
Package ‘SimplicialCubature’
May 16, 2016

Type Package

Title Integration of Functions Over Simplices

Version 1.2

Date 2016-05-14

Author John P. Nolan, with parts adapted from Fortran and matlab code by Alan Genz

Maintainer John P. Nolan <jpnolan@american.edu>

Depends R (>= 3.0)

Description Provides methods to integrate functions over m-dimensional simplices
in n-dimensional Euclidean space. There are exact methods for polynomials and
adaptive methods for integrating an arbitrary function. Dirichlet probabilities
are calculated in certain cases.

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2016-05-16 15:41:03

R topics documented:

SimplicialCubature-package . 2
adaptIntegrateSimplex . 3
adsimp . 5
CanonicalSimplex . 7
definePoly . 8
grnmol . 9
integrateSimplexPolynomial . 10
LasserreAvrachenkov . 11

Index 13

1

2 SimplicialCubature-package

SimplicialCubature-package

Numerical integration of functions over simplices

Description

Provides methods to evaluate integrals of the form∫
S

f(x)dx,

where S is a simplex (or a union of simplices) in n-space and f(x) is a function defined on S. The
function f(x) may be vector valued and the simplices can be m-dimensional simplices, 1 <= m <=n.
For example, if m=n-1, the package will evaluate a surface area integral; if m=1, the package will
evaluate a line integral.

There are exact methods for polynomials and adaptive methods for integrating an arbitrary function.
The two main functions are:

adaptIntegrateSimplex - integrate a general (possibly vector valued) function over a simplex
using the method of Genz and Cools.

integrateSimplexPolynomial - integrate a single polynomial exactly over a simplex using either
the Grundmann-Moller method or the Lasserre-Avrachenkov method.

The naming of the functions, arguments, and return values deliberately mimics that in the CRAN
packages cubature (for integrating over hyper-rectangles) and SphericalCubature (for integrat-
ing over spheres and balls).

Please let me know if you find any mistakes. I will try to fix bugs promptly.

Constructive comments for improvements are welcome; actually implementing any suggestions will
be dependent on time constraints.

Version history:

• 1.0.1 original package

• 1.1 fix an incorrect test for dimension=1 in SimplexVolume; add functions SimplexSurfaceArea.
Rename function UnitSimplex to UnitSimplexV to eliminate name conflict with function in
package mvmesh.

• 1.2 miscellaneous small changes.

Author(s)

John P. Nolan, with R translations of adsimp code by Alan Genz

Maintainer: John P. Nolan <jpnolan@american.edu>

This research was supported by an agreement with Cornell University, Operations Research & In-
formation Engineering, under contract W911NF-12-1-0385 from the Army Research Development
and Engineering Command.

adaptIntegrateSimplex 3

References

V. Baldoni, N. Berline, J. A. De Loera, M. Koppe, and M. Vergene, How to integrate a polynomial
over a simplex, Mathematics of Computation, 80, 297-325 (2011)

A. Genz and R. Cools, An adaptive numerical cubature algorithm for simplices, ACM Trans. Math.
Software, 29, 297-308 (2003)

A. Grundmann and H.M. Moller, Invariant Integration Formulas for the n-Simplex by Combinato-
rial Methods, SIAM Journal on Numerical Analysis, 15, 282-289 (1978)

J. B. Lasserre and E. E. Avrachenkov, The Multi-Dimensional Version of
∫ b

a
xpdx, American Math-

ematical Monthly, 108, 151-154 (2001)

N. Konerth, Exact integration on simplices, Undergraduate Research Paper, Math/Stat Department,
American University (2014). Online at http://aladinrc.wrlc.org/handle/1961/14863

See Also

adaptIntegrateSimplex, integrateSimplexPolynomial

adaptIntegrateSimplex Integrate a general function over a simplex

Description

Adaptive integration of a function f(x) of n variables over an m-dimensional simplex S, 1 <= m <=
n. More generally, f can be a vector valued function and S can be a list of simplices.

Usage

adaptIntegrateSimplex(f, S, fDim = 1L, maxEvals = 10000L, absError = 0, tol = 1e-05,
integRule = 3L, partitionInfo = FALSE, ...)

integrate.vector.fn(intervals, fDim, f, maxEvals, absError, tol, partitionInfo=FALSE)
original.coordinates(u, S)

Arguments

f a function of n-variables (where n is determined by S) or a vector valued function
(if fDim > 1).

