The goal of StempCens is to estimates the parameters of a censored or missing data in spatio-temporal models using the SAEM algorithm. This algorithm is a stochastic approximation of the widely used EM algorithm and an important tool for models in which the E-step does not have an analytic form. Besides the expressions obtained to estimate the parameters to the proposed model, we include the calculations for the observed information matrix using the method developed by Thomas (1982). To examine the performance of the fitted model, case-deletion measure are provided. Moreover, it computes the spatio-temporal covariance matrix.
You can install the released version of StempCens from CRAN with:
This is a basic example which shows you how to solve a common problem:
# Initial parameter values
beta <- c(-1,1.50); phi <- 5; rho <- 0.45; tau2 <- 0.80; sigma2 <- 1.5
# Simulating data
n1 <- 5 # Number of spatial locations
n2 <- 5 # Number of temporal index
set.seed(1000)
x.coord <- round(runif(n1,0,10),9) # X coordinate
y.coord <- round(runif(n1,0,10),9) # Y coordinate
coordenadas <- cbind(x.coord,y.coord) # Cartesian coordinates without repetitions
coord2 <- cbind(rep(x.coord,each=n2),rep(y.coord,each=n2)) # Cartesian coordinates with repetitions
time <- as.matrix(seq(1,n2,1)) # Time index without repetitions
time2 <- as.matrix(rep(time,n1)) # Time index with repetitions
x1 <- rexp(n1*n2,2)
x2 <- rnorm(n1*n2,2,1)
x <- cbind(x1,x2)
media <- x%*%beta
# Covariance matrix
H <- as.matrix(dist(coordenadas)) # Spatial distances
Mt <- as.matrix(dist(time)) # Temporal distances
Cov <- CovarianceM(phi,rho,tau2,sigma2,distSpa=H,disTemp=Mt,kappa=0,type.S="exponential")
# Data
require(mvtnorm)
y <- as.vector(rmvnorm(1,mean=as.vector(media),sigma=Cov))
perc <- 0.2
aa=sort(y); bb=aa[1:(perc*n1*n2)]; cutof<-bb[perc*n1*n2]
cc=matrix(1,(n1*n2),1)*(y<=cutof)
y[cc==1] <- cutof
# Estimation
est <- EstStempCens(y, x, cc, time2, coord2, inits.phi=3.5, inits.rho=0.5, inits.tau2=0.7,
type.Data="balanced", cens.type="left", method="nlminb", kappa=0,
type.S="exponential",
IMatrix=TRUE, lower.lim=c(0.01,-0.99,0.01), upper.lim=c(30,0.99,20), M=20,
perc=0.25, MaxIter=300, pc=0.2, error = 10^-6)
For the diagnostic analysis in the EstStempCens
function the parameter input IMatrix
needs to be TRUE
.