
Package ‘SwimmeR’
July 11, 2020

Title Data Import, Cleaning, and Conversions for Swimming Results

Version 0.3.1

Description There are two goals for 'SwimmeR' as presently constructed. The first is read-
ing in swimming results from html or pdf sources and returning tidy dataframes. The sec-
ond is working with the resulting data. To this end 'SwimmeR' converts swimming times (perfor-
mances) between the computationally useful
format of seconds, reported to the 100ths place (e.g. 95.37), and the conventional reporting for-
mat (1:35.37) used in the swimming community, as well as providing tools for assign-
ing team names etc.
Additionally 'SwimmeR' has functions for drawing single-elimination brackets and also con-
verts times between the various pool sizes used in competitive swim-
ming, namely 50m length (LCM), 25m length (SCM)
and 25y length (SCY).

License MIT + file LICENSE

Imports purrr, dplyr, stringr, tibble, utils, rvest, pdftools,
ggplot2, scales, magrittr, xml2

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

Suggests testthat (>= 2.1.0), knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Greg Pilgrim [aut, cre] (<https://orcid.org/0000-0001-7831-442X>),
Caitlin Baldwin [ctb]

Maintainer Greg Pilgrim <gpilgrim2670@gmail.com>

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2020-07-11 07:00:02 UTC

1

2 course_convert

R topics documented:
course_convert . 2
course_convert_DF . 3
draw_bracket . 4
fold . 5
get_mode . 6
King200Breast . 7
mmss_format . 7
Read_Results . 8
sec_format . 9
sec_format_helper . 10
SwimmeR . 10
Swim_Parse . 11

Index 13

course_convert Swimming Course Convertor

Description

Used to convert times between Long Course Meters, Short Course Meters and Short Course Yards

Usage

course_convert(time, event, course, course_to)

Arguments

time A time, or vector of times to convert. Can be in either seconds (numeric, 95.97)
format or swim (character, "1:35.97") format

event The event swum as "100 Fly", "200 IM", "400 Free", "50 Back", "200 Breast"
etc.

course The course in which the time was swum as "LCM", "SCM" or "SCY"

course_to The course to convert the time to as "LCM", "SCM" or "SCY"

Value

returns the time for a specified event and course converted to a time for the specified course_to
in swimming format

Note

Relays are not presently supported.

course_convert_DF 3

Author(s)

Greg Pilgrim <gpilgrim2670@gmail.com>

References

Uses the USA swimming age group method described here: https://support.teamunify.com/
en/articles/260

Examples

course_convert(time = "1:35.93", event = "200 Free", course = "SCY", course_to = "LCM")
course_convert(time = 95.93, event = "200 Free", course = "scy", course_to = "lcm")
course_convert(time = 53.89, event = "100 Fly", course = "scm", course_to = "scy")

course_convert_DF Course converter, returns dataframe

Description

Used to convert times between Long Course Meters, Short Course Meters and Short Course Yards,
returns dataframe

Usage

course_convert_DF(time, event, course, course_to)

Arguments

time A time, or vector of times to convert. Can be in either seconds (numeric, 95.97)
format or swim (character, "1:35.97") format

event The event swum as "100 Fly", "200 IM", "400 Free", "50 Back", "200 Breast"
etc.

course The course in which the time was swum as "LCM", "SCM" or "SCY"

course_to The course to convert the time to as "LCM", "SCM" or "SCY"

Value

This function returns a data.frame including columns:

• time

• course

• course_to

• event

• Time_Converted_sec

• Time_Converted_mmss

https://support.teamunify.com/en/articles/260
https://support.teamunify.com/en/articles/260

4 draw_bracket

Note

Relays are not presently supported.

Author(s)

Greg Pilgrim <gpilgrim2670@gmail.com>

References

Uses the USA swimming age group method described here https://support.teamunify.com/
en/articles/260

Examples

course_convert_DF(time = "1:35.93", event = "200 Free", course = "SCY", course_to = "LCM")
course_convert_DF(time = 95.93, event = "200 Free", course = "scy", course_to = "lcm")
course_convert_DF(time = 53.89, event = "100 Fly", course = "scm", course_to = "scy")

draw_bracket Creates a bracket for tournaments involving 5 to 64 teams, single elim-
ination

Description

Will draw a single elimination bracket for the appropriate number of teams, inserting first round
byes for higher seeds as needed

Usage

draw_bracket(
teams,
title = "Championship Bracket",
text_size = 0.7,
round_two = NULL,
round_three = NULL,
round_four = NULL,
round_five = NULL,
round_six = NULL,
champion = NULL

)