S a simplex or list of simplices that specify the region of integration. A single
simplex S is given by an n x (m+1) matrix, where n is the dimension of the
underlying space and m is the dimension of the simplex, 1 <= m <= n. In
this case, the columns S[,1],...,S[,m+1] are the vertices of the m-dimensional
simplex. If S is an n x (m+1) x k array, then the region of integration is the
union of the simplices S[„1],...,S[„k], each of the above form.

fDim integer dimension of the integrand function.

maxEvals integer maximum number of function evaluations allowed

absError requested absolute error in the computation of the integral

4 adaptIntegrateSimplex

tol requested relative error in the computation of the integral
integRule integer in the range 1:4 specifying degree of integration rule: a (2*integRule+1)

degree integration rule is used in function adsimp.
partitionInfo if FALSE, then only the results of the computations are returned. If TRUE,

then partition information is also returned for the final subdivision of the region.
This will require more memory, but sometimes that information can be useful
for other purposes.

... optional arguments to integrand function f(x,...)
intervals (1 x 2 x k) array of intervals for univariate integration
u point in m-dim. space

Details

If m=n, then an R translation of Alan Genz’s function adsimp(...) is used to evaluate the n-
dimensional integral. It works by adaptively splitting the region of integration into finer partitions,
always splitting the simplex with the largest estimated error.

If 1 < m < n, then the integral is evaluated by mapping the m-simplex in R^n to the canonical
simplex in m-dimensional space, using function adsimp on that ‘full’ m-dimensional integral, and
correcting with the Jacobian of the transformation.

If m=1, the built-in R function integrate (based on QUADPACK 1-dimensional adaptive quadra-
ture) is used to evaluate the line integral. Since it does not provide access to the final subdivision,
partitionInfo=TRUE in the univariate case returns the original partition information. So, if a fine
parition is desired in the m=1 case, start with a fine partition.

Value

A list containing:

integral estimated value of the integral, it is a vector if fDim > 1
estAbsError estimated absolute error
functionEvaluations

count of number of function evaluations
returnCode integer status: returnCode=0 is a successful return; non-zero error values are

described by next variable
message text message explaining returnCode; "OK" for normal return
subsimplices if partitionInfo=TRUE, this gives an array of subsimplices, see function adsimp

for more details.
subsimplicesIntegral

if partitionInfo=TRUE, this array gives estimated values of each component of
the integral on each subsimplex, see function adsimp for more details.

subsimplicesAbsError

if partitionInfo=TRUE, this array gives estimated values of the absolute error
of each component of the integral on each subsimplex, see function adsimp for
more details.

subsimplicesVolume

if partitionInfo=TRUE, vector of m-dim. volumes of subsimplices; this is not
d-dim. volume if m < n.

adsimp 5

Note

No check is done on the simplices to see that they are disjoint.

When m > 1 and fDim > 1, adsimp uses the same grid for each coordinate of f.

When m=1, adsimp does not handle the line integral case, and the built-in R function integrate
is used to evaluate the integral. In this 1-dimensional case, no partition information is available
(integrate does not provide that information) and if fDim > 1, the components of the integral are
evaluated independently, with an upper limit of maxEvals function evaluations for each component.
This means that (a) a different grid may be used for each component, and (b) the return variable
functionEvaluations is the sum of the number of function evaluations for each component; it may
be up to maxEvals*fDim.

References

See references to Genz and Cool (2003) in SimplicialCubature-package.

Examples

n <- 4
S <- CanonicalSimplex(n)
f1 <- function(x) { x[1]^3 }
adaptIntegrateSimplex(f1, S) # correct answer 0.00119047619
str(adaptIntegrateSimplex(f1, S, partitionInfo=TRUE)) # same result, with more info returned

test with vector valued integrand
f2 <- function(x) { c(x[1]^3,x[3]^4) }
adaptIntegrateSimplex(f2, S, fDim=2) # correct answer 0.00119047619 0.0005952380952

test with vector valued integrand and extra arguments
f3 <- function(x, extra.arg) { extra.arg*c(x[1]^3,x[3]^4) } # multiple of f2 above
adaptIntegrateSimplex(f3, S, fDim=2, extra.arg=100) # correct answer 0.119047619 0.05952380952

