Package 'SuperExactTest'

June 21, 2019
Type Package
Title Exact Test and Visualization of Multi-Set Intersections
Version 1.0.7
Date 2019-06-14
Author Minghui Wang, Yongzhong Zhao and Bin Zhang
Maintainer Minghui Wang <minghui. wang@mssm.edu>
Contact Minghui Wang <minghui. wang@mssm.edu>, Bin Zhang
bin.zhang@mssm.edu

Description

Identification of sets of objects with shared features is a common operation in all disciplines. Analysis of intersections among multiple sets is fundamental for in-depth understanding of their complex relationships. This package implements a theoretical framework for efficient computation of statistical distributions of multi-set intersections based upon combinatorial theory, and provides multiple scalable techniques for visualizing the intersection statistics. The statistical algorithm behind this package was published in Wang et al. (2015) doi:10.1038/srep16923.
License GPL-3
Depends grid (>=3.1.0), methods, $\mathrm{R}(>=3.1 .0)$
Suggests knitr, rmarkdown
VignetteBuilder knitr
URL https://github.com/mw201608/SuperExactTest/
BugReports https://github.com/mw201608/SuperExactTest/issues
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-06-21 19:10:03 UTC

R topics documented:

Cancer 2
cis.eqtls 3
cpsets 3
deBarcode 4
GWAS 5
intersect 6
intersectElements 7
jaccard 8
MSET 8
msets 10
plot.msets 11
summary.msets 14
SuperExactTest 15
supertest 16
Index 18
Cancer Cancer Census Dataset

Description

This example dataset contains a list of seven cancer predisposition gene sets.

Usage

Cancer

Details

The seven cancer predisposition gene sets are:

- NRG (Rahman, N. Realizing the promise of cancer predisposition genes. Nature 2014, 505:302308);
- NBG (Tamborero, D. et al. Comprehensive identification of mutational cancer driver genes across 12 tumor types. Scientific reports 2013, 3:2650);
- LDG (Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 2013, 502:333-339);
- GGG (Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 2014, 505:495-501);
- ELG (Garraway, L. A. \& Lander, E. S. Lessons from the cancer genome. Cell 2013, 153:1737);
- CCG (Futreal, P. A. et al. A census of human cancer genes. Nature reviews. Cancer 2004, 4:177-183);
- BVG (Vogelstein, B. et al. Cancer genome landscapes. Science 2013, 339:1546-1558).

References

Minghui Wang, Yongzhong Zhao, and Bin Zhang (2015). Efficient Test and Visualization of MultiSet Intersections. Scientific Reports 5: 16923.

See Also

```
supertest
```

```
cis.eqtls cis-eQTLs
```


Description

This example dataset contains a list of cis-eQTL genes.

Details

A list is included in this dataset: cis.eqtls, which contains four sets of cis-eQTL genes published by Gibbs et al (PLOS Genetics 2010, 6:e1000952) as deposited in the eQTL Browser (http://www.ncbi.nlm.nih.gov/projects/g The four sets of cis-eQTL genes were detected in four different brain regions from Gibbs: brain cerebellum (CB), brain frontal cortex region (FC), brain temporal cortex region (TC), and brain pons region (PONS) respectively.

See Also

```
    supertest
```

```
cpsets Multi-Set Intersection Probability
```


Description

Density and distribution function of multi-set intersection test.

Usage

```
dpsets(x,L,n,log.p =FALSE)
cpsets(x,L,n,lower.tail=TRUE,log.p=FALSE,
    simulation.p.value=FALSE,number.simulations=1000000)
```


Arguments

$x \quad$ integer, number of elements overlap among all sets.
L vector, set sizes.
$\mathrm{n} \quad$ integer, background population size.
lower.tail logical; if TRUE, probability is P[overlap <= x], otherwise, P[overlap > x].
$\log . p \quad \operatorname{logical}$; if TRUE, probability p is given as $\log (\mathrm{p})$.
simulation.p.value
logical; if TRUE, probability p is computed from simulation.
number.simulations
integer; number of simulations.

Value

dpsets gives the density and cpsets gives the distribution function.

Author(s)

Minghui Wang minghui.wang@mssm.edu

References

Minghui Wang, Yongzhong Zhao, and Bin Zhang (2015). Efficient Test and Visualization of MultiSet Intersections. Scientific Reports 5: 16923.

