 2,
    byPop = TRUE,
    method = "lda",
    plot = FALSE,
    cutoff = 0.5,
    ref. = "F",
    post. = "M",
    ...
)
```

Arguments

Formula in the form groups $\sim x1 + x2 + \dots$ The grouping factor is placed to the left hand side while the numerical measurements are placed to the right hand side

Data frame to be fitted to the model

y New data frame to be tested

AccuModel 3

Sex	Number of the column containing sex 'M' for male and 'F' for female, Default:
	1
Pop	Number of the column containing populations' names, Default: 2
byPop	Logical; if TRUE returns the accuracy in different populations of the new data
	frame, Default: TRUE.
method	Different methods of modeling see details, Default:'lda'
plot	Logical; if TRUE returns an roc curve for model accuracy, Default: FALSE
cutoff	cutoff value when using logistic regression, Default: 0.5
ref.	reference category in the grouping factor, Default: 'F'
post.	positive category in the grouping factor, Default: 'M'
	additional arguments that can passed to modeling, confusionMatrix function and
	roc curve generated by geom_roc

Details

Tibble/data frames to be entered as input need to be arranged in a similar manner to Howells dataset. Methods used for modeling are:

```
    Ida linear discriminant analysis
    qda quadratic discriminant analysis
    rda regularized discriminant analysis
    glm binomial logistic regression
    raf random forest
```

Value

Visual and numerical accuracy parameters for the tested model

See Also

lda,qda rdarandomForest GeomRoc confusionMatrix

```
#Splitting Howells dataset into training and test datasets
smp_size <- floor(0.5 * nrow(Howells))
set.seed(123)
train_ind <- sample(seq_len(nrow(Howells)), size = smp_size)
train <- Howells[train_ind, ]
test <- Howells[-train_ind, ]
library(TestDimorph)
AccuModel(
Sex ~ GOL + NOL + BNL,
x = train,
y = test,
byPop = FALSE,
method = "lda",
plot = FALSE
)</pre>
```

4 aovSS

aovSS

Sex-Specific One-way ANOVA From Summary statistics

Description

Calculates sex specific one-way ANOVA followed by from summary statistics.

Usage

```
aovSS(
    X,
    Pop = 1,
    pairwise = TRUE,
    letters = FALSE,
    es = FALSE,
    digits = 4,
    method = "hsd",
    sig.level = 0.05
)
```

Arguments

X	Tibble/data frame containing summary statistics, Default: NULL
Pop	Number of the column containing populations' names, Default: 1
pairwise	Logical; if TRUE runs multiple pairwise comparisons on different populations using post hoc test of choice, Default: TRUE
letters	Logical; if TRUE returns letters for pairwise comparisons where significantly different populations are given different letters, Default: FALSE'
es	Logical; if TRUE effect size is included in the output, Default: FALSE
digits	Number of significant digits, Default: 4
method	Type of post hoc test implemented by PostHocTest, Default: 'hsd'
sig.level	Critical p.value, Default: 0.05

Details

Data is entered as a tibble/data frame of summary statistics where the column containing population names is chosen by position (first by default), other columns of summary data should have specific names (case sensitive) similar to baboon.parms_df

Value

Sex specific ANOVA tables and pairwise comparisons in tidy format.

See Also

PostHocTest

baboon.parms_df 5

Examples

