Package ‘SpatEntropy’

February 28, 2018

Type Package

Title Spatial Entropy Measures

Version 0.1.0

Author L. Altieri, D. Cocchi, G. Roli

Maintainer L. Altieri <linda.altieri@unibo.it>
Depends R (>= 3.1.0), spatstat

Description The heterogeneity of spatial data presenting a finite number of categories can be mea-
sured via computation of spatial entropy. Functions are available for the computa-
tion of the main entropy and spatial entropy measures in the literature. They include the tradi-
tional version of Shannon's entropy, Batty's spatial entropy, O'Neill's en-
tropy, Li and Reynolds' contagion index, Karlstrom and Ceccato's entropy, Leibovici's en-
tropy, Parresol and Edwards' entropy and Altieri's entropy. References for all mea-
sures can be found under the topic 'SpatEntropy'. The package is able to work with lat-
tice and point data.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2018-02-28 16:51:14 UTC

R topics documented:

adj_list. e e
adj_mato e
ATEAPATE .+ . v o e
batty
COMAZION v vt it e e e e e e e e e e e
COOTAS_PIX .+ . v v v e
couple_count e

2 adj_list

data_bologna e e 10
data_rainforest e e 11
euclid_dist e 11
karlstrom e e e e e e 12
leibovici e e 14
PAIT_COUNL o o e e e e e e e e e 15
Parresol . . . oL L e e e e 16
plot_areapart e e e e e e e e e 17
plot_lattice e e e e e 18
shannonX L e e 20
shannonX_Sq e e e e e 21
shannonZ L L e e e e 22
shannonZ_Sq e e e e e e 23
SpatEntropy e e e e 24
SPAL_ENITOPY « v v v v v e 25

Index 27

adj_list Adjacency list for spatial entropy.
Description

adj_list builds a list of adjacency matrices for the computation of Altieri’s entropy, one for each
possible distance range within the observation area.

Usage

adj_list(dist.mat, dist.breaks)

Arguments
dist.mat An upper-triangular matrix of Euclidean distances, as returned by euclid_dist().
dist.breaks A numeric vector with the breaks for the partition of the maximum distance into
distance classes. It must start at O and end at the maximum possible distance
within the observation area.
Details

This function is needed for the computation of Altieri’s spatial entropy. After defining the distance
classes in which the observation window has to be partitioned, for each class ad adjacency matrix
is constructed. Each adjacency matrix identifies what pairs of points/areas fall within the specific
distance range is the basis for the computation of the local term of Altieri’s spatial entropy.

Value

A list of length length(dist.breaks)-1; each element is an upper-triangular adjacency matrix as
returned by adj_mat () according to the corresponding distance range.

adj_mat 3

Examples

dist.breaks=c(0,1,2,5,10%xsqrt(2))
dist.mat=euclid_dist(coords_pix(square(10), nrow=10, ncol=10))
my.adj.list=adj_list(dist.mat, dist.breaks)

adj_mat Adjacency matrix.

Description
adj_mat builds an upper-triangular adjacency matrix for the set of points/areas in a chosen distance
range.

Usage
adj_mat(dist.mat, ddo = @, dd1)

Arguments
dist.mat An upper-triangular matrix of Euclidean distances, as returned by euclid_dist().
dde Numeric, minimum distance for the neighbourhood/couples/pairs, 0 by default.
dd1 Numeric, maximum distance for the neighbourhood/couples/pairs.

Details

The adjacency matrix is a square matrix, with each row corresponding to a point/area, and with 1
values along the row marking the points/areas that are considered neighbours’ or *pairing/coupling’.
In the context of spatial entropy, an adjacency matrix may take two roles. If Karlstrom and Cec-
cato’s entropy is computed, the adjacency matrix identifies what areas are neighbours, i.e. what
areas enter the computation of the local entropy of a specific area. If a spatial entropy based on the
transformed variable Z is computed (see shannonZ for details on Z), the adjacency matrix identifies
what pairs/couples of points/areas must be considered for the computation, according to the chosen
distance range of interest.

Value

An nxn upper-triangular adjacency matrix (where n in the data vector length) with value 1 if two
units are neighbours or form a couple/pair, 0 otherwise.

Examples

dist.mat=euclid_dist(cbind(rep(1:5, each=5), rep(1:5,5)))
plot(cbind(rep(1:5, each=5), rep(1:5,5)))

adj_mat(dist.mat, ddi=dist.mat[1,2]) #for the contiguity matrix
adj_mat(dist.mat, 1, 3)

4 areapart

areapart Area partition.

Description
This function partitions the observation area in a number of sub-areas, and assigns the data points/pixels
to the areas.

Usage

areapart(win, G, data.coords)

Arguments
win The observation area, an object of class owin, see package spatstat.
G An integer if sub-areas are randomly generated, determining the number G of
sub-areas. Alternatively, a Gx2 matrix with the sub-areas centroids’ coordinates.
data.coords A two column matrix. If the dataset is a point pattern, the point coordinates. If
the dataset is a raster/pixel matrix, the centroids’ coordinates, provided by user
or returned by coords_pix().
Details

An event of interest (in the form of a point or binary areal dataset) occurs over an observation area
divided into sub-areas. If the partition is random, this function generates the sub-areas by randomly
drawing the areas’ centroids over the observation window. Then, data points/pixels are assigned to
the area with the closest centroid.

Value

A list with elements:

* G.coords a point pattern containing the GG areas’ centroids

* data.assign a three column matrix, where each pair of data coordinates is matched to one of
the G areas (numbered 1 to G).