See Also

supertest, MSET

Examples

```
## Not run:
#set up fake data
n=500; A=260; B=320; C=430; D=300; x=170
(d=dpsets(x,C(A,B,C,D),n))
(p=cpsets(x, c(A,B,C,D),n,lower.tail=FALSE))
## End(Not run)
```

deBarcode Decrypt Barcode

Description

Decrypt barcode information.

Usage

deBarcode(barcode, setnames, collapse=' \& ')

Arguments

barcode a vector of character strings, encoding the intersection combination.
setnames set names.
collapse an optional character string to separate the results. See paste.

Details

barcode are character strings of ' 0 ' and ' 1 ', indicating absence or presence of each set in a intersection combination.

Value

A vector.

Author(s)

Minghui Wang minghui.wang@mssm.edu

Examples

deBarcode(c('01011','10100'), c('S1','S2','S3','S4','S5'))

GWAS
GAWS Catalog Dataset

Description

This example dataset contains a list of gene sets associated with six types of clinical traits curated in the GWAS Catalog.

Usage

GWAS

Details

The six clinical traits are:

- NEU (Bipolar disorder and schizophrenia, Schizophrenia, Major depressive disorder, Alzheimer's disease, Parkinson's disease, Cognitive performance, Bipolar disorder);
- INF (Crohn's disease, Ulcerative colitis, Inflammatory bowel disease, Rheumatoid arthritis, Multiple sclerosis, Systemic lupus erythematosus);
- CVD (Type 2 diabetes, Coronary heart disease, Blood pressure, total Cholesterol, HDL cholesterol, Triglycerides);
- HT (height);
- IgG (IgG glycosylation);
- OB (obesity, obesity related traits).

References

Minghui Wang, Yongzhong Zhao, and Bin Zhang (2015). Efficient Test and Visualization of MultiSet Intersections. Scientific Reports 5: 16923.

See Also

supertest

```
intersect Set Operations
```


Description

Performs set union and intersection on multiple input vectors.

Usage

union(x, y, \ldots)
intersect(x, y, ...)

Arguments

x, y, \ldots vectors (of the same mode) containing a sequence of items (conceptually) with no duplicated values.

Details

These functions extend the the same functions in the base package to handle more than two input vectors.

Value

A vector of the same mode as x or y for intersect, and of a common mode for union.

Author(s)

Minghui Wang minghui.wang@mssm.edu, Bin Zhang bin.zhang@mssm.edu

References

Minghui Wang, Yongzhong Zhao, and Bin Zhang (2015). Efficient Test and Visualization of MultiSet Intersections. Scientific Reports 5: 16923.

Examples

Description

Find intersections and assign element to intersection combinations.

Usage

intersectElements(x, mutual.exclusive=TRUE)

Arguments

x
list; a collection of sets.
mutual.exclusive
logical; see Details.

Details

See example below for the use of mutual. exclusive.

Value

A data.frame with two columns:

Entry set elements.
barcode intersection combination that each entry belongs to.

Author(s)

Minghui Wang minghui.wang@mssm.edu

Examples

```
set.seed(123)
sets=list(S1=sample(letters,10), S2=sample(letters,5), S3=sample(letters,7))
intersectElements(sets,mutual.exclusive=TRUE)
intersectElements(sets,mutual.exclusive=FALSE)
```


Description

This function calculates Jaccard indices between pairs of sets.

Usage

jaccard(x)

Arguments

x
list, a collect of sets.

Value

A matrix of pairwise Jaccard indices.

Author(s)

Minghui Wang minghui.wang@mssm.edu

Examples

```
## Not run:
#set up fake data
x=list(S1=letters[1:20], S2=letters[10:26], S3=sample(letters,10), S4=sample(letters,10))
jaccard(x)
## End(Not run)
```

MSET

Exact Test of Multi-Set Intersection

Description

Calculate FE and significance of intersection among multiple sets.

Usage

$\operatorname{MSET}(\mathrm{x}, \mathrm{n}$, lower.tail=TRUE, log. $\mathrm{p}=\mathrm{FALSE})$

Arguments

X
n
lower.tail
log.p
list; a collection of sets. integer; background population size.
logical; if TRUE, probability is P [overlap < m], otherwise, P [overlap >= m], where m is the number of elements overlap between all sets. logical; if TRUE, probability p is given as $\log (\mathrm{p})$.

