Package 'SmallCountRounding'

October 18, 2019

Type Package

Title Small Count Rounding of Tabular Data
Version 0.4.0
Date 2019-10-17
Author Øyvind Langsrud [aut, cre], Johan Heldal [aut]
Maintainer Øyvind Langsrud oyl@ssb.no
Depends Matrix, SSBtools
Imports methods
Suggests sdcHierarchies
Description A statistical disclosure control tool to protect frequency tables in cases where small values are sensitive. The function PLSrounding() performs small count rounding of necessary inner cells so that all small frequencies of cross-classifications to be published (publishable cells) are rounded. This is equivalent to changing micro data since frequencies of unique combinations are changed. Thus, additivity and consistency are guaranteed. The methodology is described in Langsrud and Heldal (2018) https://www.researchgate.net/publication/327768398.
License Apache License 2.0 I file LICENSE
URL https://github.com/statisticsnorway/SmallCountRounding
BugReports https://github.com/statisticsnorway/SmallCountRounding/issues
RoxygenNote 6.1.1
Encoding UTF-8
NeedsCompilation no
Repository CRAN
Date/Publication 2019-10-17 22:30:13 UTC

R topics documented:

SmallCountRounding-package 2
HD 2
PLS2way 3
PLSrounding 4
print.PLSrounded 6
RoundViaDummy 7
SmallCountData 9
Index 11

SmallCountRounding-package

Small Count Rounding of Tabular Data

Description

A statistical disclosure control tool to protect frequency tables in cases where small values are sensitive. The main function, PLSrounding, performs small count rounding of necessary inner cells (Heldal, 2017) so that all small frequencies of cross-classifications to be published (publishable cells) are rounded. This is equivalent to changing micro data since frequencies of unique combinations are changed. Thus, additivity and consistency are guaranteed. This is performed by an algorithm inspired by partial least squares regression (Langsrud and Heldal, 2018).

References

Heldal, J. (2017): "The European Census Hub 2011 Hypercubes - Norwegian SDC Experiences". In: Work Session on Statistical Data Confidentiality, Skopje, The former Yugoslav Republic of Macedonia, September 20-22, 2017.

Langsrud, Ø. and Heldal, J. (2018): "An Algorithm for Small Count Rounding of Tabular Data". Presented at: Privacy in statistical databases, Valencia, Spain. September 26-28, 2018. https: //www.researchgate.net/publication/327768398

```
HD Hellinger Distance (Utility)
```


Description

Hellinger distance (HD) and a related utility measure (HDutility) described in the reference below. The utility measure is made to be bounded between 0 and 1 .

Usage

$H D(f, g)$
HDutility (f, g)

Arguments

f	Vector of original counts
g	Vector of perturbed counts

Details

HD is defined as "sqrt (sum ((sqrt $\left.\left.(f)-\operatorname{sqrt}(g))^{\wedge} 2\right) / 2\right)$ " and HDutility is defined as "1-HD(f,g)/sqrt(sum(f))".

Value

Hellinger distance or related utility measure

References

Shlomo, N., Antal, L., \& Elliot, M. (2015). Measuring Disclosure Risk and Data Utility for Flexible Table Generators, Journal of Official Statistics, 31(2), 305-324. doi: https://doi.org/10.1515/ jos-2015-0019

Examples

```
    f<- 1:6
    g<- c(0, 3, 3, 3, 6, 6)
    print(c(
        HD = HD(f, g),
        HDutility = HDutility(f, g),
        maxdiff = max(abs(g - f)),
        meanAbsDiff = mean(abs(g - f)),
        rootMeanSquare = sqrt(mean((g - f)^2))
    ))
```

PLS2way Two-way table from PLSrounding output

Description

Two-way table from PLSrounding output

Usage

PLS2way(obj, variable = c("rounded", "original", "difference", "code"))

Arguments

obj

Output object from PLSrounding
variable One of "rounded" (default), "original", "difference" or "code".