```
# Comparisons of femur head diameter in four populations
  library(TestDimorph)
m < -c(150.00, 82.00, 36.00, 34.00)
f <- c(150.00, 58.00, 34.00, 24.00)
M.mu \leftarrow c(49.39, 48.33, 46.99, 45.20)
F.mu \leftarrow c(42.91, 42.89, 42.44, 40.90)
M.sdev \leftarrow c(3.01, 2.53, 2.47, 2.00)
F.sdev \leftarrow c(2.90, 2.84, 2.26, 2.90)
df <- cbind.data.frame(</pre>
  Pop = c('Turkish', 'Bulgarian', 'Greek', 'Portuguese '),
  m,
  f,
  M.mu,
  F.mu,
  M.sdev,
  F.sdev,
  stringsAsFactors = TRUE
aovSS(x = df)
```

baboon.parms_df

Summary statistics of baboon data collection-list

Description

A dataset containing summary statistics for low density lipoprotein (LDL) and apolipoprotein-B (apo-B) levels in 604 baboons measured on two different diets: a basal diet 'chow' and a high cholesterol, saturated fat diet 'pink' (HCSF). The baboons were classified into one of three subspecies (Papio hamadryas anubis, P.h. cynocephalus, or anubistcynocephalus hybrid). Each animal was measured on each of the two diets.

Usage

baboon.parms_df

Format

A data frame with 12 rows and 8 variables

Trait Type of apolipoprotein

Sub Type of species

M.mu Means of lipoproteins in different species for males

F.mu Means of lipoproteins in different species for females

m Male sample sizes

f Female sample sizes

M.sdev Standard deviations for males

F.sdev Standard deviations for females

6 baboon.parms_list

Note

The baboon data collection were supported by NIH grant HL28972 and NIH contract HV53030 to the Southwest Foundation for Biomedical Research (Now: Texas Biomedical Research Institute), and funds from the Southwest Foundation for Biomedical Research

References

Konigsberg LW (1991). "An historical note on the t-test for differences in sexual dimorphism between populations." *American journal of physical anthropology*, **84**(1), 93–96.

baboon.parms_list

Summary statistics of baboon data collection-data frame

Description

A dataset containing summary statistics for low density lipoprotein (LDL) and apolipoprotein-B (apo-B) levels in 604 baboons measured on two different diets: a basal diet 'chow' and a high cholesterol, saturated fat diet 'pink' (HCSF). The baboons were classified into one of three subspecies (Papio hamadryas anubis, P.h. cynocephalus, or anubistcynocephalus hybrid). Each animal was measured on each of the two diets.

Usage

baboon.parms_list

Format

A list of 7 matrices.

R.res pooled within group correlation matrix

M.mu Means of lipoproteins in different species for males

F.mu Means of lipoproteins in different species for females

m Male sample sizes

f Female sample sizes

M.sdev Standard deviations for males

F.sdev Standard deviations for females

Note

The baboon data collection were supported by NIH grant HL28972 and NIH contract HV53030 to the Southwest Foundation for Biomedical Research (Now: Texas Biomedical Research Institute), and funds from the Southwest Foundation for Biomedical Research

References

Konigsberg LW (1991). "An historical note on the t-test for differences in sexual dimorphism between populations." *American journal of physical anthropology*, **84**(1), 93–96.

extract_sum 7

extract_sum	Summary Statistics Extraction	

Description

Extract summary data needed for other functions from raw data.

Usage

```
extract_sum(x, Sex = 1, Pop = 2, firstX = 3, test = 1, run = TRUE, ...)
```

Arguments

X	Tibble/data frame containing raw data.
Sex	Number of the column containing sex 'M' for male and 'F' for female, Default: 1
Pop	Number of the column containing populations' names, Default: 2
firstX	Number of column containing measured parameters (First of multiple in case of multivariate analysis), Default: 3
test	1 for Greene t-test Tg, 2 for univariate, 3 for sex specific ANOVA aovSS, and 4 for multivariate, Default: 1
run	Logical; if TRUE runs the corresponding test after data extraction, Default: TRUE
	Additional arguments that could be passed to the test of choice

Details

Raw data is entered in a wide format tibble/data frame similar to Howells data set. The first two columns contain sex Sex (M for male and F for female) (Default: 1) and populations' names Pop (Default: 2). Starting from firstX column (Default: 3), measured parameters are entered each in a separate column.

Value

Input for other functions.

```
# for multivariate test
library(TestDimorph)
extract_sum(Howells,test=4)
# for univariate test on a specific parameter
library(TestDimorph)
extract_sum(Howells, test = 2,firstX = 4)
```

8 Howells

Howells

The Howells' craniometric data

Description

A subset of a dataset that consists of 82 craniometric measurements taken from approximately two thousands and half human crania from 28 geographically diverse populations.

Usage

Howells

Format

A data frame with 441 rows and 10 variables:

Sex 'M' for male and 'F' for female

Pop Populations' names

GOL Glabello occipital length

NOL Nasio occipital length

BNL Bastion nasion length

BBH Basion bregma height

XCB Maximum cranial breadth

XFB Max frontal breadth

ZYB Bizygomatic breadth

AUB Biauricular breadth

References

Howells WW (1995). "Who's who in skulls: ethnic identification of crania from measurements." *Papers of the Peabody Museum of Archaeology and Ethnology*, **82**.

Howells WW (1989). "Skull shapes and the map: craniometric analyses in the dispersion of modern Homo." *Papers of the Peabody Museum of Archaeology and Ethnology*, **79**.

Howells WW (1996). "Howells' craniometric data on the internet." *American Journal of Physical Anthropology: The Official Publication of the American Association of Physical Anthropologists*, **101**(3), 441–442.

Howells WW (1973). "Cranial variation in man: a study by multivariate analysis of patterns of difference among recent human populations." *Peabody Museum of Archaeology and Ethnology, Harvard Univ.*.

multivariate 9

multivariate Multivariate Analysis Of Sexual Dimorphism

Description

Multivariate extension of Greene t-test Tg

Usage

