
Package ‘SyScSelection’
June 30, 2020

Type Package

Title Systemic Scenario Selection for Stress Testing

Version 1.0.1

Author Merlin Kopfmann

Maintainer Merlin Kopfmann <mghncd+cran@posteo.jp>

Description Quasi-Monte-Carlo algorithm for systematic generation of shock scenarios from an arbi-
trary multivariate elliptical distribution. The algorithm selects a systematic mesh of arbi-
trary fineness that approximately evenly covers an isoprobability ellipsoid in d dimen-
sions (Flood, Mark D. & Korenko, George G. (2013) <doi:10.1080/14697688.2014.926018>).
This package is the 'R' analogy to the 'Matlab' code published by Flood & Korenko in above-
mentioned paper.

License CC0

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

Imports pracma, stats

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2020-06-30 09:50:02 UTC

R topics documented:
baseb_expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
calc_mesh_size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
center_at_origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
fill_adj_2Dface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
fill_adj_2Dface_beta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
fill_corners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
get . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1



2 baseb_expansion

hypercube_mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
hyperellipsoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
make_corners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
make_edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
make_ellipsoid_from_vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
make_faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
new_baseb_expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
rotate_to_coordaxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
sizeparam_normal_distn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
sizeparam_t_distn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
spheroid_mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
stretch_to_unitspheroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
transform_ellipsoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
univariate_shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Index 16

baseb_expansion Adds the next base-b element to an existing base-b sequence

Description

Adds the next base-b element to an existing base-b sequence

Usage

baseb_expansion(ain, b)

Arguments

ain Either a an array containing an existing base-b expansion, or a scalar integer
indicating the length for a new base-b expansion

b Base for integer expansions used in the sequence

Value

An expanded base-b expansion



calc_mesh_size 3

calc_mesh_size Calculates the number of points in a mesh of fineness phi, covering a
hypercube in d dimensions

Description

Calculates the number of points in a mesh of fineness phi, covering a hypercube in d dimensions

Usage

calc_mesh_size(phi, d)

Arguments

phi The scalar fineness of the mesh

d The number of dimensions for the unit spheroid

Value

A list of: corner_pts - Count of points extreme (+/- 1) in all dim, edge_pts - Count of points extreme
in all but one dimen, face_pts - Count of points extreme in all but two dimen, total_pts - Sum of:
corner_pts + edge_pts + face_pts

center_at_origin Creates a new ellipsoid object equivalent to the given hyperellipsoid
(hellipse), but centered at the origin.

Description

Creates a new ellipsoid object equivalent to the given hyperellipsoid (hellipse), but centered at the
origin.

Usage

center_at_origin(hellip)

Arguments

hellip The original object, to be shifted

Value

list of two: hellip2 - the re-centered hyperellipsoid and mu - the amount of the translation



4 fill_adj_2Dface_beta

fill_adj_2Dface Creates a phi x phi grid (i.e., the mesh on a single two-dimensional
face of a larger hypercube) of d-dimensional points, where the regu-
larity of the grid has been adjusted to avoid clustering in the corners.

Description

Creates a phi x phi grid (i.e., the mesh on a single two-dimensional face of a larger hypercube) of
d-dimensional points, where the regularity of the grid has been adjusted to avoid clustering in the
corners.

Usage

fill_adj_2Dface(d, phi)

Arguments

d The number of dimensions for the unit spheroid

phi Fineness of the mesh along each dimension of the 2D face

Value

A phi x phi x d array of points. The points (each facemesh2D(i,j,:)) are identically equal to one in
the first d-2 dimensions, so that the mesh varies only in the final two dimensions.

fill_adj_2Dface_beta Calculates the factor, beta in [0, 1], that interpolates the pth equidis-
tant point between the two endpoints, z_one and z_phi, for and ad-
justed 2D mesh of fineness phi in d dimensions.

Description

Calculates the factor, beta in [0, 1], that interpolates the pth equidistant point between the two
endpoints, z_one and z_phi, for and adjusted 2D mesh of fineness phi in d dimensions.

Usage

fill_adj_2Dface_beta(p, phi, z_one, z_phi)

Arguments

p ...

phi Fineness of the mesh along each dimension of the 2D face

z_one ...

z_phi ...



fill_corners 5

Value

beta

fill_corners Systematically fills a given mesh array (cmesh) with d-dimensional
points representing every corner of a d-dimensional hypercube. The
function fills the successive dimensions of each point via depth-first
recursion across all d dimensions.