Examples

#LATTICE DATA

#random generation of areas
ccc=coords_pix(area=square(10), nrow=10, ncol=10)
partition=areapart(square(10), G=5, data.coords=ccc)

#providing a pre-fixed area partition

win=square(10)

G=5

GG=cbind(runif (G, win$xrange[1], win$xrange[2]),
runif (G, win$yrangel[1], win$yrange[2]))

batty 5

ccc=coords_pix(area=win, pixel.xsize = 2, pixel.ysize = 2)
partition=areapart(win, G=GG, data.coords=ccc)

#POINT DATA

#random generation of areas

data.pp=runifpoint (100, win=square(10))
marks(data.pp)=sample(c(”a","b","c"), 100, replace=TRUE)
ccc=coords(data.pp)

partition=areapart(square(10), G=4, data.coords=ccc)

#providing a pre-fixed area partition
win=square(10)
G=4
GG=cbind(runif (G, win$xrange[1], win$xrange[2]),

runif (G, win$yrange[1], win$yrange[2]))
data.pp=runifpoint (100, win=win)
marks(data.pp)=sample(c("a","b","c"), 100, replace=TRUE)
ccc=coords(data.pp)
partition=areapart(win, G=GG, data.coords=ccc)

#for plotting the area partiton
?plot_areapart

batty Batty’s entropy.

Description

This function computes Batty’s spatial entropy, following Batty (1976), see also Altieri et al (2017)
(references are under the topic SpatEntropy).

Usage
batty(data, data.assign, is.pointdata = FALSE, category, win = NULL,
G.coords)
Arguments
data A data matrix or vector, can be numeric, factor, character, ... If the dataset is a
point pattern, data is the mark vector.
data.assign A three column matrix, containing the data coordinates (centroids when pix-
els) and the id of the corresponding sub-area. Provided by user or returned by
areapart().

is.pointdata Logical: T if data are a point pattern, F if they are pixels.

category A character string, the exact name of the category for which Batty’s spatial en-
tropy is computed, as in data.

6 batty

win An owin object (see package spatstat), the observation area. Only needed for
lattice data.

G.coords A point pattern (an object of class ppp see package spatstat), or a two column
matrix with the area centroids’ coordinates. Provided by user or returned by
areapart().

Details

Batty’s spatial entropy measures the heterogeneity in the spatial distribution of a phenomenon of
interest, with regard to an area partition. It is high when the phenomenon is equally intense over
the sub-areas, and low when it concentrates in one or few sub-areas. This function starts from the
output of areapart() and allows to compute Batty’s entropy as

H= Zpg log(Ty/py)

where p, is the probability of occurrence of the phenomenon over sub-area g, and Ty is the sub-
area size. When data are categorical, the phenomenon of interest corresponds to one category, which
must be specified. If data are an unmarked point pattern, a fake mark vector must be created with
the same category for all points.

Value
Batty’s spatial entropy value, as well as a table with information about each sub-area:

* area.id the sub-area id
* abs. freq the number of points/pixels presenting the category of interest for each sub-area

* rel.freq the proportion of points/pixels presenting the category of interest in each sub-area,
with regard to the total number of points/pixels with the category of interest

¢ Tg the sub-area size.

Examples

#LATTICE DATA

data.lat=matrix(sample(c("a","b","c"), 100, replace=TRUE), nrow=10)
ccc=coords_pix(area=square(10), nrow=10, ncol=10)
partition=areapart(square(10), G=5, data.coords=ccc)

batty(data.lat, partition$data.assign, category="a",

win=square(10), G.coords=partition$G.coords)
plot_areapart(partition$data.assign, square(10), is.pointdata=FALSE,
add.data=TRUE, data.bin=TRUE, category="a",

data=data.lat, G.coords=partition$G.coords, main="")

#POINT DATA

data.pp=runifpoint (100, win=square(10))
marks(data.pp)=sample(c(”a","b","c"), 100, replace=TRUE)
ccc=coords(data.pp)

partition=areapart(square(10), G=4, data.coords=ccc)
batty(marks(data.pp), partition$data.assign, is.pointdata=TRUE,
category="b", G.coords=partition$G.coords)
plot_areapart(partition$data.assign, square(10), is.pointdata=TRUE,

contagion 7

add.data=TRUE, data.bin=TRUE, category="b",
data=data.pp, G.coords=partition$G.coords, main="")

contagion Li and Reynolds’ relative contagion index.

Description
This function computes Li and Reynold’s contagion index, following Li and Reynolds (1993), start-
ing from data or from the output of leibovici(). References can be found at SpatEntropy.
Usage

contagion(oneill = NULL, n.cat = NULL, data = NULL, adj.mat = NULL,
missing.cat = NULL, ordered = TRUE)

Arguments
oneill O’Neill’s entropy as the output of leibovici(). If this is provided, nothing else
needs to be specified, except for n. cat if wished.
n.cat Optional, an integer denoting the number of categories of the study variable.
data A data matrix or vector, can be numeric, factor, character, ... If the dataset is a
point pattern, data is the mark vector.
adj.mat The contiguity matrix, upper- or lower-triangular. Provided by user or generated
by adj_mat().
missing.cat Optional, a vector with the names of all categories that are absent in data.
ordered Logical, T if the entropy is computed using ordered couples (see couple_count()),
F if it is computed using pairs (see pair_count()).
Details

This index is based on the transformed variable Z identifying couples of realizations of the vari-
able of interest. A distance of interest is fixed: the contagion index is originally thought for areas
sharing a border, as O’Neill’s entropy. This corresponds to creating a contiguity matrix as done by
adj_mat(). Then, all couples of realizations of the variable of interest identified by the adjacency
matrix are counted and their relative frequencies are used to compute the index, whichis 1 — NO
where NO is the normalized O’Neill’s entropy, i.e. O’Neill’s entropy divided by its maximum
log(I), I being the number of categories of the variable under study. Couples can be ordered or not
(pairs), with ordered couples as the default option since it is the authors’ choice. This function also
allows to compute contagion for neighbourhood structures different from contiguity, by suitably
defining the adjacency matrix.

