Given a symmetric positive definite matrix Q and a non-singular matrix L, find symmetric positive definite solution X such that X = Q + L (X inv) L^T. Reference: Benner, P., Faßbender, H. On the Solution of the Rational Matrix Equation. Benner, Faßbender (2007) <doi:10.1155/2007/21850>.
| Version: | 0.1.0 | 
| Suggests: | knitr, rmarkdown | 
| Published: | 2018-11-14 | 
| Author: | Aditi Tiwari | 
| Maintainer: | Aditi Tiwari <aditi.jec31 at gmail.com> | 
| License: | GPL-2 | 
| NeedsCompilation: | no | 
| CRAN checks: | SolveRationalMatrixEquation results | 
| Reference manual: | SolveRationalMatrixEquation.pdf | 
| Vignettes: | Vignette Title | 
| Package source: | SolveRationalMatrixEquation_0.1.0.tar.gz | 
| Windows binaries: | r-devel: SolveRationalMatrixEquation_0.1.0.zip, r-release: SolveRationalMatrixEquation_0.1.0.zip, r-oldrel: SolveRationalMatrixEquation_0.1.0.zip | 
| macOS binaries: | r-release: SolveRationalMatrixEquation_0.1.0.tgz, r-oldrel: SolveRationalMatrixEquation_0.1.0.tgz | 
Please use the canonical form https://CRAN.R-project.org/package=SolveRationalMatrixEquation to link to this page.