Package ‘SuperGauss’

February 27, 2020

Type Package

Title Superfast Likelihood Inference for Stationary Gaussian Time
Series

Version 1.0.2
Date 2020-02-27

Description
Likelihood evaluations for stationary Gaussian time series are typically obtained via the Durbin-
Levinson algorithm, which scales as O(n”2) in the number of time series observations. This pack-
age provides a “superfast” O(n log"2 n) algorithm written in C++, crossing over with Durbin-
Levinson around n = 300. Efficient implementations of the score and Hessian func-
tions are also provided, leading to superfast versions of inference algorithms such as Newton-
Raphson and Hamiltonian Monte Carlo. The C++ code provides a Toeplitz matrix class pack-
aged as a header-only library, to simplify low-level usage in other packages and outside of R.

License GPL-3

Depends R (>=3.0.0)

Imports stats, methods, Rcpp (>=0.12.7), fftw
LinkingTo Rcpp, ReppEigen

Suggests knitr, rmarkdown, testthat, mvtnorm, numDeriv
VignetteBuilder knitr

RoxygenNote 7.0.2

Encoding UTF-8

SystemRequirements fftw3 (>=3.1.2)
NeedsCompilation yes

Author Yun Ling [aut],
Martin Lysy [aut, cre]

Maintainer Martin Lysy <mlysy@uwaterloo.ca>
Repository CRAN
Date/Publication 2020-02-27 12:40:02 UTC

2

R topics documented

acf2Iner e e e
acf2msd e

Snorm.grad
Snorm.hess
SuperGauss
toep.mult

Toeplitz-class

Index

acf2incr

Convert position to increment autocorrelations.

Description

Converts the autocorrelation of a stationary sequence X to that of its increments, dX == diff (X).

Usage

acf2incr(acf)

Arguments

acf

Value

Length-N vector of position autocorrelations.

Length N-1 vector if increment autocorrelations.

Examples

acf2incr(acf = exp(-(0:10)))

acf2msd 3

acf2msd Convert autocorrelation of stationary increments to mean squared dis-
placement of posititions.

Description
Converts the autocorrelation (ACF) of stationary increments to the mean squared displacement
(MSD) of the corresponding positions.

Usage
acf2msd(acf)

Arguments

acf length-N ACF vector of a stationary increment sequence.

Details
If X (¢) is a stationary increments process, then A Xy, AX7y, ... with
AX, = X((n+1)At) — X(nAt)

is a stationary time series. This function converts the ACF of this series into the MSD of the
corresponding positions, namely returns the sequence 71, . . ., nn, where 7; = var(X (¢At)).

Value

Length-N MSD vector of the corresponding positions.

Examples

acf2msd(acf = exp(-(0:10)))

Choleski Choleski multiplication with Toeplitz variance matrices.

Description

Multiplies the Choleski decomposition of the Toeplitz matrix with another matrix, or solves a sys-
tem of equations with the Cholesky factor.

Usage
cholzX(Z, acf)

cholXZ(X, acf)

4 dSnorm

Arguments
Z Length-N or N x p matrix of residuals.
acf Length-N autocorrelation vector of the Toeplitz variance matrix.
X Length-N or N x p matrix of observations.

Details

If C == t(chol(toeplitz(acf))), then cholZX computes C %*% Z and cholZX computes solve(C,X).
Both functions use the Durbin-Levinson algorithm.

Value

Size N x p residual or observation matrix.

Examples

N <- 10

p <-2

W <- matrix(rnorm(N * p), N, p)
acf <- exp(-(1:N - 1))
cholZX(Z = W, acf = acf)
cholXZ(X = W, acf = acf)

dSnorm Density of a multivariate normal with Toeplitz variance matrix.

Description

Efficient density evaluation for the multivariate normal distribution with Toeplitz variance matrix.

Usage
dSnorm(X, mu, acf, log = FALSE)

dSnormDL (X, mu, acf, log = FALSE)

Arguments
X Vector or matrix, of which each column is a multivariate observation.
mu Vector or matrix of mean values of compatible dimensions with X. Defaults to
all zeros.
acf Vector containing the first column of the Toeplitz variance matrix. For dSnorm,

can also be a Toeplitz object.

log Logical, whether to return the multivariate normal density on the log scale.

fbm.msd 5

Details

dSnorm and dSnormDL have identical outputs, with the former using the generalized Schur algorithm
and the latter, the Durbin-Levinson algorithm, which is more common but slower. dSnormDL is
provided mainly for speed comparisons.

Value

Vector of (log-)densities, one for each column of X.