integrate over lower dimensional simplices
adaptIntegrateSimplex(f1, UnitSimplexV(4)) # answer = 0.01666667

f4 <- function(x) { 1 }
2-dim integral, exact answer area of unit simplex = sqrt(3)/2 = 0.8660254...
adaptIntegrateSimplex(f4, UnitSimplexV(3))

line integral over diamond in 2-dim, exact answer=arclength=4*sqrt(2)=5.656854...
S4 <- array(c(1,0, 0,1, 0,1, -1,0, -1,0, 0,-1, 0,-1, 1,0) , dim=c(2,2,4))
adaptIntegrateSimplex(f4, S4)
adaptIntegrateSimplex(f4, S4, partitionInfo=TRUE)

adsimp Internal functions for adaptIntegrateSimplex.

6 adsimp

Description

adsimp is a translation of Alan Genz’s matlab program adsimp.m to adaptively integrate over a
simplex. The other functions listed below are all called by adsimp. These functions are used
internally; use at your own risk.

Usage

adsimp(ND, VRTS, NF, F, MXFS, EA, ER, KEY, partitionInfo = FALSE)
adsimp.return.message(rcode)
SMPCHC(ND, NF, MXFS, EA, ER, SBS, KEY)
SMPDFS(ND, NF, F, TOP, SBS, VRTS)
SMPRMS(N, KEY)
SMPRUL(ND, VRTS, VOL, NF, F, G, W, PTS)
SMPSAD(ND, NF, F, MXFS, EA, ER, KEY, RCLS, SBS, VRTS, partitionInfo)
SMPSMS(N, VERTEX, NF, F, G)

Arguments

ND, N dimension of the space
VRTS, VERTEX array specifying the simplices
NF dimension of the function; F(x) has NF coordinates
F a function of ND variables, value F(x) has NF coordinates
rcode an integer return code from adsimp
MXFS maximum number of function evaluations allowed
EA requested absolute error
ER requested relative error
KEY integration rule
partitionInfo TRUE or FALSE, controls whether or not the function returns information about

the final partition. See the comments in function adaptIntegrateSimplex().
SBS number of subsimplices
TOP pointer to a subsimplex
VOL volume of a simplex
G generators for integration rule
W weights for an integration rule
PTS points in an integration rule
RCLS number of terms in an integration rule

Value

Not meant to be used directly, these functions are generally called from function adaptIntegrateS-
implex(...).

See Also

adaptIntegrateSimplex

CanonicalSimplex 7

CanonicalSimplex Internal functions for defining/working with simplices.

Description

These are utility functions that are useful when defining/working with simplices in n-dimensional
space.

Usage

CanonicalSimplex(n)
UnitSimplexV(n)
SimplexVolume(S)
SimplexSurfaceArea(S3)
JacobianS2Canonical(S2)

Arguments

n positive integer giving the dimension of the space

S an n x (n+1) matrix specifying a single n-dimensional simplex; the columns
S[,1],..,S[,n+1] give the vertices of the simplex.

S2 an n x (m+1) matrix specifying a single m-dimensional simplex, with m <= n;
the columns S2[,1],..,S2[,m+1] give the vertices of the simplex.

S3 an n x n matrix specifying a single (n-1)-dimensional simplex inside n-dimensional
space; the columns S3[,1],..,S3[,n] give the vertices of the simplex.

Value

Let e[j] be the j-th standard unit basis vector. CanonicalSimplex(n) gives the simplex with columns
being vertices of the canonical simplex in n-dimensions: the n-dim. simplex with vertices (0,0,...,0)
and e[1],...,e[n]. A vector (u[1],...,u[n]) is in the canonical simplex if 0 <= u[i] <= 1 for all i and
sum(u) <= 1. UnitSimplexV(n) gives the vertices (V-representation) of the unit simplex, namely
e[1],...,e[n]. A vector (u[1],...,u[n]) is in the unit simplex if 0 <= u[i] <= 1 for all i and sum(u) ==
1. SimplexVolume(S) returns the n-dim. volume of S and SimplexSurfaceArea(S3) computes the
(n-1)-dim. surface area of S3. JacobianS2Canonical(S2) returns the Jacobian of the transformation
from an m-dim. simplex S2 to the m-dim. canonical simplex.

