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Introduction

The objective of this document is to provide examples on how to use SoilR
in combination with package FME to estimate parameter values of soil organic
matter decomposition models using observed data. We will not explain FME
functionality here, but strongly recommend to read the vignette for package
FME (Soetaert & Petzoldt, 2010). Instead, we focus here on the application to
the type of models implemented in SoilR.

We present here two examples, one is the parameterization of a two-pool
model with a feedback connection scheme applied to a soil incubation experi-
ment. The other example uses observed radiocarbon data from CO5 measure-
ments conducted at Harvard Forest, USA.

Example 1: A soil incubation experiment

Measurements of evolved CO4 from incubation experiments provide useful data
for parameterizing soil organic matter decomopsition models and identify func-
tionally distinct pools (Schadel et al., 2013). We present here data from an
incubation experiment in which we measured the evoloved CO5 from a forest
soil. The dataset, eC02, is already included in SoilR and includes data from
two incubation experiments, one with a temperate forest soil and another with a
boreal forest soil. First, we load SoilR into our R session and extract the data
from the boreal site into a separate object excluding the column that identifies
the sampling site; column names need to be renamed for consistency with FME.

library(SoilR)
library (FME)
library (MASS)
library(lattice)
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> plot(BorealC02[,1:2], xlab="Days", ylab="Evolved C02 (mgC g-1 soil)")
> arrows (BorealC02[,1],BorealC02[,2]-BorealC02[,3],BorealC02[,1],
+ BorealC02[,2]+BorealC02[, 3], code=3,angle=90, length=0.1)
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Figure 1: Cummulative evolved COs from an incubation experiment with a
boreal forest soil.

> BorealC02=subset (eC02, subset=Sample=="AK_T25", select=-Sample)
> names (BorealC02)<-c("time", "eC02", "eC02sd")

To this dataset, we are interested in finding parameters for a two-pool model
with connection in feedback of the form (Sierra et al., 2012)

dc'

TtI =1 - k:lCl + al)ngCQ

dC

7152 = a271k1C1 — kQCQ (1)

so we are interested in finding the values of the decomposition rates k; and ks
as well as the transfer coefficient to pool 2 from pool 1 (as,;) and to pool 1
from pool 2 (ay,2). Given that the data comes from an incubation experiment,
we assume that there are no inputs of carbon, so I = 0. In addition, we are
also interested in obtaining a value for the partitioning coefficient for the two
fractions 7, so C1 = Ciotary, and Co = Ciorar(1 — 7).
This model (equation 1) is implemented in SoilR with the function TwopFeed-

backModel. We will find first the best set of parameters that fit the data using
classical optimization using the FME package (Soetaert & Petzoldt, 2010). For



this, we need to create a function that takes arbitrary values of the parameters
of the model, creates a model in SoilR, calculates the cummulative respiration
flux, and returns the output consistent with FME requirements. We also need to
create a vector of time steps in days and give the total amount of carbon in the
soil at the begining of the experiment (7.7 mg C g=* C).

> days=seq(0,42)

> Ctotal=7.7

> eCO02func=function(pars){

+  mod=TwopFeedbackModel (
t=days,
ks=pars[1:2],
a21=pars[3]*pars[1],
al2=pars[4]*pars[2],
CO=Ctotal*c(pars[5],1-pars[5]),
In=0,
pass=TRUE
)
AccR=getAccumulatedRelease (mod)
return(data. frame (time=days, eC02=rowSums (AccR)))

}

+ + + + + + + + 4+ + +

Notice that this function, eC02func, requires a vector of parameters pars
with the values of the two decomposition rates in positions 1 and 2, the values
of the two transfer rates in position 3 and 4, and the partitioning coefficient
in position 5. This function returns a data.frame with two columns, time in
days and the sum of the cummulative release for the two pools.