Value

Li and Reynolds’ contagion index, as well as a summary table containing the couples (or pairs)
along with their absolute and relative frequencies.

8 coords_pix

Examples

dist.mat=euclid_dist(cbind(rep(1:5, each=5), rep(1:5,5)))
adj.mat=adj_mat(dist.mat, ddi=dist.mat[1,2]) #for the contiguity matrix
data=sample(1:3, 25, replace=TRUE)

oneill=leibovici(data, adj.mat)

contag=contagion(oneill)

contag=contagion(data=data, adj.mat=adj.mat)

coords_pix Pixel coordinates generation.

Description

coords_pix generates the coordinates of the pixel centroids, given an obervation area and the pixel
size. The resulting coordinates may be used as arguments of euclid_dist().

Usage

coords_pix(area, pixel.xsize = diff(area$xrange)/ncol,
pixel.ysize = diff(area$yrange)/nrow,
nrow = diff(area$yrange)/pixel.ysize,
ncol = diff(area$xrange)/pixel.xsize)

Arguments
area The observation area, an owin object, see package spatstat
pixel.xsize A scalar, length of the pixel side along the x axis (unnecessary if ncol is pro-
vided)
pixel.ysize A scalar, length of the pixel side along the y axis (unnecessary if nrow is pro-
vided)
nrow An integer, number of pixels along the y axis (unnecessary if pixel.ysize is
provided)
ncol An integer, number of pixels along the = axis (unnecessary if pixel.xsize is
provided)
Details

When the Euclidean distance is computed between areas, the most common choice is to use the area
centroid as the reference point. This function returns the centroids of a regular lattice. You can either
provide the number of pixels along the two cardinal directions (using ncol for the x direction and
nrow for the y direction), or alternatively provide the pixel size along the two directions (rectangular
areas are allowed).

couple_count

Value

A two column matrix containing the x and y coordinates of the pixel centroids.

Examples

ccc=coords_pix(area=square(10), nrow=10, ncol=10)
plot(square(10)); points(ccc)

ccc=coords_pix(area=square(10), pixel.xsize = 2, pixel.ysize = 2)
plot(square(10)); points(ccc, pch=16)

couple_count

Build ordered couples in a dataset.

Description

This function builds and counts the number of all types of ordered couples in a data vector or
matrix, according to a chosen adjacency matrix. ’Ordered’ means that a couple (i,j) is different than

a couple (j,i).

Usage

couple_count(data, adj.mat, missing.cat = NULL)

Arguments

data

adj.mat

missing.cat

Details

A matrix or vector, can be numeric, factor, character... If the dataset is a point
pattern, data is the mark vector.

An adjacency matrix, upper- or lower-triangular. Provided by user or generated
by adj_mat.

A vector with the names of all categories that are absent in data.

This function needs a data matrix or data vector of any type (numeric, factor, character, ...), and
an adjacency matrix as generated by adj_mat(). It returns all the data couples identified by the
adjacency matrix, i.e. occurring at the chosen neighbourhood distance. Relative and absolute fre-
quencies for all possible couples are returned, and may be used for computation of spatial entropy
at the chosen distance range. *Ordered’ means that the relative spatial location is relevant, i.e. that
a couple where category ¢ occurs at the left of category j is different from a couple where category
J occurs at the left of category .

Value

The number of couples, and a table with absolute and relative frequencies for each couple of cate-

gories.

10 data_bologna

Examples

dist.mat=euclid_dist(cbind(rep(1:5, each=5), rep(1:5,5)))
adj.mat=adj_mat(dist.mat, ddi=dist.mat[1,2]) #for the contiguity matrix
couple_count(sample(1:3, 25, replace=TRUE), adj.mat)

data_bologna Bologna data.

Description

A lattice dataset with Bologna Urban Morphological Zones.

Usage

data_bologna

Format

A matrix with 120 rows and 96 columns. Values are either O (non-urban) or 1 (urban).

Details

This raster/pixel/lattice dataset comes from the EU CORINE Land Cover project (EEA, 2011) and
is dated 2011. It is the result of classifying the original land cover data into urbanised and non-
urbanised zones, known as ’Urban Morphological Zones’ (UMZ, see EEA, 2011). UMZ data are
useful to identify shapes and patterns of urban areas, and thus to detect what is known as urban
sprawl. The Bologna metropolitan area is extracted from the European dataset and is composed by
the municipality of Bologna and the surrounding municipalities. The dataset is made of 120x96
pixels of size 250x250 metres.

Source

EEA (2011). Corine land cover 2000 raster data. Technical Report, downloadable at http://www.eea.europa.eu/data-
and-maps/ data/corine-land-cover-2000-raster- 1

data_rainforest 11

data_rainforest Rainforest tree data.

Description

A marked point pattern dataset about four rainforest tree species.