```
multivariate(
    x,
    R.res = NULL,
    Parms = 1,
    Pop = 2,
    es = FALSE,
    univariate = FALSE,
    padjust = "none",
    ...,
    lower.tail = FALSE,
    digits = 4
)
```

Arguments

X	Tibble/Data frame or list containing summary statistics for multiple parameters measured in both sexes in two or more populations.
R.res	Pooled within correlational matrix, Default: NULL
Parms	Number of the column containing names of measured parameters, Default: 1
Pop	Number of the column containing populations' names, Default: 2
es	Logical; if TRUE effect size is included in the output, Default: FALSE
univariate	Logical; if TRUE conducts multiple univariate analyses on different parameters separately, Default: FALSE
padjust	Method of p.value adjustment for multiple comparisons following p.adjust.methods, Default: 'none'
	Additional arguments that could be passed to the univariate function
lower.tail	Logical; if TRUE probabilities are $P[X \le x]$, otherwise, $P[X > x]$., Default: FALSE
digits	Number of significant digits, Default: 4

Details

Data can be entered either as a tibble/data frame of summary statistics as in baboon.parms_df . In that case the pooled within correlational matrix R. res should be entered as a separate argument as in R. Another acceptable format is a named list of matrices containing different summary statistics as

10 R

well as the correlational matrix as in baboon.parms_list. By setting the option univariate to TRUE, multiple ANOVAs can be run on each parameter independently with the required p value correction using p.adjust.methods.

Value

Tibble of MANOVA results

References

Konigsberg LW (1991). "An historical note on the t-test for differences in sexual dimorphism between populations." *American journal of physical anthropology*, **84**(1), 93–96.

Examples

```
# x is a data frame with separate correlational matrix
library(TestDimorph)
multivariate(baboon.parms_df, R.res = R)
# x is a list with the correlational matrix included
library(TestDimorph)
multivariate(baboon.parms_list, univariate = TRUE, padjust = 'bonferroni')
```

R

Pooled within group correlation matrix for baboon data

Description

Pooled within group correlation matrix for baboon data

Usage

R

Format

A 4*4 numerical matrix

RawGen 11

RawGen	Raw Data Generation By Log-normal Or Truncated Distribution
--------	---

Description

Generates raw data from summary statistics using uni/multivariate log/truncated normal distribution

Usage

```
RawGen(
    x,
    Parms = 1,
    Pop = 2,
    R.res = NULL,
    dist = "trunc",
    lower = -Inf,
    upper = Inf,
    format = "wide",
    complete_cases = FALSE
)
```

Arguments

X	Tibble/Data frame or list containing summary statistics for multiple parameters measured in both sexes in two or more populations.
Parms	Number of the column containing names of measured parameters, Default: 1
Pop	Number of the column containing populations' names, Default: 2
R.res	Pooled within correlational matrix, Default: NULL
dist	univariate distribution used for data generation either log for log-normal or trunc for truncated, Default: 'trunc'
lower	vector of lower bounds, Default: -Inf
upper	vector of upper bounds, Default: Inf
format	form of the resultant tibble either 'long' or 'wide', Default: 'wide'
complete_cases	Logical; if TRUE rows with missing values will be removed, Default: FALSE

Details

If data generation is desired using multivariate distribution data is entered in the form of a list of summary statistics and pooled within correlational matrix as in baboon.parms_list, or the summary statistics are entered separately in the form of a data frame/tibble as in baboon.parms_df with a separate correlational matrix as in R. If data frame/tibble is entered without a correlational matrix, data generation is carried out using univariate distribution. N.B: Transformation of raw summary data to logged data is only possible for univariate distribution and if multivariate log-normal distribution is desired logged values should be entered directly with dist set to trunc.

Tg

Value

tibble of raw data

References

Hussein MHA, Abulnoor BAE (2019). "Sex estimation of femur using simulated metapopulation Database: a preliminary investigation." *Forensic Science International: Reports*. ISSN 2665-9107, doi: 10.1016/j.fsir.2019.100009.

Examples