Examples

N <- 10

d <-4

X <- matrix(rnorm(Nxd), N, d)
theta <- 0.1

lambda <- 2

mu <- theta”2 * rep(1, N)
acf <- exp(-lambda * (1:N - 1))
acf <- Toeplitz(acf = acf)

dSnorm(X, mu, acf, log = TRUE)

fbm.msd Mean square displacement of fractional Brownian motion.

Description

Mean square displacement of fractional Brownian motion.

Usage
fbm.msd(tseq, H)

Arguments

tseq Length-N vector of timepoints.

H Hurst parameter (between 0 and 1).
Details

The mean squared displacement (MSD) of a stochastic process X, is defined as
MSDx (t) = E[(X; — X0)?].
Fractional Brownian motion (fBM) is a continuous Gaussian process with stationary increments,

such that its covariance function is entirely defined the MSD, which in this case is MSDx (¢) =
|t‘2H

6 matern.acf

Value

Length-N vector of mean square displacements.

Examples

fbm.msd(tseq = 1:10, H = 0.4)

matern.acf Matern autocorrelation function.

Description

Matern autocorrelation function.

Usage

matern.acf(tseq, lambda, nu)

Arguments
tseq Vector of time points at which the autocorrelation is to be calculated.
lambda Timescale parameter.
nu Smoothness parameter.

Details

The Matern autocorrelation is given by

ACF(t) = il(l/; <@;)VK, (ﬁ;)

where K, () is the modified Bessel function of second kind.

Value

An autocorrelation vector of length N.

Examples

matern.acf(tseq = 1:10, lambda = 1, nu = 3/2)

msd2acf 7

msd2acf Convert mean square displacement to autocorrelations.

Description

Converts the mean squared displacement (MSD) of positions to the autocorrelation (ACF) of the
corresponding increments.

Usage
msd2acf (msd)
Arguments
msd Length-N vector of MSDs at regular timepoints dt,2*dt,...,Nxdt.
Details
For a stationary increments process X;, converts a sequence 7, . . . ,nn of regularly spaced MSDs,
ni = E[(X;ar — Xo)?],
into 71, ...,vN, a sequence of regularly spaced ACFs,

vi = cov{X(it1)ar — Xia,, Xas — Xo}

This only produces correct results when msd corresponds to equally-spaced observations.

Value

Length N vector of ACFs.

Examples

autocorrelation of fBM increments
msd2acf(msd = fbm.msd(tseq = 0:10, H = .3))

8 rSnorm

pex.acf Power-exponential autocorrelation function.

Description

Power-exponential autocorrelation function.

Usage

pex.acf(tseq, lambda, rho)

Arguments
tseq Length-N vector of timepoints.
lambda Timescale parameter.
rho Power parameter.

Details

The power-exponential autocorrelation function is given by:

ACF(t) = exp{—(t/N)"}.

Value

Length-N autocorrelation vector.

Examples

pex.acf(tseq = 1:10, lambda = 1, rho = 2)

rSnorm Simulation of a stationary Gaussian time series.

Description

Simulation of a stationary Gaussian time series.

Usage

rSnorm(n = 1, acf, Z, fft = TRUE, nkeep, tol = 1e-06)

Snorm.grad 9

Arguments
n Number of time series to generate.
acf Length-N vector giving the autocorrelation of the series.
z Optional size (2N-2) x n or N x n matrix of iid standard normals, to use in the
fft and Durbin-Levinson methods respectively.
fft Logical, whether or not to use the superfast FFT-based algorithm of Chan and
Wood or the more stable Durbin-Levinson algorithm. See Details.
nkeep Length of time series. Defaults to N = length(acf). See Details.
tol Relative tolerance on negative eigenvalues. See Details.
Details

The superfast method fails when the circulant matrix is not positive definite. This is typically due
to one of two things, for which the FFT algorithm can be tuned with tol and nkeep:

tol Roundoff error can make tiny eigenvalues appear negative. If evMax is the maximum eigen-
value, then all negative eigenvalues of magnitude less than tol * evMax are mapped to this
threshold value. This does not guarantee a positive definite embedding.

nkeep The autocorrelation is decaying too slowly on the given timescale. To mitigate this it is
possible to increase the time horizon, i.e. input a longer acf and keep the first nkeep time
series observations. For consistency, nkeep also applies to Durbin-Levinson method.

Value

Length-nkeep vector or size nkeep x n matrix with time series as columns.

Examples

N <- 10
acf <- exp(=(1:N - 1))
rSnorm(n = 3, acf = acf)

Snorm. grad Gradient of the loglikelihood of a multivariate normal with Toeplitz
variance matrix.

Description

Superfast evaluation of loglikelihood gradient.