Details

This function implements an efficient statistical test for multi-set intersections. The algorithm behind this function was described in Wang et al 2015.

Value

A list with the following elements:
intersects a vector of intersect items.
FE fold enrichment of the intersection.
p.value one-tail probability of observing equal to or larger than the number of intersect items.

Author(s)

Minghui Wang minghui.wang@mssm.edu, Bin Zhang bin.zhang@mssm.edu

References

Minghui Wang, Yongzhong Zhao, and Bin Zhang (2015). Efficient Test and Visualization of MultiSet Intersections. Scientific Reports 5: 16923.

See Also

```
supertest, cpsets, dpsets
```


Examples

```
## Not run:
#set up fake data
x=list(S1=letters[1:20], S2=letters[10:26], S3=sample(letters,10), S4=sample(letters,10))
MSET(x, 26, FALSE)
## End(Not run)
```


Description

This object contains data regarding the intersections between multiple sets. This object is usually created by the supertest function.

Details

Intersection combination is denoted by a barcode string of ' 0 ' and ' 1 ', where a value of ' 1 ' in the ith position of the string indicates that the intersection is involved with the ith set, 0 otherwise. E.g., string ' 000101 ' indicates that the intersection is an overlap between the 4th and 6 th sets. Function deBarcode can be used to decrypt the barcode. Generic summary and plot functions can be applied to extract and visualize the results.

Value

$x \quad a \operatorname{list}$ of sets from input.
set.names names of the sets. If the input sets do not have names, they will be automatically named as Set X where X is an integer from 1 to the total number of sets.
set.sizes a vector of set sizes.
$\mathrm{n} \quad$ background population size.
overlap.sizes a named vector of intersection sizes. Each intersection component is named by a barcoded character string of '0' and '1'. See Details for barcode.
overlap.expected
a named vector of expected intersection sizes when item n is available.
P.value a vector of p values for the intersections when item n is available.

Author(s)

Minghui Wang minghui.wang@mssm.edu, Bin Zhang bin.zhang@mssm.edu

References

Minghui Wang, Yongzhong Zhao, and Bin Zhang (2015). Efficient Test and Visualization of MultiSet Intersections. Scientific Reports 5: 16923.

See Also

supertest, summary.msets, plot.msets, deBarcode

Description

This function draws intersections among multiple sets.

Usage

```
## S3 method for class 'msets'
plot(x, Layout=c('circular','landscape'), degree=NULL,
keep.empty.intersections=TRUE,
sort.by=c('set','size','degree','p-value'),
min.intersection.size=0, max.intersection.size=Inf,
ylim=NULL, log.scale=FALSE, yfrac=0.8, margin=NULL,
color.scale.pos=c(0.85, 0.9), legend.pos=c(0.85,0.25),
legend.col=2, legend.text.cex=1, color.scale.cex=1,
color.scale.title=expression(paste(-Log[10],'(',italic(P),')')),
color.on='#2EFE64', color.off='#EEEEEE',
show.overlap.size=TRUE, show.set.size=TRUE,
overlap.size.cex=0.9, track.area.range=0.3, bar.area.range=0.2,
new.gridPage=TRUE, minMinusLog10PValue=0,
maxMinusLog10PValue=NULL, show.elements=FALSE, ...)
```


