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1 Introduction

TRAMPR is an R package for matching terminal restriction fragment length polymorphism (TRFLP)
profiles between unknown samples and a database of knowns. TRAMPR facilitates analysis of many
unknown profiles at once, and provides tools for working directly with electrophoresis output
through to generating summaries suitable for community analyses with R’s rich set of statistical
functions. TRAMPR also resolves the issues of multiple TRFLP profiles within a species, and shared
TRFLP profiles across species.

This document illustrates a sample session using TRAMPR, covering loading data, manipulating
a database of known profiles, running an analysis, and extracting and manipulating results for
further community analysis. Both TRAMPR and this document assume some knowledge of R. In
particular, you should be familiar with“An Introduction to R”(included with your R distribution).

To get started, start R, then load the TRAMPR package:

> library(TRAMPR)

2 Loading data

The TRAMPR package includes functions to help convert data from Applied Biosystems Gene Mapper
(ABI) output format into objects suitable for analysis (“TRAMPsamples” objects). The procedure
is documented in the help file ?load.abi, and a worked example follows. Alternatively, data can
be read from other formats if you reformat it manually; the help page ?TRAMPsamples explains the
required format. We welcome contributions for routines for importing data from other formats.

We have included a demonstration data set with TRAMPR. To use this, copy all the files begining
with “demo_samples_abi” from the directory where TRAMPR is installed into your current working
directory. The required files are:

� demo_samples_abi.txt

� demo_samples_abi_template_full.csv

� demo_samples_abi_info_full.csv

� demo_samples_abi_soilcore.csv

These can be copied from within R, by typing:

> files <- c("demo_samples_abi.txt",

+ "demo_samples_abi_template_full.csv",

+ "demo_samples_abi_info_full.csv",

+ "demo_samples_abi_soilcore.csv")

> file.copy(system.file(files, package="TRAMPR"), ".")
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Next, create the “template” file. Template files are required to record which enzymes were used
for each run, since that is not included in the ABI output, and to group together separate runs (typ-
ically different enzymes) that apply to the same individual. The function load.abi.create.template

will create a template that contains all the unique file names found in the ABI file (as sam-

ple.file.name), and blank columns titled enzyme and sample.index.

> load.abi.create.template("demo_samples_abi.txt")

Saved template file in /tmp/RtmpwCAXZO/Rbuild9f2491cfac/TRAMPR/vignettes/demo_samples_abi_template.csv

The enzyme and sample.index columns need filling in, which can be done in Excel, or an-
other spreadsheet program. The sample.index column links sample.file.name back to an in-
dividual sample; multiple sample.file.names that share sample.index values come from the
same individual sample. It is best to use positive integers here, but if you enter strings (e.g.
a1, b1) these will be converted to integers for you (see the help file ?load.abi). The file
demo_samples_abi_template_full.csv contains a filled in version of the template file, so we
will use that.

> file.rename("demo_samples_abi_template_full.csv",

+ "demo_samples_abi_template.csv")

Then, create an“info”file. This is optional, but useful if you want to associate extra information
against your samples. The function load.abi.create.info will create an info file that contains
all the unique values of sample.index, and an empty column titled species. The species column
can be filled in where the species is known (e.g. from collections of sporocarps). Any additional
columns may be added.

> load.abi.create.info("demo_samples_abi.txt")

Saved info file in /tmp/RtmpwCAXZO/Rbuild9f2491cfac/TRAMPR/vignettes/demo_samples_abi_info.csv

The file demo_samples_abi_info_full.csv contains a filled in version of the info file, so we
will use that.

> file.rename("demo_samples_abi_info_full.csv",

+ "demo_samples_abi_info.csv")

We added a column soilcore.fk, which indicates which soil core the samples came from. An
additional csv file demo_samples_abi_soilcore.csv contains information about the soil cores
(forest type, location, etc.). We read that data in so that this can be added into the TRAMPsamples
object:

> soilcore <- read.csv("demo_samples_abi_soilcore.csv", stringsAsFactors = TRUE)

The last thing that needs specifying is how to interpret the dye column in the ABI output. We
assume that dyes can be consistently translated to primers (i.e. a particular dye always corresponds
to the same primer). The list below indicates that the dye "B" refers to the primer “ITS1F”, while
the dyes "G" and "Y" both refer to the primer “ITS4”.