Details

When parameter "variable" is "code", output is coded as "\#" (publish), "." (inner) and "\&" (both).

Value

A data frame

Examples

```
# Making tables from PLSrounding examples
z <- SmallCountData("e6")
a <- PLSrounding(z, "freq", formula = ~eu * year + geo)
PLS2way(a, "original")
PLS2way(a, "difference")
PLS2way(a, "code")
PLS2way(PLSrounding(z, "freq", formula = ~eu * year + geo * year), "code")
eHrc2 <- list(geo = c("EU", "@Portugal", "@Spain", "Iceland"), year = c("2018", "2019"))
PLS2way(PLSrounding(z, "freq", hierarchies = eHrc2))
```

PLSrounding PLS inspired rounding

Description

Small count rounding of necessary inner cells are performed so that all small frequencies of crossclassifications to be published (publishable cells) are rounded. The publishable cells can be defined from a model formula, hierarchies or automatically from data.

Usage

PLSrounding(data, freqVar, roundBase $=3$, hierarchies $=$ NULL, formula $=$ NULL, $m a x R o u n d=$ roundBase $-1, \ldots$)

Arguments

data	Input data as a data frame (inner cells)
freqVar	Variable holding counts (inner cells frequencies)
roundBase	Rounding base
hierarchies	List of hierarchies
formula	Model formula defining publishable cells
maxRound	Inner cells contributing to original publishable cells equal to or less than maxRound will be rounded
\ldots	Further parameters sent to RoundViaDummy

Details

This function is a user-friendly wrapper for RoundViaDummy with data frame output and with computed summary of the results. See RoundViaDummy for more details.

Value

Output is a four-element list with class attribute "PLSrounded" (to ensure informative printing).
inner Data frame corresponding to input data with the main dimensional variables and with cell frequencies (original, rounded, difference).
publish Data frame of publishable data with the main dimensional variables and with cell frequencies (original, rounded, difference).
metrics A named character vector of various statistics calculated from the two output data frames ("inner_" used to distinguish). See examples below and the function HDutility.
freqTable Matrix of frequencies of cell frequencies and absolute differences. For example, row "rounded" and column "pub. $4+$ " is the number of rounded inner cell frequencies greater than or equal to 4 .

References

Langsrud, Ø. and Heldal, J. (2018): "An Algorithm for Small Count Rounding of Tabular Data". Presented at: Privacy in statistical databases, Valencia, Spain. September 26-28, 2018. https: //www.researchgate.net/publication/327768398

