Package 'TBSSurvival'

January 5, 2017

Version 1.3

Date 2017-01-05

Title Survival Analysis using a Transform-Both-Sides Model

Author Adriano Polpo <polpo@ufscar.br>, Cassio de Campos <cassiopc@acm.org>, D. Sinha <sinhad@stat.fsu.edu>, Stuart Lipsitz <slipsitz@partners.org>, Jianchang Lin <jlin@stat.fsu.edu>

Maintainer Cassio de Campos <cassiopc@acm.org>

Depends R (>= 3.3.0)

Imports normalp, survival, mcmc, R.utils, coda, Rsolnp, BMS

Description Functions to perform the reliability/survival analysis using a parametric Transform-both-sides (TBS) model.

License GPL (>= 3)

Repository CRAN

URL http://code.google.com/p/tbssurvival/

NeedsCompilation no

Date/Publication 2017-01-05 14:45:36

R topics documented:

alloyT7987	2
dist.error	3
tbs	4
tbs.survreg.be	5
tbs.survreg.mle	7

10

Index

alloyT7987

Description

Alloy - T7987: data extracted from Meeker and Escobar (1998), pp. 131.

Value

The two data variables are:

time	Time of failure of the specimen.
delta	censoring indication (0 means right-censored, 1 means no censoring).

References

Meeker, W. and Escobar, L. (1998) *Statistical Methods for Reliability Data*. Willey, ISBN 0-471-14328-6.

See Also

tbs.survreg.mle

Examples

See \link{tbs.survreg.mle} and \link{tbs.survreg.be}. ## The data set looks like this: ## time delta ## 94 1 ## 96 1 ## 99 1 ## 99 1 ## 104 1 ## 108 1 ## 112 1 ## 114 1 ## 117 1 ## 117 1

dist.error

Description

Constructor of a list of density function, distribution function, quantile function, random generation and hazard function for the Transform-Both-Sides (TBS) distribution.

Usage

```
dist.error(dist="norm")
```

Arguments

dist

Distribution of error, dist = "norm", "t", "doubexp", "cauchy" or "logistic". A choice "all" can also be given, in which case a list with all the available distributions will be generated.

Details

This wrapper creates a list with the necessary information about a distribution to be used with the Transform-Both-Sides (TBS) model. It returns a list with five items, namely the density function, distribution function, quantile function, random generation function, and name (a string). For example, with dist = "norm" it gives list(dnorm, pnorm, qnorm, rnorm, "norm"). The idea is that the user can implement its own list to be used with the TBS, as long as it is a zero-centered unimodal symmetric distribution, and replace the call of dist.error with their own list (given in a similar way as the output of dist.error).

Value

A list(d.dist,p.dist,q.dist,r.dist,name.dist) according with the chosen distribution. The functions d.dist,p.dist,q.dist,r.dist have to accept exactly two arguments: the first is the actual argument to the function, and the second is a parameter.

Examples

```
## this will return list(dcauchy,pcauchy,qcauchy,rcauchy,"cauchy")
dist = dist.error("cauchy")
## a user-built distribution would look like:
## dist = list(
##
           d = function(x,xi) dmydistrib(x,param=xi), # density
           p = function(x,xi) pmydistrib(x,param=xi), # distr
##
##
           q = function(x,xi) qmydistrib(x,param=xi), # quantile
##
           r = function(x,xi) rmydistrib(x,param=xi), # generation
           name = "mydistrib"
##
##
          )
```

Description

Density function, distribution function, quantile function, random generation function and hazard function for the Transform-Both-Sides (TBS) model.

Usage

```
dtbs(time,lambda=1,xi=1,beta=1,x=NULL,dist=dist.error("norm"))
ptbs(time,lambda=1,xi=1,beta=1,x=NULL,dist=dist.error("norm"))
qtbs(p,lambda=1,xi=1,beta=1,x=NULL,dist=dist.error("norm"))
rtbs(n,lambda=1,xi=1,beta=1,x=NULL,dist=dist.error("norm"))
htbs(time,lambda=1,xi=1,beta=1,x=NULL,dist=dist.error("norm"))
```

Arguments

time	vector of quantiles.
р	vector of probabilities.
n	number of observations.
lambda	parameter of TBS.
xi	parameter of the error distribution.
beta	parameter of the linear regressor.
х	vector/matrix of co-variables, x=NULL if there are not co-variables.
dist	Distribution of error, it can be string such as dist = "norm", "t", "doubexp", "cauchy" or "logistic, or it can also be given as a list of functions (density, distribution, quantile, random generation, name). Details below.