> primer.translate <- list(ITS1F="B", ITS4=c("G", "Y"))

Now, use load.abi to construct a TRAMPsamples object containing all the samples. Because
we pass soilcore as a named argument, the resulting TRAMPsamples object will have a soilcore

element. Note that we are passing the soilcore object (which is a data frame) rather than the
filename.

> demo.samples <- load.abi("demo_samples_abi.txt",

+ primer.translate=primer.translate,

+ soilcore=soilcore)

Found info file at demo_samples_abi_info.csv
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Figure 1: A plot summarising the knowns database demo.knowns. The panels (from left to right)
illustrate: (1) the clutering of knowns based on TRFLP profile similarity, (2) known names, and
group indices, and (3) the TRFLP profile for each individual (different colours indicate different
enzyme/primer combinations).

2.1 Knowns

TRAMPR comes with a set of demonstration “knowns”, which we will use here. Saving and managing
knowns database is covered later in this document (Section 5). To load the demonstration knowns,
use:

> data(demo.knowns)

TRAMPR allows species in the knowns database to have multiple profiles. The TRFLP profile
of a single species can have variation in peak sizes due to DNA sequence variation; profiles for
different individuals may be slightly or completely different. Conversely, two species may have
indistinguishable TRFLP profiles. If knows are not grouped to take account of this, the number
of knowns per sample is likely to be overestimated. TRAMPR groups knowns where their TRFLP
profiles are very similar (based on clustering), or where knowns in the database share the same
name. Plotting a knowns database illustrates how grouping occurs (see Figure 1 for output).

> plot(demo.knowns)
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Figure 2: A plot showing the fit of sample 565 against a database of knowns. The sample matches
nine knowns, and many unmatched peaks remain. The square points indicate matches between
the knowns (listed on the y axis of the top panel) and the peaks of the sample. The peak profile
across four enzyme/primer combinations is displayed in the bottom four panels.

3 Find matches with TRAMP

Depending on the size of the samples and knowns databases, and the speed of your computer,
running TRAMP may be slow. Optional arguments to TRAMP control the strictness of the match (e.g.
number of base pairs difference between sample and knowns profiles); see the help file ?TRAMP for
more information. To run TRAMP, run:

> fit <- TRAMP(demo.samples, demo.knowns)

A fit may be plotted to inspect the match. For example, to see the fit for sample 565, do (See
Figure 2 for output):

> plot(fit, 565)

You can export a PDF containing one fit per page:

> pdf("TRAMP_fits.pdf")

> plot(fit)

> dev.off()

The main output of a TRAMP analysis is a presence/absence matrix, produced by summary:
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> m <- summary(fit)

> m[1:5, 1:5]

known

sample 674 733 734 735 737

101 FALSE FALSE FALSE FALSE FALSE

102 FALSE FALSE FALSE FALSE FALSE

110 TRUE FALSE FALSE FALSE FALSE

111 FALSE FALSE FALSE FALSE FALSE

117 FALSE FALSE TRUE FALSE FALSE

TRAMPR can also use “unknown knowns”; these are patterns that repeatedly occur in TRFLP
data, but for which a species is currently unidentified. The function build.knowns attempts to
spot good “unknown knowns” in your data set:

> knowns.unk <- build.knowns(demo.samples)

build.knowns is also useful where your sample data include profiles from sporocarps. You
can use the argument restrict=TRUE, and relax other conditions to generate a knowns database
from only your sporocarps (see the help page ?build.knowns) for more information. (The com-
mand below will not run on the demonstration data provided, as none of the samples come from
sporocarps.)