See Also

RoundViaDummy, PLS2way

Examples

```
# Small example data set
z <- SmallCountData("e6")
print(z)
# Publishable cells by formula interface
a <- PLSrounding(z, "freq", roundBase = 5, formula = ~geo + eu + year)
print(a)
print(a$inner)
print(a$publish)
print(a$metrics)
print(a$freqTable)
# Recalculation of maxdiff, HDutility, meanAbsDiff and rootMeanSquare
max(abs(a$publish[, "difference"]))
HDutility(a$publish[, "original"], a$publish[, "rounded"])
mean(abs(a$publish[, "difference"]))
sqrt(mean((a$publish[, "difference"])^2))
# Four lines below produce equivalent results
```

```
# Ordering of rows can be different
PLSrounding(z, "freq")
PLSrounding(z, "freq", formula = ~eu * year + geo * year)
PLSrounding(z[, -2], "freq", hierarchies = SmallCountData("eHrc"))
PLSrounding(z[, -2], "freq", hierarchies = SmallCountData("eDimList"))
# Define publishable cells differently by making use of formula interface
PLSrounding(z, "freq", formula = ~eu * year + geo)
# Define publishable cells differently by making use of hierarchy interface
eHrc2 <- list(geo = c("EU", "@Portugal", "@Spain", "Iceland"), year = c("2018", "2019"))
PLSrounding(z, "freq", hierarchies = eHrc2)
# Package sdcHierarchies can be used to create hierarchies.
# The small example code below works if this package is available.
if (require(sdcHierarchies)) {
    z2 <- cbind(geo = c("11", "21", "22"), z[, 3:4], stringsAsFactors = FALSE)
    h2 <- list(
        geo = hier_compute(inp = unique(z2$geo), dim_spec = c(1, 1), root = "Tot", as = "df"),
        year = hier_convert(hier_create(root = "Total", nodes = c("2018", "2019")), as = "df"))
    PLSrounding(z2, "freq", hierarchies = h2)
}
# Use PLS2way to produce tables as in Langsrud and Heldal (2018)
# and to demonstrate parameters maxRound,
# zeroCandidates and identifyNew (see RoundViaDummy)
exPSD <- SmallCountData("exPSD")
set.seed(12345) # To guarantee same output as in reference/comments
a <- PLSrounding(exPSD, "freq", 5, formula = ~rows + cols)
PLS2way(a, "original") # Table 1
PLS2way(a) # Table 2
set.seed(12345)
a <- PLSrounding(exPSD, "freq", 5, formula = ~rows + cols, identifyNew = FALSE)
PLS2way(a) # Table 3
set.seed(12345)
a <- PLSrounding(exPSD, "freq", 5, formula = ~rows + cols, maxRound = 7)
PLS2way(a) # Values in col1 rounded
set.seed(12345)
a <- PLSrounding(exPSD, "freq", 5, formula = ~rows + cols, zeroCandidates = TRUE)
PLS2way(a) # (row3, col4): original is 0 and rounded is 5
```

print.PLSrounded Print method for PLSrounded

Description

Print method for PLSrounded

Usage

```
\#\# S3 method for class 'PLSrounded'
print(x, digits \(=\max (\) getOption("digits") \(-3,3)\),
    ...)
```


Arguments

x	PLSrounded object
digits	positive integer. Minimum number of significant digits to be used for printing most numbers.
\ldots	further arguments sent to the underlying

Value

Invisibly returns the original object.
RoundViaDummy Small Count Rounding of Tabular Data

Description

Small count rounding via a dummy matrix and by an algorithm inspired by PLS

Usage

RoundViaDummy (data, freqVar, formula $=$ NULL, roundBase $=3$, singleRandom = FALSE, crossTable = TRUE, total = "Total", maxIterRows $=1000$, maxIter $=1 \mathrm{e}+07$, $\mathrm{x}=$ NULL, hierarchies $=$ NULL, xReturn $=$ FALSE, maxRound $=$ roundBase -1 , zeroCandidates = FALSE, forceInner = FALSE, identifyNew = TRUE, step $=0, \ldots$)

Arguments

data	Input data as a data frame (inner cells)
freqVar	Variable holding counts (name or number)
formula	Model formula defining publishable cells. Will be used to calculate x (via ModelMatrix). When NULL, x must be supplied.
roundBase	Rounding base
singleRandom	Single random draw when TRUE (instead of algorithm)
crossTable	When TRUE, cross table in output and caculations via FormulaSums()
total	String used to name totals
maxIterRows	See details
maxIter	Maximum number of iterations

$\left.\begin{array}{ll}\text { x } & \begin{array}{l}\text { Dummy matrix defining publishable cells } \\ \text { hierarchies }\end{array} \\ \text { List of hierarchies, which can be converted by AutoHierarchies. Thus, a } \\ \text { single string as hierarchy input is assumed to be a total code. Exceptions are } \\ \text { "rowFactor" or "", which correspond to only using the categories in the data. }\end{array}\right\}$

Details

Small count rounding of necessary inner cells are performed so that all small frequencies of crossclassifications to be published (publishable cells) are rounded. This is equivalent to changing micro data since frequencies of unique combinations are changed. Thus, additivity and consistency are guaranteed. The matrix multiplication formula is: $y P u b l i s h=t(x) \% * \% y$ Inner, where x is the dummy matrix.