Usage

data_rainforest

Format
A ppp object (see package spatstat) with 7251 points, containing:

window An object of type owin (see package spatstat), the 1000x500 metres observation area
X, Y Numeric vectors with points’ coordinates

marks A character vector matching the tree species to the data points

Details

This dataset documents the presence of tree species over Barro Colorado Island, Panama. Barro
Colorado Island has been the focus of intensive research on lowland tropical rainforest since 1923
(http://www.ctfs.si.edu). Research identified several tree species over a rectangular observation
window of size 1000x500 metres; the tree species constitute the point data categorical mark. This
dataset presents 4 species with different spatial configurations: Acalypha diversifolia, Chamguava
schippii, Inga pezizifera and Rinorea sylvatica. The overall dataset has a total number of 7251
points. The dataset is analyzed with spatial entropy measures in Altieri et al (2017) (references can
be found at SpatEntropy).

Source

http://www.ctfs.si.edu

euclid_dist Euclidean distance.

Description
euclid_dist computes the Euclidean distance between all point couples/pairs identified by two
coordinate matrices. Useful alone, or together with adj_mat ().

Usage

euclid_dist(coordsl1, coords2 = coords1)

12 karlstrom

Arguments
coords1 A two column matrix containing starting coordinates. Provided by user or as
output of coords_pix().
coords2 A two column matrix with containing coordinates, same as coords1 by default.
Details

euclid_dist needs two matrices listing the coordinates of two sets of points. It computes the
Euclidean distance between each point of the first matrix and all points of the second matrix. The
default option provides the Euclidean distance between all points in a single set.

Value
An upper-triangular distance matrix: a nrow(coords1) x nrow(coords2) matrix with Euclidean
distances between points.

Examples

euclid_dist(cbind(runif(10), runif(10)))

karlstrom Karlstrom and Ceccato’s entropy.

Description

This function computes Karlstrom and Ceccato’s spatial entropy for a chosen neighbourhood dis-
tance, following Karlstrom and Ceccato (2002), see also Altieri et al (2017) (references are under
the topic SpatEntropy).

Usage

karlstrom(data, data.assign, category, G.coords, neigh.dist)

Arguments

data A data matrix or vector, can be numeric, factor, character, ... If the dataset is a
point pattern, data is the mark vector.

data.assign A three column matrix, containing the data coordinates (centroids when pix-
els) and the id of the corresponding sub-area. Provided by user or returned by
areapart().

category A character string, the exact name of the category for which Karlstrom and
Ceccato’s spatial entropy is computed, as in data.

G.coords A point pattern (an object of class ppp see package spatstat), or a two column
matrix with the area centroids’ coordinates. Provided by user or returned by
areapart().

neigh.dist A scalar, the chosen neighbourhood Euclidean distance.

karlstrom 13

Details

Karlstrom and Ceccato’s spatial entropy measures the heterogeneity in the spatial distribution of
a phenomenon of interest, with regard to an area partition and accounting for the neighbourhood.
It is similar to Batty’s entropy (see batty()) discarding the sub-area size, with the difference that
the probability of occurrence of the phenomenon over area g is actually a weighted sum of the
neighbouring probabilities. When data are categorical, the phenomenon of interest corresponds to
one category, which must be specified. If data are an unmarked point pattern, a fake mark vector
must be created with the same category for all points.

Value

Karlstrom and Ceccato’s spatial entropy value as well as a table with information about each sub-
area:

* area.id the sub-area id
* abs. freq the number of points/pixels presenting the category of interest for each sub-area

* rel.freq the proportion of points/pixels presenting the category of interest in each sub-area,
with regard to the total number of points/pixels with the category of interest

* p.tilde the probability of occurrence over area g weighted with its neighbours.

Examples

#LATTICE DATA

data.lat=matrix(sample(c(”a","b","c"), 100, replace=TRUE), nrow=10)
ccc=coords_pix(area=square(10), nrow=10, ncol=10)
partition=areapart(square(10), G=5, data.coords=ccc)
karlstrom(data.lat, partition$data.assign, category="a",
G.coords=partition$G.coords, neigh.dist=2)
plot_areapart(partition$data.assign, square(10), is.pointdata=FALSE,
add.data=TRUE, data.bin=TRUE, category="a",

data=data.lat, G.coords=partition$G.coords, main="")

#POINT DATA

data.pp=runifpoint (100, win=square(10))
marks(data.pp)=sample(c("a","b","c"), 100, replace=TRUE)
ccc=coords(data.pp)

partition=areapart(square(10), G=4, data.coords=ccc)
karlstrom(marks(data.pp), partition$data.assign,

category="b", G.coords=partition$G.coords, neigh.dist=4)
plot_areapart(partition$data.assign, square(10), is.pointdata=TRUE,
add.data=TRUE, data.bin=TRUE, category="b",

data=data.pp, G.coords=partition$G.coords, main="")

14 leibovici

leibovici O’Neill’s and Leibovici’s entropy.

Description

This function computes Leibovici’s entropy according to a chosen distance d (with O’Neill’s en-
tropy as a special case) following Leibovici (2009), see also Altieri et al (2017). References can be
found at SpatEntropy.