> knowns.sporocarps <- build.knowns(demo.samples, restrict=TRUE,

+ min.ratio=0)

The new knowns database can be added to either the TRAMP object or the TRAMPknowns object.
To add the new knowns to the TRAMP object:

> fit <- combine(fit, knowns.unk)

Alternatively, to add the new knowns to the TRAMPknowns object:

> demo.knowns <- combine(demo.knowns, knowns.unk)

These are equivalent in their actions on the knowns. The knowns element of fit and demo.knowns

will be the same:

> identical(demo.knowns, fit$knowns)

[1] TRUE

The main difference is that if the knowns are added to the TRAMP object, then the fit will be
rerun automatically. You can always extract the modified knowns from a TRAMP object:

> demo.knowns <- fit$knowns

build.knowns is fairly conservative and may miss some potential “unknown knowns”. In
particular, “split peaks”, where the ABI program identifes two large “peaks” occuring within a few
base pairs of each other where only one true peak exists, will often be missed. You can plot the
samples that were not added to the knowns database by build.knowns like this:

> samples <- setdiff(labels(demo.samples), labels(demo.knowns))

> plot(fit, samples)

Sample 221 shows a clear split peak for BsuRI/ITS1F, and may be a good potential known:

> plot(fit, 221)
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or

> plot(demo.samples, 221)

will show you the profile (not shown here). We can add this to the database using the add.known
function. As with combine, this can be used directly on the TRAMP object or on a knowns database.
We will use the TRAMP object again (this generates a warning, since there are multiple peaks for
BsuRI/ITS1F).

> fit <- add.known(fit, 221, prompt=FALSE)

Using the summary function, we can see which samples match this new known:

> names(which(summary(fit)[,"221"]))

[1] "221" "224" "310" "311" "339" "579" "580" "583" "585" "586"

Plotting the last of these shows the new known plus two Amanita muscaria knowns (and several
other “unknown knowns” from running build.knowns) matching the sample (see Figure 3).

> plot(fit, 586)

This plot illustrates the need for grouping; since there are multiple entries for Amanita mus-
caria, it will be counted as a match twice. Using grouped=TRUE, we can group TRFLP profiles
that are very similar or that share species names:

> plot(fit, 586, grouped=TRUE)

Output is shown in Figure 4; with grouping, the matches collapse into two separate groups.
Unknown sample 221 groups within the Amanita muscaria group. By allowing multiple entries
for single species, we can keep the error size used for matching low (there is a discussion of this in
the help file ?group.knowns).

The update.TRAMP function can also interactively add knowns. See the help file (?update.TRAMP),
or just try (output not shown):

> fit <- update(fit)

4 Using TRAMP results

Here we demonstrate a simple principle components analysis of the community composition of the
sample dataset. [This is not neccesarily the appropriate analysis type for this kind of data, and
we do not endorse it.] Once the presence/absence matrix is extracted from the TRAMP object, this
uses just built-in R functions. First, we construct a presence/absence matrix, and restrict this to
knowns where at least one sample matches. We are using the grouped presence/absence matrix
to include only genuinely different species.

> m <- summary(fit, grouped=TRUE)

> m <- m[, colSums(m) > 0]

Next, aggregate the results by soilcore. Several samples came from each soil core, and a known
is scored as being present if it is present in any of the samples. This produces a much smaller
matrix (see output in Figure 5).

> cores <- fit$samples$info$soilcore.fk

> m.bycore <- aggregate(m, by=list(cores=cores), any)

> rownames(m.bycore) <- m.bycore$cores

> m.bycore <- m.bycore[-1]

> m.bycore
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Figure 3: A plot showing the fit of sample “586” against a database of knowns, showing the sam-
ple matching Amanita muscaria, plus several “unknown knowns”, including one added manually
(“Unknown sample: 221”). In this case, the Unknown sample 221 appears to be a new Amanita
muscaria, and this is confirmed by grouping (see Figure 4).
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Figure 4: A plot showing the fit of sample“586”against a database of knowns, but with the knowns
grouped (compare with Figure 3). The unknown known has grouped with Amanita muscaria.
Another group of “unknown knowns” also matches this sample.
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1 2 3 4 5 6 7 8 9 10 11 19