Description

Systematically fills a given mesh array (cmesh) with d-dimensional points representing every corner
of a d-dimensional hypercube. The function fills the successive dimensions of each point via depth-
first recursion across all d dimensions.

Usage

fill_corners(cmesh, shock, shk_curs, dim_curs)

Arguments

cmesh The mesh to be filled with corner points

shock The current shock vector being filled

shk_curs Index in cmesh of the shock currently being filled

dim_curs Index in the current shock of the dimension being filled

Value

A list of: cmesh - d x 2^d array of corner points being filled, shk_curs - last point in cmesh that was
filled

get Get hyperellipsoid property from the specified object and return the
value. Property names are: center, shape, and size

Description

Get hyperellipsoid property from the specified object and return the value. Property names are:
center, shape, and size

Usage

get(hellip, propName)



6 hypercube_mesh

Arguments

hellip A valid hyperellipsoid object

propName A string of the desired property

Value

The value of the indicated property

hypercube_mesh Generates a Cartesian mesh of d-dimensional scenarios based on the
given ellipsoid. This function does not assume that the ellipsoid is
centered at the origin.

Description

Generates a Cartesian mesh of d-dimensional scenarios based on the given ellipsoid. This function
does not assume that the ellipsoid is centered at the origin.

Usage

hypercube_mesh(phi, hellip, normalize)

Arguments

phi The scalar fineness of the mesh

hellip The basis for the shocks; it must have measurable width in every dimension

normalize Whether to normalize points from the cube onto the sphere or not (TRUE/FALSE)

Value

A d x N array, with each column a scenario

Examples

hellip <- hyperellipsoid()
hypercube_mesh(3,hellip,TRUE)



hyperellipsoid 7

hyperellipsoid Hyperellipsoid class constructor

Description

Hyperellipsoid class constructor

Usage

hyperellipsoid(...)

Arguments

... mu - The vector for the center point, sig - The matrix determining the shape; for
elliptical probability distributions, sig will be the inverse dispersion matrix, c -
The scalar determining the size

Value

A new hyperellipsoid object

Examples

hyperellipsoid()

make_corners Fills a mesh (corn_mesh) with d-dimensional points representing all
corners of a d-dimensional cube encompassing a d-dimensional unit
spheroid.

Description

Fills a mesh (corn_mesh) with d-dimensional points representing all corners of a d-dimensional
cube encompassing a d-dimensional unit spheroid.

Usage

make_corners(d, normalize)

Arguments

d The number of dimensions for the unit spheroid
normalize Whether to scale the corner points onto the sphere or not

Value

A d x 2^d array of corner points



8 make_ellipsoid_from_vertices

make_edges Fills a mesh with d-dimensional points representing all non-corner
edge points of a d-dimensional cube encompassing a d-dimensional
unit spheroid.

Description

Fills a mesh with d-dimensional points representing all non-corner edge points of a d-dimensional
cube encompassing a d-dimensional unit spheroid.

Usage

make_edges(d, phi, normalize)

Arguments

d The number of dimensions for the unit spheroid

phi Fineness of the mesh along the edge (i.e., the total number of points, "including"
the corners)

normalize Whether to scale the corner points onto the sphere or not

Value

A d x d*2^(d-1)*(phi-2) array of edge points

make_ellipsoid_from_vertices

Constructs a new d-dimensional ellipsoid with the given "positive ver-
tices", and size parameter, c. The constructed ellipsoid is centered
at the origin.Note that the input vertices (i.e., the columns of V) must
therefore be orthogonal vectors, themselves centered at the origin.The
size parameter, c, may be needed because the points alone only deter-
mine the eigenvalues up to a positive constant. For vertices which fall
on the constructed ellipsoid, choose as the size parameterc = 1.The
new ellipsoid is centered at the origin.