Usage

leibovici(data, adj.mat, missing.cat = NULL, ordered = TRUE)

Arguments
data A data matrix or vector, can be numeric, factor, character, ... If the dataset is a
point pattern, data is the mark vector.
adj.mat An adjacency matrix, upper- or lower-triangular. Provided by user or generated
by adj_mat().
missing.cat Optional, a vector with the names of all categories that are absent in data.
ordered Logical, T if the entropy is computed using ordered couples (see couple_count()),
F if it is computed using pairs (see pair_count()).
Details

This index is based on the transformed variable Z identifying couples of realizations of the variable
of interest. A distance of interest is fixed, which in the case of O’Neill’s entropy is the contiguity,
i.e. sharing a border for lattice data; this corresponds to creating an adjacency (contiguity) matrix
as done by adj_mat (). Then, all couples of realizations of the variable of interest identified by the
adjacency matrix are counted and their relative frequencies are used to compute the index with the
traditional Shannon’s formula. Couples can be ordered or not (pairs), with ordered couples as the
default option being the authors’ choice.

Value

Leibovici’s spatial entropy value (O’Neill’s entropy when contiguity is considered) as well as a
summary table containing the couples (or pairs) along with their absolute and relative frequencies.

Examples

##0'NEILL

dist.mat=euclid_dist(cbind(rep(1:5, each=5), rep(1:5,5)))
adj.mat=adj_mat(dist.mat, ddi=dist.mat[1,2]) #for the contiguity matrix
data=sample(1:3, 25, replace=TRUE)

oneill=leibovici(data, adj.mat)

##LEIBOVICI

pair_count 15

dist.mat=euclid_dist(cbind(rep(1:5, each=5), rep(1:5,5)))
adj.mat=adj_mat(dist.mat, ddi=4) #for the contiguity matrix
data=sample(1:3, 25, replace=TRUE)

leib=leibovici(data, adj.mat)

pair_count Build pairs (unordered couples) in a dataset.

Description

This function builds and counts the number of all types of pairs in a data vector or matrix, according
to a chosen adjacency matrix.

Usage

pair_count(data, adj.mat, missing.cat = NULL)

Arguments
data A matrix or vector, can be numeric, factor, character... If the dataset is a point
pattern, data is the mark vector.
adj.mat An adjacency matrix, upper- or lower-triangular. Provided by user or generated
by adj_mat().
missing.cat Optional, a vector with the names of all categories that are absent in data.
Details

This function needs a data matrix or data vector of any type (numeric, factor, character, ...), and an
adjacency matrix as generated by adj_mat (). It returns all the data pairs identified by the adjacency
matrix, i.e. occurring at the chosen neighbourhood distance. Relative and absolute frequencies for
all possible pairs are returned, and may be used for computation of spatial entropy at the chosen
distance range. *Unordered couple’, i.e. ’pair’, means that the relative spatial location is irrelevant,
i.e. that a couple where category 7 occurs at the left of category j is identical to a couple where
category j occurs at the left of category .

Value

The number of pairs, and a table with absolute and relative frequencies for each pair of categories.

Examples

dist.mat=euclid_dist(cbind(rep(1:5, each=5), rep(1:5,5)))
adj.mat=adj_mat(dist.mat, ddi=dist.mat[1,2]) #for the contiguity matrix
pair_count(sample(1:3, 25, replace=TRUE), adj.mat)

16 parresol

parresol Parresol and Edwards’ entropy.

Description

Compute Parresol and Edwards’ entropy, following Parresol and Edwards (2014), starting from data
or from the output of leibovici(). References can be found at SpatEntropy.

Usage

parresol(oneill = NULL, n.cat = NULL, data = NULL, adj.mat = NULL,
missing.cat = NULL, ordered = TRUE)

Arguments
oneill O’Neill’s entropy as the output of leibovici(). If this is provided, nothing else
needs to be specified, except for n. cat if wished.
n.cat Optional, an integer denoting the number of categories of the study variable.
data A data matrix or vector, can be numeric, factor, character, ... If the dataset is a
point pattern, data is the mark vector.
adj.mat The contiguity matrix, upper- or lower-triangular. Provided by user or generated
by adj_mat().
missing.cat Optional, a vector with the names of all categories that are absent in data.
ordered Logical, T if the entropy is computed using ordered couples (see couple_count()),
F if it is computed using pairs (see pair_count()).
Details

This index is based on the transformed variable Z identifying couples of realizations of the variable
of interest. A distance of interest is fixed: Parresol and Edwards’ entropy is originally thought for
areas sharing a border, as O’Neill’s entropy. This corresponds to creating a contiguity matrix as
done by adj_mat(). Then, all couples of realizations of the variable of interest identified by the
adjacency matrix are counted and their relative frequencies are used to compute the index, which is
the opposite of O’Neill’s entropy. Couples can be ordered or not (pairs), with ordered couples as
the default option since it is the authors’ choice. This function also allows to compute Parresol and
Edwards’ entropy for neighbourhood structures different from contiguity, by specifying a suitable
adjacency matrix.

Value

Parresol and Edwards’ spatial entropy value as well as a summary table containing the couples (or
pairs) along with their absolute and relative frequencies.

plot_areapart 17

Examples

dist.mat=euclid_dist(cbind(rep(1:5, each=5), rep(1:5,5)))
adj.mat=adj_mat(dist.mat, ddi=dist.mat[1,2]) #for the contiguity matrix
data=sample(1:3, 25, replace=TRUE)

oneill=leibovici(data, adj.mat)

parr=parresol(oneill, n.cat=3)

parr=parresol (data=data, adj.mat=adj.mat)

plot_areapart Plot area partition.

Description

This function plots an area partition into sub-areas, generated by areapart().