2 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

3 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

4 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE

5 TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE

6 TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE TRUE

12 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

13 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

14 FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

15 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

16 FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

17 FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE FALSE

18 TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

19 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

20 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

21 FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

32 FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE

33 FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

34 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

35 FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

36 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

20 22 23 24 28 29

2 FALSE FALSE TRUE FALSE FALSE TRUE

3 FALSE FALSE FALSE TRUE FALSE FALSE

4 FALSE FALSE FALSE FALSE FALSE FALSE

5 TRUE FALSE FALSE FALSE FALSE FALSE

6 FALSE TRUE FALSE FALSE FALSE FALSE

12 FALSE FALSE FALSE FALSE FALSE FALSE

13 FALSE FALSE FALSE FALSE FALSE FALSE

14 FALSE FALSE FALSE FALSE FALSE FALSE

15 FALSE FALSE FALSE FALSE FALSE FALSE

16 FALSE FALSE FALSE FALSE FALSE FALSE

17 FALSE TRUE FALSE FALSE FALSE FALSE

18 FALSE TRUE FALSE FALSE FALSE FALSE

19 FALSE FALSE FALSE FALSE FALSE FALSE

20 FALSE TRUE FALSE FALSE TRUE FALSE

21 FALSE FALSE FALSE FALSE FALSE FALSE

32 FALSE FALSE FALSE FALSE FALSE FALSE

33 FALSE FALSE FALSE FALSE FALSE FALSE

34 FALSE FALSE FALSE FALSE FALSE FALSE

35 FALSE FALSE FALSE FALSE FALSE FALSE

36 FALSE FALSE FALSE FALSE FALSE FALSE

Figure 5: Presence/absence matrix for the soil core data. Rows represent different soil cores, with
row names corresponding to soilcore.pk values in the soilcore table. Columns correspond to
groups of knowns, each of which may represent multiple knowns entries.
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Figure 6: Rank-abundance diagram for 18 species present across 20 soilcores.

(The m.bycore[-1] line removes an index column that aggregate creates).
Now, determine which vegetation type applies to each row in the presence/absence matrix.

> core.veg <- soilcore$vegetation[match(rownames(m.bycore),

+ soilcore$soilcore.pk)]

Next, create a rank-abundance diagram of the data (see Figure 6 for output).

> sp.freq <- sort(colSums(m.bycore), decreasing=TRUE)

> plot(sp.freq, xlab="Species rank", ylab="Species frequency", type="o",

+ pch=19)

You can also calculate mean species richness across the different vegetation types:

> tapply(rowSums(m.bycore), core.veg, mean)

Nothofagus solandri Pinus contorta

3.0 1.5

Finally, run a principle components analysis, and create a plot of the first two principle axes.
To distinguish between the two different forest types, we determine the vegetation type for each
core, and create a vector of colours so that cores from Nothofagus solandri stands are blue circles
and cores from Pinus contorta stands are red crosses (see Figure 7 for output).
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Figure 7: Principle components analysis of soil community data. Different points represent differ-
ent soil cores, and colours distinguish forest types. [We are not endorsing PCA as an appropriate
analysis for these data.]

> pca <- prcomp(m.bycore)

> col <- c("blue", "red")[as.integer(core.veg)]

> pch <- c(1, 3)[as.integer(core.veg)]

> plot(pca$x[,1], pca$x[,2], col=col, pch=pch, xlab="PC1", ylab="PC2")

> legend("top", levels(core.veg), col=c("blue", "red"), pch=c(1, 3))

5 Managing and saving knowns

We can save the modified knowns database in two ways. If you want to edit any aspect of the
knowns (e.g. species names), or update an external database, use write.TRAMPknowns:

> write.TRAMPknowns(fit$knowns, "my_knowns")

This will create files my_knowns_info.csv and my_knowns_data.csv, which contain the infor-
mation required to build the knowns. The files are documented in ?write.TRAMPknowns, and can
be edited in Excel1. The knowns can be reloaded in a future R session by:

1If editing in Excel, when saving it will warn you about losing information when saving as a csv file – ignore
these warnings, as TRAMP requires that the data are saved as csv.
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> my.knowns <- read.TRAMPknowns("my_knowns")

Alternatively, knowns can be saved like any other R object, using save and load. To save your
knowns, do:

> my.knowns <- fit$knowns

> save(my.knowns, file="my_knowns.Rdata")

This will create a single file my_knowns.Rdata, which is a non-human readable Rdata file
containing the knowns object. Note that the object saved must be an object named in the global
environment, so we must extract the knowns first.

To reload this in a future R session, do:

> load("my_knowns.Rdata")

This will create an object called my.knowns in the global environment.

6 Concluding remarks

This is a brief introduction, but which should cover most of the functionality of the TRAMPR package.
Detailed information can be found in the reference manual; type library(help=TRAMPR) for a list
of topics. In particular, the behaviour of most functions can be altered by changing optional
arguments.
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