```
# Data generation using univariate distribution
library(TestDimorph)
RawGen(baboon.parms_df)
# Data generation using multivariate distribution
library(TestDimorph)
RawGen(baboon.parms_list)
```

Tg

Greene t-test of Sexual Dimorphism

Description

Calculation and visualization of the differences in degree sexual dimorphism between two populations using summary statistics as input.

Usage

```
Tg(
  x = NULL,
 Pop = 1,
 es = FALSE,
 plot = FALSE,
  alternative = "two.sided",
  padjust = "none",
  letters = FALSE,
 digits = 4,
  sig.level = 0.05,
 N = NULL,
 m = NULL,
 m2 = NULL
  f = NULL,
  f2 = NULL,
 M.mu = NULL,
 M.mu2 = NULL,
  F.mu = NULL,
```

Tg 13

```
F.mu2 = NULL,
M.sdev = NULL,
M.sdev2 = NULL,
F.sdev = NULL,
F.sdev2 = NULL)
```

Arguments

X	Tibble/data frame containing summary statistics, Default: NULL
Pop	Number of the column containing populations' names, Default: 1
es	Logical; if TRUE effect size is included in the output , Default: FALSE
plot	Logical; if TRUE graphical matrix of p-values, Default: TRUE
	additional arguments that can be passed to corrplot function.
alternative	a character string specifying the alternative hypothesis, must be one of "two.sided", "greater" or "less", Default: 'two.sided'
padjust	Method of p.value adjustment for multiple comparisons following p.adjust.methods, Default: 'none'
letters	Logical; if TRUE returns letters for pairwise comparisons where significantly different populations are given different letters, Default: FALSE'
digits	Number of significant digits, Default: 4
sig.level	Critical p.value, Default: 0.05
N	Number of pairwise comparisons for p.adjust.methods, if left NULL it will follow the formula $n(n-1)/2$ where n is the number of populations, Default: NULL
m	Number of male sample size in the first population, Default: NULL
m2	Number of male sample size in the second population, Default: NULL
f	Number of female sample size in the first population, Default: NULL
f2	Number of female sample size in the second population, Default: NULL
M.mu	Means for males in the first population, Default: NULL
M.mu2	Means for males in the second population, Default: NULL
F.mu	Means for females in the first population, Default: NULL
F.mu2	Means for females in the second population, Default: NULL
M.sdev	Standard deviation for males in the first population, Default: NULL
M.sdev2	Standard deviation for males in the second population, Default: NULL
F.sdev	Standard deviation for females in the first population, Default: NULL
F.sdev2	Standard deviation for females in the second population, Default: NULL

Details

Summary statistics can be entered directly as arguments in case of comparing two populations or as a tibble/data frame of summary statistics where the column containing population names is chosen by position (first by default), other columns of summary data should have specific names (case sensitive) similar to baboon.parms_df

Tg

Value

Tibble of t.test results

References

Greene DL (1989). "Comparison of t-tests for differences in sexual dimorphism between populations." *American Journal of Physical Anthropology*, **79**(1), 121–125. Timonov P, Fasova A, Radoinova D, Alexandrov A, Delev D (2014). "A study of sexual dimorphism in the femur among contemporary Bulgarian population." *Eurasian Journal of Anthropology*, **5**(2), 46–53. Gulhan O, Harrison K, Kiris A (2015). "A new computer-tomography-based method of sex estimation: Development of Turkish population-specific standards." *Forensic science international*, **255**, 2–8.

See Also

multcompLetters corrplot

```
#Comparisons of femur head diameter in four populations
library(TestDimorph)
m < -c(150.00, 82.00, 36.00, 34.00)
f <- c(150.00, 58.00, 34.00, 24.00)
M.mu \leftarrow c(49.39, 48.33, 46.99, 45.20)
F.mu \leftarrow c(42.91, 42.89, 42.44, 40.90)
M.sdev <- c(3.01, 2.53, 2.47, 2.00)
F.sdev \leftarrow c(2.90, 2.84, 2.26, 2.90)
df <- cbind.data.frame(</pre>
  Pop = c('Turkish', 'Bulgarian', 'Greek', 'Portuguese '),
  f,
  M.mu,
  F.mu,
  M.sdev,
  F.sdev,
  stringsAsFactors = TRUE
)
Tg(
   df,
   plot = TRUE,
   method = 'ellipse',
  type = 'lower',
   col = c(
        '#AEB6E5',
        '#B1A0DB',
        '#B788CD',
        '#BC6EB9',
        '#BC569E',
        '#B6407D',
        '#A93154'
   ),
   tl.cex = 0.8,
```

univariate 15

univariate

Univariate Analysis Of Sexual Dimorphism

Description

Calculation and visualization of the differences in degree sexual dimorphism between multiple populations using a modified one-way ANOVA and summary statistics as input

Usage