Examples

CanonicalSimplex(3)
UnitSimplexV(3)
SimplexVolume(CanonicalSimplex(3))
SimplexSurfaceArea(UnitSimplexV(3))
JacobianS2Canonical(UnitSimplexV(3))

8 definePoly

definePoly Define, evaluate, or print a polynomial

Description

Utility functions to work with a multivariate polynomial.

Usage

definePoly(coef, k)
printPoly(p, num.digits)
evalPoly(x, p, useTerm=rep(TRUE, length(p$coef)))

Arguments

coef a vector of coefficients, one for each term of p(x)

k a matrix of (non-negative, integer) powers

p a polynomial, defined by definePoly

num.digits number of digits to print for the coefficients of the polynomial

x a (n x m) matrix, with columns containing the vectors where the polynomial
should be evaluated

useTerm vector of boolean values: if useTerm[i]=TRUE, term i is included in the evalua-
tion; if useTerm[i]=FALSE, term i is not included.

Details

These are utility functions for use with integrateSimplexPolynomial. definePoly is used to define a
polynomial:

p(x) =

length(coef)∑
i=1

coefix
k[i,1]
1 x

k[i,2]
2 · · ·xk[i,n]

n

printPoly prints a polynomial in human readable form.

evalPoly evaluates a polynomial at each of the vectors x[,1],x[,2],...,x[,m]. The optional argument
useTerm is for internal use.

See example below.

Value

For definePoly, a list is returned. That list can be used by integrateSimplexPolynomial, printPoly,
or evalPoly.

For printPoly, nothing is returned, but a human readable format is printed on the console.

For evalPoly, a vector of m values: y[i] = p(x[,i]).

grnmol 9

Note

The internal definition of a polynomial may change in the future.

See Also

integrateSimplexPolynomial

Examples

p1 <- definePoly(c(3,5), matrix(c(3,0,0,0, 0,2,1,4), nrow=2, ncol=4, byrow=TRUE))
printPoly(p1)
evalPoly(c(1,3,1,2) , p1) # f(1,3,1,2) = 723

grnmol Grundmann-Moller integration of a function over a simplex

Description

Computes an approximation to the integral of a function f(x) over a simplex S. This is an R transla-
tion of the matlab function grnmol.m which was written by Alan Genz.

Usage

grnmol(f,V,s)

Arguments

f a (real-valued) function f that can be evaluated at all points in V.

V a single simplex, specified by an (n x (n+1)) matrix. The columns V[,1],...,V[,n+1]
are the vertices of the simplex.

s a positive integer specifying the order of the rule used

Details

The Grundmann-Moller algorithm approximates the integral of f(x) over the simplex V. When
f(x) is a polynomial, and s is large enough, the integral is exact. This function is called by
integrateSimplexPolynomial.

Value

Q a vector of length s+1, with Q[i] the i-th degree approximate value of the integral

nv number of function evaluations used

References

See reference by Grundmann and Moller in SimplicialCubature-package.

10 integrateSimplexPolynomial

Examples

f <- function(x) { x[1]^2*x[4]^5 }
grnmol(f, CanonicalSimplex(4), s=4)

integrateSimplexPolynomial

Exact integration of a polynomial over a simplex

Description

Computes the exact integral of a polynomial p(x) over an m-dimensional simplex S in n-dimensional
space, 1 <= m <= n. The methods are exact for polynomials, no approximation is used. The only
inaccuracies possible are in the floating point evaluation of knots, coefficients, evaluation of the
polynomial, sums, and products.

Usage

integrateSimplexPolynomial(p, S, method="GM")

Arguments

p a single polynomial, defined though function definePoly.

S Either a single simplex, specified by an n x (m+1) matrix with the columns
S[,1],...,S[,n+1] giving the vertices of the simplex, or a n x (m+1) x k array with
S[„1],...,S[„k] each a single simplex as described above.

method either "GM" (for the Grundmann-Moller method) or "LA" (for the Lasserre-
Avrenchenkov) method

Details

If method="GM", the Grundmann-Moller method is used; it is exact for polynomials (because the
function chooses a rule of high enough degree for the degree of the polynomial p(x)). This is faster,
requiring fewer function evaluations. This method works for n >=1 and 1 <= m <= n.