Details

The density function, distribution function, quantile function, random generation and hazard function for the failure time of a TBS Model. The distribution of error can be chosen from Normal, t-Student, Cauchy, Logistic and Doub-Exponential (Laplace), or can be given by the user (as long as it is zero-centered, unimodal and symmetric – TBS does not check it). See the help of dist.error for examples.

Value

'dtbs' gives the density, 'ptbs' gives the distribution function, 'qtbs' gives the quantile function, 'rtbs' generates random deviates, 'htbs' gives the hazard function.

See Also

dist.error

tbs

tbs.survreg.be

Examples

ptbs(1,lambda=2,xi=1,beta=1,dist=dist.error("norm"))

tbs.survreg.be Bayesian Estimation of the TBS Model for Survival Data

Description

This function performs the Bayesian estimation of the Transform-Both-Sides (TBS) model. The priors for the parameters 'lambda' and 'xi' are uniform-exponential mixtures and, if not specified, for parameter beta is a normal with mean 5 and sd 5. The estimations are done by Metropolis-Hasting (using the function 'metrop' available with the package 'mcmc').

Usage

tbs.survreg.be(formula, dist=dist.error("norm"),max.time = -1, guess.beta = NULL, guess.lambda = 1, guess.xi = 1, burn = 1000, jump = 2, size = 500, scale = 0.1, prior.mean = NULL, prior.sd = NULL, seed = 1234)

Arguments

formula	A formula specification containing a Surv model with right-censored (or no censored) data as in the package survival.
dist	Error distribution; dist can be given by name ("norm", "doubexp", "t", "cauchy" or "logistic") or by dist.error.
<pre>max.time</pre>	Maximum time (in minutes) to run the optimization (<= 0 means no limit).
guess.beta	Initial value of the Markov Chain for the vector 'beta'. Default will fill it with zeros.
guess.lambda	Initial value of the Markov Chain for the parameter 'lambda'.
guess.xi	Initial value of the Markov Chain for the parameter 'xi'.
burn	Burn-in: number of initial samples of the posterior not to use.
jump	Number of jumps between each sample of the posterior to avoid the problem of auto-correlation between the samples.
size	Size of final sample of the posterior.
scale	Parameter of 'metrop' function. Controls the acceptance rate.
prior.mean	Prior Mean for the MCMC.
prior.sd	Prior std deviation for the MCMC.
seed	The number that is used to initialize the seed for random number generation.

Details

This function performs the Bayesian estimation of the Transform-Both-Sides (TBS) model. The priors for the parameters 'lambda' and 'xi' are uniform-exponential mixtures and, if not specified, for parameter beta is a normal with mean 5 and sd 5. The estimations are done by Metropolis-Hasting (using the function 'metrop' available with the package 'mcmc').

Value

An element of the class tbs.survreg.be, with the components:

call	function evaluated.
х	co-variable matrix used.
time	survival time.
delta	censor status.
post	posterior sample of the parameters.
lambda	posterior mean of lambda.
xi	posterior mean of xi.
beta	vector with posterior mean of beta.
lamda.sd	standard deviation for lambda.
xi.sd	standard deviation of for xi.
beta.sd	standard deviation of for beta.
lambda.HPD	95% high posterior density credal interval of lambda.
xi.HPD	95% high posterior density credal interval of xi.
beta.HPD	95% high posterior density credal interval vector of beta.
DIC	Deviance Information Criterion.
error	summary statistics for the posterior of error of TBS model.
error.dist	error distribution.
run.time	Time spent with the function.

References

Meeker, W. and Escobar, L. (1998) *Statistical Methods for Reliability Data*. Willey, ISBN 0-471-14328-6.

See Also

dist.error,tbs.survreg.mle,dtbs,ptbs,qtbs,rtbs.