Arguments

teams a list of teams, ordered by desired seed, to place in bracket. Must be between 5
and 64 inclusive. Teams must have unique names

title bracket title

https://support.teamunify.com/en/articles/260
https://support.teamunify.com/en/articles/260

fold 5

text_size number passed to cex in plotting

round_two a list of teams advancing to the second round (need not be in order)

round_three a list of teams advancing to the third round (need not be in order)

round_four a list of teams advancing to the forth round (need not be in order)

round_five a list of teams advancing to the fifth round (need not be in order)

round_six a list of teams advancing to the fifth round (need not be in order)

champion the name of the overall champion team (there can be only one)

Value

a plot of a bracket for the teams, with results and titles as specified

Author(s)

Greg Pilgrim <gpilgrim2670@gmail.com>

References

based on draw.bracket from the seemingly now defunct mRchmadness package by Eli Shayer and
Saber Powers and used per the terms of that package’s GPL-2 license

Examples

Not run:
teams <- c("red", "orange", "yellow", "green", "blue", "indigo", "violet")
round_two <- c("red", "yellow", "blue", "indigo")
round_three <- c("red", "blue")
champion <- "red"
draw_bracket(teams = teams,

round_two = round_two,
round_three = round_three,
champion = champion)

End(Not run)

fold Fold a vector onto itself

Description

Fold a vector onto itself

Usage

fold(x, block.size = 1)

6 get_mode

Arguments

x a vector

block.size the size of groups in which to block the data

Value

a new vector in the following order: first block, last block, second block, second-to-last block, ...

Author(s)

sspowers

References

from the seemingly now defunct mRchmadness package by Eli Shayer and Saber Powers and used
per the terms of that package’s GPL-2 license

get_mode Find the mode (most commonly occurring) element of a list

Description

Determines which element of list appears most frequently. Based on base::which.max, so if multi-
ple values appear with the same frequency will return the first one. Ignores NA values. In the context
of swimming data is often used to clean team names, as in the Lilly King example below.

Usage

get_mode(x, type = "first")

Arguments

x A list. NA elements will be ignored.

type a character string of either "first" or "all" which determines behavior for ties.
Setting type = "first" (the default) will return the element that appears most
often and appears first in list x. Setting type = "all" will return all elements
that appear most frequently.

Value

the element of x which appears most frequently. Ties go to the lowest index, so the element which
appears first.

Author(s)

Greg Pilgrim <gpilgrim2670@gmail.com>

King200Breast 7

Examples

a <- c("a", "a", "b", "c")
get_mode(a)
ab <- c("a", "a", "b", "b", "c") # returns "a", not "b"
get_mode(ab)
#' ab <- c("a", "a", "b", "b", "c") # returns "a" and "b"
get_mode(ab, type = "all")
a_na <- c("a", "a", NA, NA, "c")
get_mode(a_na)
numbs <- c(1, 1, 1, 2, 2, 2, 3, NA)
get_mode(numbs, type = "all")

Name <- c(rep("Lilly King", 5))
Team <- c(rep("IU", 2), "Indiana", "IUWSD", "Indiana University")
df <- data.frame(Name, Team, stringsAsFactors = FALSE)
df$Team <- get_mode(df$Team)

King200Breast Results for Lilly King’s 200 Breaststrokes

Description

Lilly King’s 200 Breaststroke swims from her NCAA career

Usage

data(King200Breast)

Format

An object of class "data.frame"

Source

NCAA Times Database

mmss_format Formatting seconds as mm:ss.hh

Description

Takes a numeric item or list of numeric items representing seconds (e.g. 95.37) and converts to a
character string or list of strings in swimming format ("1:35.37").

https://www.usaswimming.org/utility/landing-pages/times/ncaa-division-i

8 Read_Results

Usage

mmss_format(x)

Arguments

x A number of seconds to be converted to swimming format

Value

the number of seconds x converted to conventional swimming format mm:ss.hh

Author(s)

Greg Pilgrim <gpilgrim2670@gmail.com>

See Also

sec_format mmss_format is the reverse of sec_format

Examples

mmss_format(95.37)
mmss_format(200.95)
mmss_format(59.47)
mmss_format(c(95.37, 200.95, 59.47, NA))

Read_Results Reads swimming and diving results into a list of strings in preparation
for parsing with Swim_Parse

Description

Outputs list of strings to be processed by Swim_Parse

Usage

Read_Results(file, node = NULL)

read_results(file, node = NULL)

Arguments

file a .pdf or .html file (could be a url) where containing swimming results. Must be
formatted in a "normal" fashion - see vignette

node a CSS node where html results are stored. Required for html results.

sec_format 9

Value

returns a list of strings containing the information from x. Should then be parsed with swim_parse

Author(s)

Greg Pilgrim <gpilgrim2670@gmail.com>

See Also

read_results is meant to be followed by swim_parse

Examples

Not run: read_results("http://www.nyhsswim.com/Results/Boys/2008/NYS/Single.htm", node = "pre")

sec_format Formatting mm:ss.tt times as seconds

Description

Takes a character string (or list) representing time in swimming format (e.g. 1:35.37) and converts
it to a numeric value (95.37) or a list of values representing seconds.

