Provide regularized principal component analysis incorporating smoothness, sparseness and orthogonality of eigenfunctions by using the alternating direction method of multipliers algorithm (Wang and Huang, 2017, <doi:10.1080/10618600.2016.1157483>). The method can be applied to either regularly or irregularly spaced data, including 1D, 2D, and 3D.
Version: | 1.2.0.1 |
Imports: | Rcpp, RcppParallel |
LinkingTo: | Rcpp, RcppArmadillo, RcppParallel |
Published: | 2020-01-09 |
Author: | Wen-Ting Wang, Hsin-Cheng Huang |
Maintainer: | Wen-Ting Wang <egpivo at gmail.com> |
BugReports: | https://github.com/egpivo/SpatPCA/issues |
License: | GPL-3 |
URL: | https://github.com/egpivo/SpatPCA |
NeedsCompilation: | yes |
SystemRequirements: | C++11 |
CRAN checks: | SpatPCA results |
Reference manual: | SpatPCA.pdf |
Package source: | SpatPCA_1.2.0.1.tar.gz |
Windows binaries: | r-devel: SpatPCA_1.2.0.1.zip, r-release: SpatPCA_1.2.0.1.zip, r-oldrel: SpatPCA_1.2.0.1.zip |
macOS binaries: | r-release: SpatPCA_1.2.0.1.tgz, r-oldrel: SpatPCA_1.2.0.1.tgz |
Old sources: | SpatPCA archive |
Please use the canonical form https://CRAN.R-project.org/package=SpatPCA to link to this page.