```
univariate(
    x,
    Pop = 1,
    es = FALSE,
    pairwise = FALSE,
    padjust = "none",
    ...,
    lower.tail = FALSE,
    N = NULL,
    digits = 4
)
```

Arguments

Χ	Tibble/data frame containing summary statistics, Default: NULL
Pop	Number of the column containing populations' names, Default: 1
es	Logical; if TRUE effect size is included in the output, Default: FALSE
pairwise	Logical; if TRUE runs multiple pairwise comparisons on different populations using Tg test, Default: FALSE
padjust	Method of p.value adjustment for multiple comparisons following p.adjust.methods, Default: 'none'
	Additional arguments that could be passed to the Tg function
lower.tail	Logical; if TRUE probabilities are $P[X \le x]$, otherwise, $P[X > x]$., Default: FALSE
N	Number of pairwise comparisons for p.adjust.methods, if left NULL it will follow the formula $n(n-1)/2$ where n is the number of populations, Default: NULL
digits	Number of significant digits, Default: 4

16 univariate

Details

Data is entered as a tibble/data frame of summary statistics where the column containing population names is chosen by position (first by default), other columns of summary data should have specific names (case sensitive) similar to baboon.parms_df

Value

Tibble of ANOVA results

References

Konigsberg LW (1991). "An historical note on the t-test for differences in sexual dimorphism between populations." *American journal of physical anthropology*, **84**(1), 93–96. Timonov P, Fasova A, Radoinova D, Alexandrov A, Delev D (2014). "A study of sexual dimorphism in the femur among contemporary Bulgarian population." *Eurasian Journal of Anthropology*, **5**(2), 46–53. Curate F, Umbelino C, Perinha A, Nogueira C, Silva AM, Cunha E (2017). "Sex determination from the femur in Portuguese populations with classical and machine-learning classifiers." *Journal of forensic and legal medicine*, **52**, 75–81. Kranioti EF, Vorniotakis N, Galiatsou C, Iscan MY, Michalodimitrakis M (2009). "Sex identification and software development using digital femoral head radiographs." *Forensic science international*, **189**(1-3), 113–e1. Gulhan O, Harrison K, Kiris A (2015). "A new computer-tomography-based method of sex estimation: Development of Turkish population-specific standards." *Forensic science international*, **255**, 2–8.

```
# Comparisons of femur head diameter in four populations
library(TestDimorph)
m <- c(150.00, 82.00, 36.00, 34.00)
f <- c(150.00, 58.00, 34.00, 24.00)
M.mu \leftarrow c(49.39, 48.33, 46.99, 45.20)
F.mu <- c(42.91, 42.89, 42.44, 40.90)
M.sdev \leftarrow c(3.01, 2.53, 2.47, 2.00)
F.sdev \leftarrow c(2.90, 2.84, 2.26, 2.90)
df <-
cbind.data.frame(
   Pop = c('Turkish', 'Bulgarian', 'Greek', 'Portuguese '),
   m,
   f,
   M.mu,
   F.mu,
   M.sdev,
   F.sdev,
   stringsAsFactors = TRUE
)
univariate(df, pairwise = TRUE, padjust = 'bonferroni')
```

Index

```
*Topic datasets
    baboon.parms_df, 5
    {\tt baboon.parms\_list}, \\ 6
    Howells, 8
    R, 10
AccuModel, 2
aovSS, 4, 7
baboon.parms_df, 4, 5, 9, 11, 13, 16
baboon.parms_list, 6, 10, 11
confusionMatrix, 2, 3
corrplot, 13, 14
extract\_sum, 7
geom_roc, 3
\mathsf{GeomRoc}, \boldsymbol{3}
glm, 3
Howells, 3, 7, 8
1da, 3
multcompLetters, 14
multivariate, 7, 9
p.adjust.methods, 9, 10, 13, 15
PostHocTest, 4
qda, 3
R, 9, 10, 11
raf, 3
randomForest, 3
RawGen, 11
rda, 3
Tg, 7, 9, 12, 15
univariate, 7, 9, 15
```