Usage

Snorm.grad(X, mu, acf, dmu, dacf)

10 Snorm.hess

Arguments
X A length-N vector of multivariate normal observations.
mu A scalar or length-N vector of means. If missing defaults to the vector of zeros.
acf A Toeplitz object or length-N vector containing the first column of the Toeplitz
variance matrix.
dmu A length-p vector or N x p matrix of partial derivatives of mu along the columns.
If missing defaults to a matrix of zeros.
dacf An N x p matrix with the partial derivatives of acf along the columns.
Value

A length-p vector containing the gradient of the loglikelihood.

Examples

two parameter inference
acf.fun <- function(theta) theta[2]%2 * exp(-thetal[11x(1:N-1))
mu.fun <- function(theta) thetal[1]

partial derivatives
dacf.fun <- function(theta) {
ea <- exp(-thetal[1]*(1:N-1))
cbind(-theta[1]*theta[2]"2 * ea, 2*theta[2] * ea)
3
dmu.fun <- function(theta) c(1, @)

generate data

N <- 300

theta <- rexp(2)

X <= rSnorm(n = 1, acf = acf.fun(theta)) + mu.fun(theta)

likelihood gradient
Snorm.grad(X = X, mu = mu.fun(theta), dmu = dmu.fun(theta),
acf = acf.fun(theta), dacf = dacf.fun(theta))

Snorm.hess Hessian of the loglikelihood of a multivariate normal with Toeplitz
variance matrix.

Description

Superfast evaluation of loglikelihood Hessian.

Usage

Snorm.hess(X, mu, acf, dmu, dacf, d2mu, d2acf)

Snorm.hess 11

Arguments
X A length-N vector of multivariate normal observations.
mu A scalar or length-N vector of means. If missing defaults to the vector of zeros.
acf A Toeplitz object or length-N vector containing the first column of the Toeplitz
variance matrix.
dmu A length-p vector or N x p matrix of partial derivatives of mu along the columns.
If missing defaults to a matrix of zeros.
dacf An N x p matrix with the partial derivatives of acf along the columns.
d2mu A p x p matrix or N x p x p array of second partial derivatives of mu. If missing
defaults to zeros.
d2acf A N x p x p array of second partial derivatives of acf.
Value

The p x p Hessian matrix of the loglikelihood.

Examples

two parameter inference
acf.fun <- function(theta) thetal[2]%2 * exp(-(1:N-1))
mu.fun <- function(theta) thetal[1] * (1:N) + log(thetal[2] + 1:N)

partial derivatives
dacf.fun <- function(theta) {
cbind(@, 2xthetal[2] * exp(-(1:N-1)))
}
dmu.fun <- function(theta) cbind(1:N, 1/(theta[2] + 1:N))

2nd order partials

d2acf.fun <- function(theta) {
H <- array(@, dim = c(N, 2, 2))
H[,2,2] <= 2*xexp(-(1:N-1))
H

3

d2mu.fun <- function(theta) {
H <- array(@, dim = c(N, 2, 2))
HL,2,2] <= -1/(thetal2] + 1:N)*2
H

3

generate data

N <- 300

theta <- rexp(2)

X <= rSnorm(n = 1, acf = acf.fun(theta)) + mu.fun(theta)

likelihood Hessian

Snorm.hess(X = X, mu = mu.fun(theta), acf = acf.fun(theta),
dmu = dmu.fun(theta), dacf = dacf.fun(theta),
d2mu = d2mu.fun(theta), d2acf = d2acf.fun(theta))

12 toep.mult

SuperGauss Superfast inference for stationary Gaussian time series.

Description

Superfast inference for stationary Gaussian time series.

Details

While likelihood calculations with stationary Gaussian time series generally scale as O(N?) in
the number of observations, this package implements an algorithm which scales as O(N 1og2 N).
"Superfast" algorithms for loglikelihood gradients and Hessians are also provided. The underlying
C++ code is distributed through a header-only library found in the installed package’s include
directory.

Examples

Superfast inference for the timescale parameter of
the exponential autocorrelation function
exp.acf <- function(lambda) exp(-(1:N-1)/lambda)

simulate data

lambda@ <- 1

N <- 1000

X <= rSnorm(n = 1, acf = exp.acf(lambda®))

loglikelihood function
Toep <- Toeplitz(n = N) # allocate memory for a Toeplitz matrix object
loglik <- function(lambda) {
Toep$setAcf(acf = exp.acf(lambda))
dSnorm(X = X, acf = Toep, log = TRUE)
3

maximum likelihood estimation
optimize(f = loglik, interval = c(.2, 5), maximum = TRUE)

toep.mult Toeplitz matrix multiplication.