Arguments

x
a msets object.
Layout layout for plotting.
degree a vector of intersection degrees for plotting. E.g., when degree $=c$ (2:3), only those intersections involving two or three sets will be plotted. By default, degree=NULL, all possible intersections are plotted.
keep.empty.intersections
logical; if FALSE, empty intersection(s) will be discarded to save plotting space.
min.intersection.size
Minimum size of an intersection to be plotted.
max.intersection.size
Maximum size of an intersection to be plotted.
sort.by how to sort intersections. It can be either one of the key words "set", "size", "degree", and "p-value", or a vector of custom ordered set combination strings.
ylim the limits $\mathrm{c}(\mathrm{y} 1, \mathrm{y} 2)$ of plotting overlap size.
log.scale logical; whether to plot with log transformed intersection sizes.
yfrac numeric; the fraction (0 to 1) of canvas used for plotting bars. Only used for landscape Layout.

```
margin numeric; a vector of 4 numeric values specifying the margins (bottom, left, top,
    & right) in unit of "lines". Default c(1,1,1,1)+0.1 for circular Layout and
    c(0.5,5,1.5,2)+0.1 for landscape Layout. Increase margin if the plot area is
    cropped.
color.scale.pos
    numeric; }\textrm{x}\mathrm{ and y coordinates (0 to 1) for packing the color scale guide. It could
    be a keyword "topright" or "topleft" in the landscape layout, and one of
    "topright", "topleft", "bottomright" and "bottomleft" in the circular
    layout.
legend.pos numeric; x and y coordinates (0 to 1) for packing the legend in the circular
        layout. It could be one of the keywords "bottomright", "bottomleft", "topleft"
        and "topright".
legend.col integer; number of columns of the legend in the circular layout.
legend.text.cex
    numeric; specifying the amount by which legend text should be magnified rela-
    tive to the default.
color.scale.cex
    numeric; specifying the amount by which color scale text should be magnified
    relative to the default.
color.scale.title
    character or expression; a title for the color scale guide.
color.on color code; specifying the color for set(s) which are "present" for an intersec-
    tion.
color.off color code; specifying the color for set(s) which are "absent" for an intersection.
show.overlap.size
    logical; whether to show overlap size.
show.set.size color code; whether to show set size in the landscape layout.
overlap.size.cex
    numeric; specifying the amount by which overlap size text should be magnified
    relative to the default.
track.area.range
    the magnitude of track area from origin in the circular layout.
bar.area.range the magnitude of bar area from edge of the track area in the circular layout.
    The sum of track.area.range and track.area.range should not be larger
    than 0.5.
new.gridPage logic; whether to start a new grid page. Set FALSE to allow for customized
    arrangement of the grid layout.
minMinusLog10PValue
    numeric; minimum minus log10 P value for capping the scale of color map.
    Default 0.
maxMinusLog10PValue
    numeric; maximum minus log10 P value for capping the scale of color map.
    Default maximum from the data.
show.elements logical; whether to show the intersection elements on top of the bars with the
    landscape layout. See Details for more control options elements.*.
    additional arguments for the plot function. See Details.
```


Details

The plot canvas has coordinates $0 \sim 1$ for both x and y axes. Additional optional plot parameters include:

- ylab, a chracter string of y axis label.
- heatmapColor, a vector of customized heat colors.
- show. expected.overlap, whether to show expcted overlap in landscape Layout. Default 'FALSE'.
- expected.overlap.style, one of c("hatchedBox","horizBar","box"). Default 'hatchedBox'.
- expected. overlap.lwd, line width for expected.overlap "horizBar" and "box". Default 2.
- color.expected.overlap, color for showing expcted overlap in hatched lines. Default 'grey'.
- alpha. expected. overlap, alpha channel for transparency for showing expcted overlap hatched lines. Default 1 (normalized to the range 0 to 1).
- cex, scale of text font size.
- cex. lab, scale of axis label text font size.
- show. track.id, logic, whether to show the track id in the circular layout. Default TRUE.
- phantom. tracks, number of phantom tracks in the middle in the circular layout. Default 2.
- gap.within. track, ratio of gap width over block width on the same track. Default 0.1.
- gap. between. track, ratio of gap width over track width. Default 0.1.
- bar.split, a vector of two values specifying a continuous range that will be cropped in the y axis with the landscape layout.
- elements.list, a data.frame or matrix such as the one generated by the summary function from a msets object, with row names matching the barcodes of intersection combinations and at least one column named "Elements" listing the elements to be displayed (the elements should be concatenated by separator ", ").
- elements.cex, numeric; specifying the amount by which intersection element text should be magnified. Default 0.9.
- elements.rot, numeric; the angle to rotate the text of intersection elements. Default 45.
- elements.col, colour for intersection element text. Default black.
- elements.maximum, maximum number of elements to show.
- intersection.size. rotate, logic, whether to rotate the text of intersection size.
- flip. vertical, logic, whether to flip the bars to downwards in landscape Layout. Default 'FALSE'.

Value

No return.

Author(s)

Minghui Wang minghui.wang@mssm.edu, Bin Zhang bin.zhang@mssm.edu

References

Minghui Wang, Yongzhong Zhao, and Bin Zhang (2015). Efficient Test and Visualization of MultiSet Intersections. Scientific Reports 5: 16923.