Usage

plot_areapart(data.assign, win, is.pointdata = FALSE, add.data = FALSE,
data.bin = FALSE, category = NULL, data, G.coords = NULL, main = "",
ribbon = TRUE)

Arguments
data.assign A three column matrix, containing the data coordinates (centroids, when pix-
els) and the id of the corresponding sub-area. Provided by user or returned by
areapart().
win The observation area, an object of class owin (see package spatstat).

is.pointdata Logical: T if data are a point pattern, F if they are pixels.

add.data Logical: F (default) if only the area partition is plotted, T if data are added to the
area partition plot.

data.bin Logical, only used when add.data=TRUE: T (default) if the plot displays the
dichotomized version of the dataset, according to the category of interest.

category A character string. The exact name of the category of interest for Batty’s or Karl-
strom and Ceccato’s spatial entropy, as in data. Only used when add . data=TRUE
and data.bin=TRUE.

data A data matrix for lattice data, or a ppp object for point data (see package spatstat).

G.coords A two column matrix with the coordinates of the sub-areas centroids. Only
needed if data is a point pattern.

main Optional, a character string with the plot main title.

ribbon Logical, whether to display a ribbon showing the colour map.

18 plot_lattice

Details

This function allows to plot a fixed or randomly generated area partition, such as the one produced
by areapart(). The plot changes according to a few options: the partition may be plotted with or
without data, with or without colour filling. When data present multiple categories, one can choose
to plot the category of interest together with the partition. If the data are points, the Dirichlet
tessellation is plotted (see dirichlet in the package spatstat). If the data are pixels, the partition
follows the pixel borders.

Value

A plot of the partition in sub-areas, according to the chosen options.

Examples

#LATTICE DATA

data.lat=matrix(sample(c("a","b","c"), 100, replace=TRUE), nrow=10)
ccc=coords_pix(area=square(10), nrow=10, ncol=10)
partition=areapart(square(10), G=5, data.coords=ccc)

#plot without data

plot_areapart(partition$data.assign, square(10), is.pointdata=FALSE,
add.data=FALSE, data=data.lat, G.coords=partition$G.coords, main="")
#plot with data

plot_areapart(partition$data.assign, square(10), is.pointdata=FALSE,
add.data=TRUE, data=data.lat, G.coords=partition$G.coords, main="")
#plot with data - dichotomize data according to a category of interest
plot_areapart(partition$data.assign, square(10), is.pointdata=FALSE,
add.data=TRUE, data.bin=TRUE, category="a",

data=data.lat, G.coords=partition$G.coords, main="")

#POINT DATA

data.pp=runifpoint (100, win=square(10))
marks(data.pp)=sample(c("a","b","c"), 100, replace=TRUE)
ccc=coords(data.pp)

partition=areapart(square(10), G=4, data.coords=ccc)

#plot without data

plot_areapart(partition$data.assign, square(10), is.pointdata=TRUE,
add.data=FALSE, data=data.pp, G.coords=partition$G.coords, main="")
#plot with data

plot_areapart(partition$data.assign, square(10), is.pointdata=TRUE,
add.data=TRUE, data=data.pp, G.coords=partition$G.coords, main="")
#plot with data - dichotomize data according to a category of interest
plot_areapart(partition$data.assign, square(10), is.pointdata=TRUE,
add.data=TRUE, data.bin=TRUE, category="a",

data=data.pp, G.coords=partition$G.coords, main="")

plot_lattice Plot lattice data.

plot_lattice 19

Description

plot_lattice produces a gray scale plot of a matrix of categorical data.

Usage

plot_lattice(data, win = spatstat::owin(xrange = c(1, ncol(data)), yrange =
c(1, nrow(data))), gray.ext = c(1, @), main = "", ribbon = TRUE)

Arguments

data A matrix, can be numeric, factor, character.

win An owin object, the observation area (see package spatstat). Automatically
created, if not provided, by setting the pixel size as 1.

gray.ext A vector of length two with the two extremes of the gray scale (between 0 and
D).
main Optional, a character string with the plot main title.
ribbon Logical, whether to display a ribbon showing the colour map.
Details

This function allows to easily produce a gray scale map given a matrix of categorical data and,
optionally, the observation area. It ensures that data is displayed following the matrix order (where
position (1,1) corresponds to the top-left corner of plot), avoiding risks of row inversion or transpo-
sition. A few # options may be tuned: the extent of the gray scale, the title and the legend.

Value

A gray scale plot of the categorical lattice dataset.

Examples

data.lat=matrix(sample(c(”a","b","c"), 100, replace=TRUE), nrow=10)
plot_lattice(data.lat)

plot_lattice(data.lat, win=square(100))

plot_lattice(data.lat, win=square(10), gray.ext=c(1,.4), ribbon=FALSE)

20 shannonX

shannonX Shannon’s entropy.

Description

This function computes Shannon’s entropy of a variable X with a finite number of categories.

Usage
shannonX(data)
Arguments
data A data matrix or vector, can be numeric, factor, character, ... If the dataset is a
point pattern, data is the mark vector.
Details

Shannon’s entropy measures the heterogeneity of a set of categorical data. It is computed as

H(X) = p(x;)log(1/p(x;))

where p(x;) is the probability of occurrence of the i-th category, here estimated by its relative
frequency. This is both the non parametric and the maximum likelihood estimator. Shannon’s
entropy varies between 0 and log([), I being the number of categories of the variable under study.

Value

Estimated probabilities for all data categories, and Shannon’s entropy.