Value

A list where the two first elements are two column matrices. The first matrix consists of inner cells and the second of cells to be published. In each matrix the first and the second column contains, respectively, original and rounded values. By default the cross table is the third element of the output list.

Note

Iterations are needed since after initial rounding of identified cells, new cells are identified. If cases of a high number of identified cells the algorithm can be too memory consuming (unless singleRandom=TRUE). To avoid problems, not more than maxIterRows cells are rounded in each iteration. The iteration limit (maxIter) is by default set to be high since a low number of maxIterRows may need a high number of iterations.

See Also

See the user-friendly wrapper PLSrounding and see Round2 for rounding by other algorithm

Examples

```
    # See similar and related examples in PLSrounding documentation
    RoundViaDummy(SmallCountData("e6"), "freq")
    RoundViaDummy(SmallCountData("e6"), "freq", formula = ~eu * year + geo)
    RoundViaDummy(SmallCountData("e6"), "freq", hierarchies =
        list(geo = c("EU", "@Portugal", "@Spain", "Iceland"), year = c("2018", "2019")))
    RoundViaDummy(SmallCountData('z2'),
            'ant', ~region + hovedint + fylke*hovedint + kostragr*hovedint, 10)
    mf <- ~region*mnd + hovedint*mnd + fylke*hovedint*mnd + kostragr*hovedint*mnd
    a <- RoundViaDummy(SmallCountData('z3'), 'ant', mf, 5)
    b <- RoundViaDummy(SmallCountData('sosialFiktiv'), 'ant', mf, 4)
    print(cor(b[[2]]),digits=12) # Correlation between original and rounded
    ## Not run:
    # Demonstrate parameters maxRound, zeroCandidates and forceInner
    # by tabulating the inner cells that have been changed.
    z4 <- SmallCountData("sosialFiktiv")
    for (forceInner in c("FALSE", "z4$ant < 10"))
    for (zeroCandidates in c(FALSE, TRUE))
        for (maxRound in c(2, 5)) {
            set.seed(123)
            a <- RoundViaDummy(z4, "ant", formula = mf, maxRound = maxRound,
                                    zeroCandidates = zeroCandidates,
                                    forceInner = eval(parse(text = forceInner)))
            change <- a$yInner[, "original"] != a$yInner[, "rounded"]
            cat("\n\n------------------------------------------------------------")
            cat(" maxRound:", maxRound, "\n")
            cat("zeroCandidates:", zeroCandidates, "\n")
            cat(" forceInner:", forceInner, "\n\n")
        print(table(original = a$yInner[change, "original"], rounded = a$yInner[change, "rounded"]))
            cat("--------------------------------------------------------")
        }
    ## End(Not run)
```

SmallCountData Function that returns a dataset

Description

Function that returns a dataset

Usage

SmallCountData(dataset, path = NULL)

Arguments

dataset	Name of data set within the SmallCountRounding package
path	When non-NULL the data set is read from "path/dataset.RData"

Value

The dataset

Note

Except for "europe6", "eHrc", "eDimList" and "exPSD", the function returns the same datasets as is included in the package easySdcTable.

See Also

SSBtoolsData, Hrc2DimList

Examples

```
SmallCountData("z1")
SmallCountData("e6")
SmallCountData("eHrc") # TauArgus coded hierarchies
SmallCountData("eDimList") # sdcTable coded hierarchies
SmallCountData("exPSD") # Example data in presentation at Privacy in statistical databases
```


Index

*Topic print
print.PLSrounded, 6
AutoHierarchies, 8
HD, 2
HDutility, 5
HDutility (HD), 2
Hierarchies2ModelMatrix, 8
Hrc2DimList, 10
ModelMatrix, 7
PLS2way, 3, 5
PLSrounding, 2, 3, 4, 8
print. PLSrounded, 6
RoundViaDummy, 5, 7
SmallCountData, 9
SmallCountRounding
(SmallCountRounding-package), 2
SmallCountRounding-package, 2
SSBtoolsData, 10