Description

Constructs a new d-dimensional ellipsoid with the given "positive vertices", and size parameter, c.
The constructed ellipsoid is centered at the origin.Note that the input vertices (i.e., the columns of
V) must therefore be orthogonal vectors, themselves centered at the origin.The size parameter, c,
may be needed because the points alone only determine the eigenvalues up to a positive constant.
For vertices which fall on the constructed ellipsoid, choose as the size parameterc = 1.The new
ellipsoid is centered at the origin.



make_faces 9

Usage

make_ellipsoid_from_vertices(V, c)

Arguments

V A d x d array of positive vertices (in columns)

c The size parameter of the new ellipsoid

Value

A new ellipsoid, centered at the origin, with the given vertices

Examples

hellip <- hyperellipsoid()
V <- vertices(hellip)
c <- 4
make_ellipsoid_from_vertices(V,c)

make_faces Fills a mesh with d-dimensional points representing all non-edge face
points of a d-dimensional cube encompassing a d-dimensional unit
spheroid.

Description

Fills a mesh with d-dimensional points representing all non-edge face points of a d-dimensional
cube encompassing a d-dimensional unit spheroid.

Usage

make_faces(d, phi, normalize)

Arguments

d The number of dimensions for the unit spheroid

phi Fineness of the mesh along each dimension of the 2D face

normalize Whether to scale the corner points onto the sphere or not

Value

A d x d*(d-1)*2^(d-3)*(phi-2)^2 array of face points



10 rotate_to_coordaxes

new_baseb_expansion Creates a new base-b sequence of a designated length

Description

Creates a new base-b sequence of a designated length

Usage

new_baseb_expansion(k, b)

Arguments

k The integer to expand

b Base for integer expansions used in the sequence

Value

The expansion of the integer k

rotate_to_coordaxes Rotates the ellipsoid (hellip) so its principal axes align with the co-
ordinate axes. Both ellipsoids are centered at the origin. Note that
there are (2^d)*d! valid ways to rotate the ellipsoid to the axes. This
algorithm does not prescribe which solution will be provided.

Description

Rotates the ellipsoid (hellip) so its principal axes align with the coordinate axes. Both ellipsoids are
centered at the origin. Note that there are (2^d)*d! valid ways to rotate the ellipsoid to the axes.
This algorithm does not prescribe which solution will be provided.

Usage

rotate_to_coordaxes(hellip)

Arguments

hellip The shape to be rotated, must be centered at the origin

Value

A list of: hellip2 - A new hyperellipsoid, rotated to the coordinate axes and tfm - the transformation
matrix that creates the rotation



sizeparam_normal_distn 11

sizeparam_normal_distn

Calculates the size paramater for a d-dimensional hyperellipsoid con-
forming to a normal (i.e., Gaussian) distribution.

Description

Calculates the size paramater for a d-dimensional hyperellipsoid conforming to a normal (i.e., Gaus-
sian) distribution.

Usage

sizeparam_normal_distn(prob, d)

Arguments

prob The target probability threshold

d Number of dimensions in the multivariate distribution

Value

The appropriate (scalar) size parameter

Examples

sizeparam_normal_distn(0.95, 6)

sizeparam_t_distn Calculates the size paramater for a d-dimensional hyperellipsoid con-
forming to a Student’s t distribution.

Description

Calculates the size paramater for a d-dimensional hyperellipsoid conforming to a Student’s t distri-
bution.

Usage

sizeparam_t_distn(prob, d, nu)

Arguments

prob The target probability threshold

d Number of dimensions in the multivariate distribution

nu Degrees of freedom parameter for the t distribution



12 stretch_to_unitspheroid

Value

The appropriate (scalar) size parameter

Examples

sizeparam_t_distn(0.95, 6, 5)

spheroid_mesh Generates a Cartesian mesh of d-dimensional scenarios based on the
given ellipsoid. This function does not assume that the ellipsoid is
centered at the origin.

Description

Generates a Cartesian mesh of d-dimensional scenarios based on the given ellipsoid. This function
does not assume that the ellipsoid is centered at the origin.

Usage

spheroid_mesh(d, phi, normalize)

Arguments

d The number of dimensions for the unit spheroid

phi The scalar fineness of the mesh

normalize Whether to normalize points from the cube onto the sphere or not (TRUE/FALSE)

Value

A d x N array with each column a scenario

stretch_to_unitspheroid

Stretches the ellipsoid (hellip) to the unit spheroid of the same dimen-
sion. Both the input ellipsoid and unit spheroid are centered at the
origin.

Description

Stretches the ellipsoid (hellip) to the unit spheroid of the same dimension. Both the input ellipsoid
and unit spheroid are centered at the origin.