If method="LA", the algorithm splits the polynomial into terms that are homogeneous of degree q,
uses the method of Lasserre and Avrachenkov to exactly integrate those terms, and sums over all
degrees. This method is slower, requiring more function evaluations. The degree of the polynomial
has more effect on execution time than the number of terms or number of variables. This method
only works with n > 1 and m=n.

Value

integral value of the integral
functionEvaluations

number of function evaluations used

LasserreAvrachenkov 11

References

See references in SimplicialCubature-package.

Examples

S <- CanonicalSimplex(4) # 4-dim. simplex
p1 <- definePoly(1.0, matrix(c(2,0,0,5), nrow=1))
printPoly(p1)
same as example for function grnmol(), but explicitly using the fact that the integrand
function is a polynomial, and automatic selection of the order of the integration rule
integrateSimplexPolynomial(p1, S, method="GM")
integrateSimplexPolynomial(p1, S, method="LA")

p2 <- definePoly(c(5,-6), matrix(c(3,1,0,0, 0,0,0,7), nrow=2, byrow=TRUE))
printPoly(p2)
integrateSimplexPolynomial(p2, S, method="GM") # correct answer -1.352814e-05
integrateSimplexPolynomial(p2, S, method="LA") # correct answer -1.352814e-05

integrate random polynomials and random simplices in different dimensions
for (n in 3:5) {

S <- matrix(rnorm(n*(n+1)), nrow=n, ncol=n+1)
p.rand <- definePoly(rnorm(1), matrix(c(4, rep(0,n-1)), nrow=1))
#printPoly(p.rand)
tmp1 <- integrateSimplexPolynomial(p.rand, S, method="GM")
tmp2 <- integrateSimplexPolynomial(p.rand, S, method="LA")
cat("n=",n," GM integral=",tmp1$integral," functionEvaluations=",tmp1$functionEvaluations,

" LA integral=", tmp2$integral, " functionEvaluations=",tmp2$functionEvaluations,"\n")
}

LasserreAvrachenkov Internal functions for integrateSimplexPolynomial.

Description

LasserreAvrachenkov implements the exact integration formula for a homogeneous polynomial p
of degree q. The other functions are helper functions for that.

Usage

LasserreAvrachenkov(q, p, useTerm, S)
nextIndexLA(current.n, b)
nextIntBaseB(current.n, b)

12 LasserreAvrachenkov

Arguments

q degree of the polynomial p

p polynomial obtained by calling definePoly

useTerm vector of booleans, telling which terms are homogeneous of degree q

S an n x (n+1) matrix specifying a single simplex; the columns S[,1],..,S[,n+1]
give the vertices of the simplex.

current.n vector of integers giving the base b representation of a (non-negative) integer

b base used for the base b representation of an integer

Value

Not meant to be called externally.

References

See Lasserre and Avrachenkov, Baldoni, et al., and Konerth references in SimplicialCubature-package.

See Also

integrateSimplexPolynomial

Index

∗Topic Numerical mathematics
SimplicialCubature-package, 2

∗Topic cubature
SimplicialCubature-package, 2

∗Topic multivariate integration
SimplicialCubature-package, 2

adaptIntegrateSimplex, 2, 3, 3, 6
adsimp, 5

CanonicalSimplex, 7

definePoly, 8

evalPoly (definePoly), 8

grnmol, 9

integrate.vector.fn
(adaptIntegrateSimplex), 3

integrateSimplexPolynomial, 2, 3, 9, 10,
12

JacobianS2Canonical (CanonicalSimplex),
7

LasserreAvrachenkov, 11

nextIndexLA (LasserreAvrachenkov), 11
nextIntBaseB (LasserreAvrachenkov), 11

original.coordinates
(adaptIntegrateSimplex), 3

printPoly (definePoly), 8

SimplexSurfaceArea (CanonicalSimplex), 7
SimplexVolume (CanonicalSimplex), 7
SimplicialCubature

(SimplicialCubature-package), 2
SimplicialCubature-package, 2
SMPCHC (adsimp), 5

SMPDFS (adsimp), 5
SMPRMS (adsimp), 5
SMPRUL (adsimp), 5
SMPSAD (adsimp), 5
SMPSMS (adsimp), 5

UnitSimplexV (CanonicalSimplex), 7

13

	SimplicialCubature-package
	adaptIntegrateSimplex
	adsimp
	CanonicalSimplex
	definePoly
	grnmol
	integrateSimplexPolynomial
	LasserreAvrachenkov
	Index