Examples

tbs.survreg.mle

```
# Kapan-Meier estimator
km <- survival::survfit(formula = survival::Surv(alloyT7987$time, alloyT7987$delta == 1) ~ 1)
# Plot survival function
plot(tbs.be,lwd=2,HPD=TRUE,HPD.alpha=0.95,col.HPD=2,lty.HPD=1,lwd.HPD=2)
lines(km)
# Plot survival function
plot(tbs.be,plot.type="hazard",lwd=2,HPD=TRUE,HPD.alpha=0.95,col.HPD=2,lty.HPD=1,lwd.HPD=2)
# Plot auto-correlation of the posterior sample
plot(tbs.be,plot.type="auto")
# Plot "time-series" of the posterior sample
plot(tbs.be,plot.type="ts")
```

tbs.survreg.mle MLE of the TBS Model for Failure Data

Description

This function performs the Maximum Likelihhod Estimation of the TBS model. The optimization is done by the function 'optim' (or optionally the package Rsolnp when available).

Usage

Arguments

formula	A formula specification containing a Surv model with right-censored data as in the package survival.
dist	error distribution; dist can be given by name ("norm", "doubexp", "t", "cauchy" or "logistic") or by dist.error.
method	a vector of numerical methods to be used in the optimization. The function try all listed methods and returns all results, together with an indication of the solution with maximal likelihood among them.
verbose	Boolean to indicate the amount of output during the execution of the optimiza- tion.
nstart	Number of feasible initial points to guess when performing the optimization.
max.time	Maximum time (in minutes) to run the optimization (<= 0 means no limit).
seed	The number that is used to initialize the seed for random number generation.
gradient	if TRUE, MLE tries to use the implemented gradient functions (usually the numerical ones are ok).

Details

This function calls numerical optimization methods to maximize the likelihood of the TBS model, according to the given error distribution, method of optimization, and formula. The formula is supposed to have a Surv object and possibility co-variates, just as the standard specification of R formulas. The optimizers are going to do their best to find high likelihood estimates, but as in most estimation methods that need a numerical optimization procedure, the obtained estimate cannot be guaranteed to be a global optimal solution, but instead is dependent on the initial guessing points, and thus on the seed of the random number generation.

Value

Either an element of class tbs.survreg.mle (with print, summary, and plot functions) or a list of them (depending whether the call of tbs.survreg.mle was made for a single distribution or a list of them). In case it is a list, additional fields named best and best.n give the name and the position of the best estimation in the list, respectively. Each element of tbs.survreg.mle has the following components:

lambda	The estimate for parameter lambda
xi	The estimate for parameter xi
beta	A vector with the estimate for parameter beta
lambda.se	The standard error for parameter lambda
xi.se	The standard error for parameter xi
beta.se	A vector with the standard error for parameter beta
log.lik	The log-likelihood at parameters par.
error.dist	The error distribution chosen.
AIC	Akaike Information Criterion.
AICc	AICc is AIC with a second order correction for small sample sizes.
BIC	Bayesian Information Criterion.
method	Numerical method used to achive the MLE.
convergence	If convergence is FALSE then it was not possible to find the MLE.
time	observed survival times.
error	error of the estimated model.
call	function evaluated.
formula	formula entered by user.
run.time	Time spent with the function.

References

Meeker, W. and Escobar, L. (1998) *Statistical Methods for Reliability Data*. Willey, ISBN 0-471-14328-6.

See Also

dist.error,tbs.survreg.be,dtbs,ptbs,qtbs,rtbs.

tbs.survreg.mle

Examples

```
# Alloy - T7987: data extracted from Meeker and Escobar (1998), pp. 131.
data(alloyT7987)
alloyT7987$time <- as.double(alloyT7987$time)
alloyT7987$delta <- as.double(alloyT7987$delta)
# MLE estimation with logistic error
formula <- survival::Surv(alloyT7987$time,alloyT7987$delta == 1) ~ 1</pre>
```

tbs.mle <- tbs.survreg.mle(formula,dist=dist.error("logistic"),method="Nelder-Mead",nstart=3)</pre>

```
# Kaplan-Meier estimation
```

```
km <- survival::survfit(formula)</pre>
```

```
# Plot survival function
plot(tbs.mle)
lines(km)
```

Plot hazard function
plot(tbs.mle, plot.type="hazard")

Index

*Topic **TBS** alloyT7987, 2 alloyT7987, 2 dist.error, 3, 4-8dtbs, <mark>6</mark>, 8 dtbs (tbs), 4 htbs (tbs), 4 ptbs, <mark>6</mark>, 8 ptbs (tbs), 4 qtbs, <mark>6</mark>, 8 qtbs (tbs), 4 rtbs, <u>6</u>, <u>8</u> rtbs (tbs), 4 Surv, 5 tbs, 4 tbs.survreg.be, 5, 8tbs.survreg.mle, 2, 6, 7