See Also

msets

Examples

```
## Not run:
#set up fake data
x=list(S1=letters[1:20], S2=letters[10:26], S3=sample(letters,10), S4=sample(letters,10))
obj=supertest(x,n=26)
plot(obj)
## End(Not run)
```

summary.msets
Summarize an msets Object

Description

This function outputs summary statistics of a msets object.

Usage

\#\# S3 method for class 'msets'
summary (object, degree=NULL, ...)

Arguments

object	a msets object.
degree	a vector of intersection degrees to pull out.
\ldots.	additional arguments (not implemented).

Value

A list:

Barcode	a vector of $0 / 1$ character strings, representing the set composition of each inter- section.
otab	a vector of observed intersection size between any combination of sets.
etab	a vector of expected intersection size between any combination of sets if back- ground population size is specified.
set. names	set names.

set.sizes	set sizes.
n	background population size.
P. value	upper tail p value for each intersection if background population size n is speci- fied.
Table	a data.frame containing degree, otab, etab, fold change, p value and the overlap elements.

Author(s)

Minghui Wang minghui.wang@mssm.edu, Bin Zhang bin.zhang@mssm.edu

References

Minghui Wang, Yongzhong Zhao, and Bin Zhang (2015). Efficient Test and Visualization of MultiSet Intersections. Scientific Reports 5: 16923.

See Also

```
msets
```


Examples

```
## Not run:
#set up fake data
x=list(S1=letters[1:20], S2=letters[10:26], S3=sample(letters,10), S4=sample(letters,10))
obj=supertest(x,n=26)
summary(obj)
## End(Not run)
```

```
SuperExactTest SuperExactTest Package
```


Description

Efficient Test and Visualization of Multi-set Intersections

Details

The main functions that most users may need from this package are supertest and MSET. For a brief introduction of using this package, please see vignette("set_html").

Author(s)

Minghui Wang minghui.wang@mssm.edu, Bin Zhang bin.zhang@mssm.edu

References

Minghui Wang, Yongzhong Zhao, and Bin Zhang (2015). Efficient Test and Visualization of MultiSet Intersections. Scientific Reports 5: 16923.

See Also

supertest, MSET

Examples

```
## Not run:
#See a brieft instroduction of using this package
vignette("set_html")
## End(Not run)
```

supertest	Calculate Intersections Among Multiple Sets and Perform Statistical
	Tests

Description

This function calculates intersection sizes among multiple sets and performs statistical tests of the intersections.

Usage

supertest(x, n=NULL, degree=NULL, ...)

Arguments

x
$\mathrm{n} \quad$ integer, background population size. Required for computing the statistical significance of intersections.
degree \quad a vector of intersection degrees for overlap analysis. E.g., when degree=c (2:3), only those intersections involving two or three sets will be computed. By default, degree=NULL, all possible intersections are computed.
... additional arguments (not implemented).

Details

This function calculates intersection sizes between multiple sets and, if background population size n is specified, performs statistical tests of the intersections. For a brief introduction of using this package, please see vignette("set_html").

Value

An object of class msets.

Author(s)

Minghui Wang minghui.wang@mssm.edu, Bin Zhang bin.zhang@mssm.edu

References

Minghui Wang, Yongzhong Zhao, and Bin Zhang (2015). Efficient Test and Visualization of MultiSet Intersections. Scientific Reports 5: 16923.

See Also

msets, MSET, Cancer, cpsets, dpsets

Examples

```
## Not run:
#Analyze the cancer gene sets
data(Cancer)
Result=supertest(Cancer, n=20687)
summary(Result)
plot(Result,degree=2:7,sort.by='size')
## End(Not run)
```


Index

*Topic classes

msets, 10
*Topic datasets
Cancer, 2
cis.eqtls, 3
GWAS, 5
Cancer, 2, 17
cis.eqtls, 3
cpsets, 3, 9, 17
deBarcode, 4, 10
dpsets, 9, 17
dpsets (cpsets), 3
GWAS, 5
intersect, 6
intersectElements, 7
jaccard, 8
MSET, 4, 8, 15-17
msets, 10, 14-17
paste, 4
plot.msets, 10, 11
summary.msets, 10,14
SuperExactTest, 15
supertest, 3-5, 9, 10, 15, 16, 16
supertest,list-method (supertest), 16
union (intersect), 6