Usage

stretch_to_unitspheroid(hellip)



transform_ellipsoid 13

Arguments

hellip The original shape to be stretched

Value

A list of: hellip1 - a new unit spheroid, mapped from the ellipsoid and tfm - transformation matrix
that creates the stretching

transform_ellipsoid Applies the given linear transformation, tfm, to the given ellipsoid.
The ellipsoid (hellip) must be centered at the origin.

Description

Applies the given linear transformation, tfm, to the given ellipsoid. The ellipsoid (hellip) must be
centered at the origin.

Usage

transform_ellipsoid(hellip, tfm)

Arguments

hellip The original shape to be transformed

tfm A d x d linear transformation matrix

Value

A transformed ellipsoid, centered at the origin

univariate_shocks Calculates 2d d-dimensional univariate shocks (up and down in each
of the d dimensions) based on the given ellipsoid. Univariate shocks
are points on the surface of the ellipsoid that differ from the center of
the ellipsoid in only one dimension. Thus, for an ellipsoid centered
at the origin, only one element of a d-dimensional shock will be non-
zero.This function does not assume that the ellipsoid is centered at the
origin.

Description

Calculates 2d d-dimensional univariate shocks (up and down in each of the d dimensions) based on
the given ellipsoid. Univariate shocks are points on the surface of the ellipsoid that differ from the
center of the ellipsoid in only one dimension. Thus, for an ellipsoid centered at the origin, only one
element of a d-dimensional shock will be non-zero.This function does not assume that the ellipsoid
is centered at the origin.



14 vertices

Usage

univariate_shocks(hellip)

Arguments

hellip the basis for the shocks; it must have measurable width in every dimension

Value

A d x 2d array, [dx2d], with each column a shock; the first d columns are positive univariate shocks,
and final d columns are matching negative univariate shocks

Examples

hellip <- hyperellipsoid()
univariate_shocks(hellip)

vertices Finds the d d-dimensional positive vertices for the given ellipsoid. A
"positive" vertex is one where a principal axis for the ellipsoid inter-
sects the surface of the ellipsoid in the direction of the corresponding
eigenvector. (Recall that each of the eigenvectors of the ellipsoid’s
shape matrix is collinear with one of the principal axes.) This function
does not assume that the ellipsoid is centered at the origin. Because
the direction of each unit eigenvector is arbitrary (i.e., multiplication
by -1 still yields a unit eigenvector), a simple algorithm is used to pick
a consistent orientation for the vertex points.

Description

Finds the d d-dimensional positive vertices for the given ellipsoid. A "positive" vertex is one where
a principal axis for the ellipsoid intersects the surface of the ellipsoid in the direction of the cor-
responding eigenvector. (Recall that each of the eigenvectors of the ellipsoid’s shape matrix is
collinear with one of the principal axes.) This function does not assume that the ellipsoid is cen-
tered at the origin. Because the direction of each unit eigenvector is arbitrary (i.e., multiplication
by -1 still yields a unit eigenvector), a simple algorithm is used to pick a consistent orientation for
the vertex points.

Usage

vertices(hellip)

Arguments

hellip defines the polar vertices



vertices 15

Value

A d x d array with each column a positive vertex

Examples

hellip <- hyperellipsoid()
vertices(hellip)



Index

baseb_expansion, 2

calc_mesh_size, 3
center_at_origin, 3

fill_adj_2Dface, 4
fill_adj_2Dface_beta, 4
fill_corners, 5

get, 5

hypercube_mesh, 6
hyperellipsoid, 7

make_corners, 7
make_edges, 8
make_ellipsoid_from_vertices, 8
make_faces, 9

new_baseb_expansion, 10

rotate_to_coordaxes, 10

sizeparam_normal_distn, 11
sizeparam_t_distn, 11
spheroid_mesh, 12
stretch_to_unitspheroid, 12

transform_ellipsoid, 13

univariate_shocks, 13

vertices, 14

16


	baseb_expansion
	calc_mesh_size
	center_at_origin
	fill_adj_2Dface
	fill_adj_2Dface_beta
	fill_corners
	get
	hypercube_mesh
	hyperellipsoid
	make_corners
	make_edges
	make_ellipsoid_from_vertices
	make_faces
	new_baseb_expansion
	rotate_to_coordaxes
	sizeparam_normal_distn
	sizeparam_t_distn
	spheroid_mesh
	stretch_to_unitspheroid
	transform_ellipsoid
	univariate_shocks
	vertices
	Index