Examples

#NON SPATIAL DATA
shannonX(sample(1:5, 50, replace=TRUE))

#POINT DATA

data.pp=runifpoint (100, win=square(10))
marks(data.pp)=sample(c("a","b","c"), 100, replace=TRUE)
shannonX(marks(data.pp))

#LATTICE DATA
data.lat=matrix(sample(c(”a","b","c"), 100, replace=TRUE), nrow=10)
shannonX(data. lat)

shannonX_sq 21

shannonX_sq Shannon’s entropy with a squared information function.

Description

This function computes Shannon’s entropy of X with the square of the information function.

Usage

shannonX_sq(data)

Arguments
data A data matrix or vector, can be numeric, factor, character, ... If the dataset is a
point pattern, data is the mark vector.
Details

This computes a version of Shannon’s entropy (see shannonX()) where the information function
log(1/p(x;)) is squared:

H(X)y =Y pla:)log(1/p(x;))?

It is useful for estimating the variance of the maximum likelihood estimator of Shannon’s entropy
given by shannonX().

Value

Estimated probabilities for all data categories, and Shannon’s entropy of X with a squared informa-
tion function.

Examples

#NON SPATIAL DATA
shannonX_sq(sample(1:5, 50, replace=TRUE))

#POINT DATA

data.pp=runifpoint (100, win=square(10))
marks(data.pp)=sample(c(”a"”,"b","c"), 100, replace=TRUE)
shannonX_sq(marks(data.pp))

#LATTICE DATA
data.lat=matrix(sample(c(”a","b","c"), 100, replace=TRUE), nrow=10)
shannonX_sqg(data. lat)

22 shannonZ

shannonz Shannon’s entropy of the transformed variable Z.

Description
This function computes Shannon’s entropy of variable Z, where Z identifies pairs of realizations of
the variable of interest.

Usage

shannonZ(data, missing.cat = NULL)

Arguments
data A data matrix or vector, can be numeric, factor, character, ... If the dataset is a
point pattern, data is the mark vector.
missing.cat Optional, a vector with the names of all categories that are absent in data.
Details

Many spatial entropy indices are based on the trasformation Z of the study variable, i.e. on pairs
(unordered couples) of realizations of the variable of interest. *Unordered couples’ means that the
relative spatial location is irrelevant, i.e. that a couple where category ¢ occurs at the left of category
J is identical to a couple where category j occurs at the left of category <. When all possible pairs
occurring within the observation areas are considered, Shannon’s entropy of the variable Z may be
computed as

H(Z) =" p(z)log(1/p(z))

where p(z,.) is the probability of the r-th pair of realizations, here estimated by its relative frequency.
Shannon’s entropy of Z varies between 0 and log(R), R being the number of possible pairs of
categories of the variable under study.

Value

Estimated probabilities for all Z categories (data pairs), and Shannon’s entropy of Z.

Examples

#NON SPATIAL DATA
shannonZ(sample(1:5, 50, replace=TRUE))

#POINT DATA

data.pp=runifpoint (100, win=square(10))
marks(data.pp)=sample(c("a","b","c"), 100, replace=TRUE)
shannonZ(marks(data.pp))

#LATTICE DATA
data.lat=matrix(sample(c(”a","b","c"), 100, replace=TRUE), nrow=10)

shannonZ_sq 23

shannonZ(data. lat)

#when categories are missing

shannonZ(data.lat, missing.cat=c("d", "e"))
shannonZ_sq Shannon’s entropy of Z with a squared information function.
Description

This function computes Shannon’s entropy of Z with the square of the information function.

Usage

shannonZ_sq(shannz)

Arguments

shannz Output of shannonZ()

Details

This computes a version of Shannon’s entropy of Z (see shannonZ()) where the information func-
tion log(1/p(2,)) is squared:

H(Z)y = p(z)log(1/p(z))?

It is useful for estimating the variance of the maximum likelihood estimator of Shannon’s entropy
given by shannonZ().

Value

Estimated probabilities for all Z categories (data pairs), and Shannon’s entropy of Z with a squared
information function.

Examples

#NON SPATIAL DATA
shZ=shannonZ(sample(1:5, 50, replace=TRUE))
shannonZ_sq(shZ)

#POINT DATA

data.pp=runifpoint (100, win=square(10))
marks(data.pp)=sample(c("a","b","c"), 100, replace=TRUE)
shZ=shannonZ(marks(data.pp))

shannonZ_sq(shz)

#LATTICE DATA

24 SpatEntropy

data.lat=matrix(sample(c("a","b","c"), 100, replace=TRUE), nrow=10)
shZ=shannonZ(data.lat)
shannonZ_sq(shZ)

SpatEntropy SpatEntropy: a package for computing spatial entropy measures.

Description

The heterogeneity of spatial data presenting a finite number of categories can be measured via
computation of spatial entropy. Functions are available for the computation of the main entropy
and spatial entropy measures in the literature. They include the traditional version of Shannon’s
entropy, Batty’s spatial entropy, O’Neill’s entropy, Li and Reynolds’ contagion index, Karlstrom
and Ceccato’s entropy, Leibovici’s entropy, Parresol and Edwards’ entropy and Altieri’s entropy.
The package is able to work with lattice and point data.

Details

References:

Altieri, L., D. Cocchi, and G. Roli (2017). A new approach to spatial entropy measures, Environ-
mental and Ecological Statistics published online at http://link.springer.com/article/10.1007/s10651-
017-0383-1, pp 1-16.

Altieri, L., D. Cocchi, and G. Roli (2017). The use of spatial information in entropy measures.
arXiv:1703.06001

Batty, M. (1974). Spatial entropy. Geographical Analysis 6, 1-31.
Batty, M. (1976). Entropy in spatial aggregation. Geographical Analysis 8, 1-21.