Description

Efficient matrix multiplication with Toeplitz matrix and arbitrary matrix or vector.

Usage

toep.mult(acf, X)

Toeplitz-class 13

Arguments
acf Length-N vector giving the first column (or row) of the Toeplitz matrix.
X Vector or matrix of compatible dimensions with acf.

Value

An N-row matrix corresponding to toeplitz(acf) %x% X.

Examples
N <- 20
d<-3

acf <- exp(-(1:N))
X <= matrix(rnorm(N*xd), N, d)
toep.mult(acf, X)

Toeplitz-class Constructor and methods for Toeplitz matrix objects.

Description

The Toeplitz class contains efficient methods for linear algebra with symmetric positive definite
(i.e., variance) Toeplitz matrices.

Usage

Toeplitz(n, acf)

Arguments

n Size of the Toeplitz matrix.

acf Autocorrelation vector of Toeplitz matrix.
Details

It is assumed that the autocorrelation of the Toeplitz object defines a valid (i.e., positive definite)
variance matrix. The multiplication algorithms still work when this is not the case but the other
algorithms do not (return values typically contain NaNs).

Value

A Toeplitz object.

14 Toeplitz-class

Methods
If Toep is a Toeplitz object with first row/column given by acf, then:

Toep$setAcf(acf) Sets the autocorrelation of the matrix.
Toep$getAcf () Gets the autocorrelation of the matrix.
nrow(Toep), ncol(Toep), dim(Toep) Selected dimension(s) of the matrix.

Toep %*% X, X %*% Toep Toeplitz-Matrix and Matrix-Toeplitz multiplication. Also works if X is a
vector.

solve(Toep, X), solve(Toep) Solves Toeplitz systems of equations. When second argument is
missing, returns the inverse of the Toeplitz matrix.

determinant(Toep) Log-determinant of the Toeplitz matrix, i.e., same thing as log(det (toeplitz(acf))).

Toep$traceT2(acf2) If T1 == toeplitz(acf) and T2 == toeplitz(acf2), computes the trace
of solve(T1,T2). This is used in the computation of the gradient of Gaussian likelihoods
with Toeplitz variance matrix.

Toep$traceT4(acf2, acf3) IfT1 ==toeplitz(acf), T2 == toeplitz(acf2),and T3 == toeplitz(acf3),
computes the trace of solve(T1,T2) %*% solve(T1,T3). This is used in the computation of
the Hessian of Gaussian likelihoods with Toeplitz variance matrix.

Examples

construction

acf <- exp(-(1:5))

Toep <- Toeplitz(acf = acf)

alternatively, can allocate space first
Toep <- Toeplitz(n = length(acf))
Toep$setAcf(acf = acf)

dim(Toep) # == c(nrow(Toep), ncol(Toep))
Toep # show method
Toep$getAcf () # extract the acf

linear algebra

X <- matrix(rnorm(10), 5, 2)

Toep %*% X

t(X) %*% Toep

solve(Toep, X)

determinant(Toep) # log-determinant

Index

.Toeplitz (Toeplitz-class), 13
%*% (Toeplitz-class), 13
%*%,ANY , Toeplitz-method
(Toeplitz-class), 13
%*%,Toeplitz, ANY-method
(Toeplitz-class), 13

acf2incr, 2
acf2msd, 3

Choleski, 3
cholXZ (Choleski), 3
cholZX (Choleski), 3

determinant (Toeplitz-class), 13

determinant,Toeplitz-method
(Toeplitz-class), 13

dim,Toeplitz-method (Toeplitz-class), 13

dSnorm, 4

dSnormDL (dSnorm), 4

fbm.msd, 5
getAcf (Toeplitz-class), 13

matern.acf, 6
msd2acf, 7

ncol,Toeplitz-method (Toeplitz-class),
13

nrow, Toeplitz-method (Toeplitz-class),
13

pex.acf, 8

rSnorm, 8

setAcf (Toeplitz-class), 13

show, Toeplitz-method (Toeplitz-class),

13
show.Toeplitz (Toeplitz-class), 13

15

Snorm.grad, 9

Snorm. hess, 10

solve (Toeplitz-class), 13

solve,Toeplitz-method (Toeplitz-class),
13

SuperGauss, 12

toep.mult, 12

Toeplitz (Toeplitz-class), 13
Toeplitz-class, 13

traceT2 (Toeplitz-class), 13
traceT4 (Toeplitz-class), 13

	acf2incr
	acf2msd
	Choleski
	dSnorm
	fbm.msd
	matern.acf
	msd2acf
	pex.acf
	rSnorm
	Snorm.grad
	Snorm.hess
	SuperGauss
	toep.mult
	Toeplitz-class
	Index