The next step is to create a cost function according to FME requirements.
This cost function takes as arguments a function with the model, the set of
observations, and a measure of the error in the observations. The function
calculates sums of squared residuals from the model output and the observed
data, which can be further minimized for optimization.

> eC02cost=function(pars){

+  modelOutput=eCO02func (pars)

+  return(modCost (model=modelOutput, obs=BorealC02, err="eC02sd"))
+ }

This function returns an object of class modCost, which can be further used
by FME for local sensitivity analysis, multivariate parameter identifiability, and
parameter optimization. We strongly recommend users to to read FME docu-
mentation for sensitivity and identifiability analyses. The procedure for opti-
mization consist first on given a set of initial parameter values and then run
function modFit for minimizing the cost function. modFit can take as argument
upper and lower limits for the parameter values and the optimization method,
which for this example we use the Levenberg-Marquardt algorithm.

> inipars=c(k1=0.5,k2=0.05,alpha21=0.5,alphal12=0.1,gamma=0.5)
> eCO2fit=modFit (f=eC02cost,p=inipars,method="Marq",
+ upper=c (Inf,Inf,1,1,1),lower=c(0,0,0,0,0))



> plot(BorealC02[,1:2], xlab="Days", ylab="Evolved C02 (mgC g-1 soil)")
> arrows (BorealC02[,1],BorealC02[,2]-BorealC02[,3],BorealC02[,1],

+ BorealC02[,2]+BorealC02[, 3], code=3,angle=90, length=0.1)

> lines(fitmod)
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Figure 2: Best fit curve and observed data of CO2 evolved from an incubation
experiment.

The best set of parameter values found by the function can be obtained by
typing

> eCO2fit$par

k1 k2 alpha21l alphal2 gamma
0.1826949 0.4754156 0.9930036 0.5219279 0.9944090

These set of parameters can be used now to run the model again and plot
the obtained model against the observations

> fitmod=eCO2func (eCO2fit$par)

The results from this optimization can be used for Bayesian parameter esti-
mation with FME. For details about the procedure please see Soetaert & Petzoldt
(2010). In our example, we need first to extract the variance from the prior op-
timization and used as the initial variance in the Bayesian procedure and to
determine the jump, a value that determines how much a new parameter set
is deviated from the old one. To avoid long compiling times in SoilR we only



> pairs(eC02mcmc)
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Figure 3: Histogram and scatter plots of the values obtained from

0.22

chain Monte Carlo procedure.
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use 1000 iterations in this example, but this number can be much larger to
guarantee convergence of the chains.

The results of the MCMC procedure can be obtained with the function
summary (). The output gives the mean, standard deviation, min and max, and
25% quantiles for all parameter values. It also produces summary statistics for
the variance of the observed variable.

> summary (eCO2mcmc)

k1
mean 0.14011562
sd 0.03585235
min 0.09022513
max 0.22912404
q025 0.10939813
q050 0.12665930
q075 0.17188649

k2

0.3457281
0.1372449
0.1288328
0.
0
0
0

6447624

.2245044
.3249080
.4754156

0
0
0
0
0
0
0

alpha21l

.85286892
.09165086
.59775363
.99571370
. 77895379
.86786084
.92935429

0
0
0.
0
0
0

0.

alphal2

.3742084
.1002022

1699949

.7188236
.2825279
.3728024

4541232

0
0
0
0.
0
0
0

gamma
.93445575
.05954572
. 77104852
99953899
.89931903
.95312119
.98583388

0
0
0
0
0
0
0

var_eC02

.12559946
.04073803
.05712199
.30464899
.09426501
.11709023
.14710681

A plot with the posterior distribution of the obtained parameter values can
be obtained with function pairs (Figure 3)

For model prediction, it is also possible to use FME and function sensRange
to obtain a graph of the model prediction with uncertainty ranges (Figure 4).



predRange=sensRange (func=eC02func, parlInput=eC02mcmc$par)
plot (summary (predRange) ,ylim=c(0,9),xlab="Days",
ylab="Evolved C02 (mg C g-1 C)",main="")
points (BorealC02)
arrows (BorealC02[, 1] ,BorealC02[,2]-BorealC02[,3],BorealC02[,1],
BorealC02[,2]+BorealC02[, 3], code=3,angle=90,length=0.1)
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Figure 4: Model predictions using the set of parameters obtained from the
MCMC procedure.
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Figure 5: A'C value of the respired CO, in a temperate broadleave forest at
Harvard Forest, USA.