EEA (2011). Corine land cover 2000 raster data. Technical Report, downloadable at http://www.eea.europa.eu/data-
and-maps/ data/corine-land-cover-2000-raster-1.

Karlstrom, A. and V. Ceccato (2002). A new information theoretical measure of global and local
spatial association. The Review of Regional Research 22, 13-40.

Leibovici, D. (2009). Defining spatial entropy from multivariate distributions of co-occurrences.
Berlin, Springer: In K. S. Hornsby et al. (eds.): 9th International Conference on Spatial Information
Theory 2009, Lecture Notes in Computer Science 5756, 392-404.

Li, H. and J. Reynolds (1993). A new contagion index to quantify spatial patterns of landscapes.
Landscape Ecology 8(3), 155-162.

O’Neill, R., J. Krummel, R. Gardner, G. Sugihara, B. Jackson, D. DeAngelis, B. Milne, M. Turner,
B. Zygmunt, S. Christensen, V. Dale, and R. Graham (1988). Indices of landscape pattern. Land-
scape Ecology 1(3), 153-162.

Parresol, B. and L. Edwards (2014). An entropy-based contagion index and its sampling properties
for landscape analysis. Entropy 16(4), 1842-1859.

Shannon, C. (1948). A mathematical theory of communication. Bell Dyditem Technical Journal
27, 379-423, 623-656.

spat_entropy 25

spat_entropy Altieri’s spatial entropy.

Description

This function computes spatial mutual information and spatial residual entropy as in Altieri et al
(2017). References can be found at SpatEntropy.

Usage

spat_entropy(data, adj.list, shannZ, missing.cat = NULL)

Arguments
data A data matrix or vector, can be numeric, factor, character, ... If the dataset is a
point pattern, data is the mark vector.
adj.list A list of adjacency matrices, provided by user or returned by adj_list(). Each
element of the list contains a binary adjacency matrix for building pairs at a
specific distance, provided by user or returned by adj_mat ().
shannZ The output of shannonZ(): Shannon’s entropy of Z as well as the pairs fre-
quency table.
missing.cat Optional, a vector with the names of all categories that are absent in data.
Details

The computation of Altieri’s entropy starts from a point or areal dataset, for which Shannon’s en-
tropy of the transformed variable Z (for details see shannonZ)

H(Z) = p(z)log(1/p(z))

is computed using all possible pairs within the observation area. Then, its two components spatial
mutual information

MI(Z,W) = "p(w) > pzr|wy)log(p(z|wk)/p(z))

and spatial residual entropy

H(Z)yw =3 p(wi) 3 plarwi) 1og(1/p(zlw)

are calculated in order to account for the overall role of space in determining the data heterogeneity.
Besides, starting from a partition into distance classes, a list of adjacency matrices is built using
adj_mat(), which identifies what pairs of units must be considered for each class. Spatial mutual
information and spatial residual entropy are split into local terms according to the chosen distance
breaks, so that the role of space can be investigated.

26 spat_entropy

Value
A list with elements:

* mut.global the spatial mutual information

* res.global the global residual entropy

* shannZ Shannon’s entropy of Z

* mut.local the partial information terms

* res.local the partial residual entropies

* pwk the spatial weights for each distance range

* pzr.marg the marginal probability distribution of Z

* pzr.cond a list with the conditional probability distribution of Z for each distance range

* Q the number of pairs (realizations of Z)

Qk the number of pairs for each distance range.

Examples

data=matrix(sample(1:5, 25, replace=TRUE), nrow=5)
plot(as.im(data, W=square(5)))
dist.breaks=c(0,1,2,5,5*sqrt(2))
dist.mat=euclid_dist(coords_pix(square(5), nrow=5, ncol=5))
my.adj.list=adj_list(dist.mat, dist.breaks) #see adj_list
my.shZ=shannonZ(data)

spat_entropy(data=data, adj.list=my.adj.list, shannZ=my.shZ)

Index

+Topic datasets
data_bologna, 10
data_rainforest, 11

‘oneill‘ (leibovici), 14

adj_list, 2

adj_list(), 25

adj_mat, 3, 9
adj_mat(),2,7,9,11, 14-16, 25
areapart, 4
areapart(), 5, 6, 12,17, 18

batty, 5
batty(), 13

contagion, 7
coords_pix, 8
coords_pix(), 4, 12
couple_count, 9
couple_count(), 7, 14, 16

data_bologna, 10
data_rainforest, 11

euclid_dist, 11
euclid_dist(), 2, 3,8

karlstrom, 12

leibovici, 14
leibovici(), 7, 16

pair_count, 15
pair_count(), 7, 14, 16
parresol, 16
plot_areapart, 17
plot_lattice, 18

shannonX, 20
shannonX (), 21
shannonX_sq, 21

27

shannonz, 3, 22, 25

shannonZ(), 23, 25

shannonZ_sq, 23

spat_entropy, 25
SpatEntropy, 5, 12, 24
SpatEntropy-package (SpatEntropy), 24

	adj_list
	adj_mat
	areapart
	batty
	contagion
	coords_pix
	couple_count
	data_bologna
	data_rainforest
	euclid_dist
	karlstrom
	leibovici
	pair_count
	parresol
	plot_areapart
	plot_lattice
	shannonX
	shannonX_sq
	shannonZ
	shannonZ_sq
	SpatEntropy
	spat_entropy
	Index