Usage

sec_format(x)

Arguments

x A character vector of time(s) in swimming format (e.g. 1:35.93) to be converted
to seconds (95.93)

Value

returns the value of the string x which represents a time in swimming format (mm:ss.hh) and con-
verts it to seconds

Author(s)

Greg Pilgrim <gpilgrim2670@gmail.com>

See Also

mmss_format sec_format is the reverse of mmss_format

10 SwimmeR

Examples

sec_format("1:35.93")
sec_format("16:45.19")
sec_format("25.43")
sec_format(c("1:35.93", "16:45.19", "25.43"))
sec_format(c("1:35.93", "16:45.19", NA, "25.43"))

sec_format_helper Helper function for formatting mm:ss.hh times as seconds

Description

Helper function for formatting mm:ss.hh times as seconds

Usage

sec_format_helper(x)

Arguments

x A character vector of time(s) in swimming format (e.g. 1:35.93) to be converted
to seconds (95.93)

Author(s)

Greg Pilgrim <gpilgrim2670@gmail.com>

SwimmeR SwimmeR: A package for working with swimming times

Description

There are two goals for ’SwimmeR’ as presently constructed. The first is reading in swimming
results from html or pdf sources and returning tidy dataframes. The second is working with the
resulting data. To this end ’SwimmeR’ converts swimming times (performances) between the com-
putationally useful format of seconds, reported to the 100ths place (e.g. 95.37), and the conventional
reporting format (1:35.37) used in the swimming community, as well as providing tools for assign-
ing team names etc. Additionally ’SwimmeR’ has functions for drawing single-elimination brackets
and also converts times between the various pool sizes used in competitive swimming, namely 50m
length (LCM), 25m length (SCM) and 25y length (SCY).

Author(s)

Greg Pilgrim <gpilgrim2670@gmail.com>

Swim_Parse 11

Swim_Parse Formats swimming and diving data read in with Read_Results into
dataframe

Description

Takes the output of read_results and cleans it, yielding a dataframe of swimming results

Usage

Swim_Parse(
file,
avoid = avoid_default,
typo = typo_default,
replacement = replacement_default

)

swim_parse(
file,
avoid = avoid_default,
typo = typo_default,
replacement = replacement_default

)

Arguments

file output from read_results

avoid a list of strings. Rows in x containing these strings will not be included. For
example "Pool:", often used to label pool records, could be passed to avoid.
The default is avoid_default, which contains many strings similar to "Pool:",
such as "STATE:" and "Qual:". Users can supply their own lists to avoid.

typo a list of strings that are typos in the original results. swim_parse is particu-
larly sensitive to accidental double spaces, so "Central High School", with two
spaces between "Central" and "High" is a problem, which can be fixed. Pass
"Central High School" to typo. Unexpected commas as also an issue, for exam-
ple "Texas, University of" should be fixed using typo and replacement

replacement a list of fixes for the strings in typo. Here one could pass "Central High School"
(one space between "Central" and "High") and "Texas" to replacement fix the
issues described in typo

Value

returns a dataframe with columns Name, Place, Grade, School, Prelims_Time, Finals_Time,
Points, & Event. Note all swims will have a Finals_Time, even if that time was actually swam in
the prelims (i.e. a swimmer did not qualify for finals). This is so that final results for an event can
be generated from just one column.

12 Swim_Parse

Author(s)

Greg Pilgrim <gpilgrim2670@gmail.com>

See Also

swim_parse must be run on the output of read_results

Examples

Not run:
swim_parse(read_results("http://www.nyhsswim.com/Results/Boys/2008/NYS/Single.htm", node = "pre"),
typo = c("-1NORTH ROCKL"), replacement = c("1-NORTH ROCKL"))

End(Not run)
Not run:
swim_parse(read_results("inst/extdata/Texas-Florida-Indiana.pdf"),
typo = c("Indiana University", ", University of"), replacement = c("Indiana University", ""))

End(Not run)

Index

∗ datasets
King200Breast, 7

course_convert, 2
course_convert_DF, 3

draw_bracket, 4

fold, 5

get_mode, 6

King200Breast, 7

mmss_format, 7, 9

Read_Results, 8
read_results, 12
read_results (Read_Results), 8

sec_format, 8, 9
sec_format_helper, 10
Swim_Parse, 11
swim_parse, 9
swim_parse (Swim_Parse), 11
SwimmeR, 10
SwimmeR-package (SwimmeR), 10

13

	course_convert
	course_convert_DF
	draw_bracket
	fold
	get_mode
	King200Breast
	mmss_format
	Read_Results
	sec_format
	sec_format_helper
	SwimmeR
	Swim_Parse
	Index