It is now obvious from this example that the workhorse of the parameter
estimation procedure is the package FME of Soetaert & Petzoldt (2010). The
main important task to learn about SoilR is how to set up the function that
runs the model and obtains the variable of interest.

Example 2: Radiocarbon in respired CQO,

SoilR can also calculate the amount of radiocarbon in soils or in respired COs.
Here, we take as an example a series of observations of radiocarbon in respired
COg conducted at Harvard Forest, USA. The dataset is also included in SoilR,
and can be visialized in Figure 5.

We are interested in fitting the following three-pool model to the data

—k 0 0 C

dC(t n ! !
% =1 Y2 + a1 7]/{2 0 CQ . (2)

0 asi 0 —ks CS

where v; and 2 are known.

For this task, we simply need to prepare a model object in SoilR that can
be further used by FME for parameter estimation. The radiocarbon content of
CO; in the atmosphere is necessary for running the model, because it inform
us about the concentration and rate of radiocarbon input to the soil. For this



example we will use the dataset C14Atm_ NH provided with SoilR, but other
provided datasets such as Hua2013 can also be used.

First, we define the points in time to run the model from the atmospheric
radicarbon dataset

> time=C14Atm_NH$YEAR
> t_start=min(time)
> t_end=max (time)

To create the vector of input fluxes we need to create a new object of class
InFlux. For our particular model, input fluxes to the C; and Cs pools are
created by this command

> inputFluxes=BoundInFlux(

+ function (t0){matrix(nrow=3,ncol=1,c(270,150,0))},
+ t_start,

+ t_end

+ )

1 1

assuming that pool 1 receives 270 gC m? yr=! and pool 2 150 gC m? yr—!.
The initial amount of carbon is created by aggregating the organic and min-
eral pools for this site reported in Sierra et al. (2012)

> C0=c(390,220+390+1376,90+1800+560)

We now write a function that creates a Model object in SoilR that takes
as arguments a set of parameters and returns the AC value of the respired
carbon

The observed data needs to be orginazed in a dataframe of the form

> DataR14t=cbind (time=HarvardForest14C02[,1],
+ Ri4t=HarvardForest14C02[,2],
+ sd=sd (HarvardForest14C02[,2]))

With all these elements ready, we can now use FME for the parameter op-
timization procedure. We will avoid a detailed explanation and present in the
following the creation of the cost function, the initial optimization, and the final
Bayesian parameter estimation.

The obtained posterior distributions of the parameters can now be assessed
graphically (Figure 6). The final model with its uncertainty and how it compares
to the data can now be obtained (Figure 7).



> pairs(MCMC,nsample=500)
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Figure 6: Posterior parameter distributions for the parameters of the model
described by equation 2. pl= ki, p2= ko, p3= k4, p4= a1, p>= as;. Numbers
in the lower diagonal indicate the correlation coefficient between parameters.



par (mar=c(5,5,4,1))

plot (summary (sR),x1im=c(1950,2010),ylim=c(0,1000) ,xlab="Year",
ylab=expression(paste(Delta~14,"C ","(\u2030)")) ,main="")

points(DataR14t,pch=20)

lines (C14Atm_NH,col=4)
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Figure 7: Predictions of respired radiocarbon values from the model of equa-
tion 2 versus observations. Model predictions include uncertainty range for the
mean + standard deviation, and the minimum-maximum range. Radiocarbon
concentration in the atmosphere is depicted in blue.
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