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Abstract

SimVitD provides simulation based tools to compare supplementation schemes in vita-
min D studies. These tools aim to account for and characterise key sources of variability
and heterogeneity in vitamin D benefit. Seasonal variation in solar radiation is pro-
nounced, which gives a natural sinusoidal variation in vitamin D status; consequently,
the relative contribution of a vitamin D supplementation to the overall vitamin D status,
and it’s impact, will vary seasonally. Functionality to approximate the power of a study
comparing two supplementation schemes via simulation is easily accessible.
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1. Introduction

A large number of observational studies in humans suggest that vitamin D deficiency can
have detrimental impacts on health (Theodoratou et al. 2014). Further, hundreds of experi-
mental studies in animals and cell lines describe underlying (patho)physiological mechanisms
associated with deficiency. Majority of an individual’s vitamin D is derived from ultravio-
let B (UVB) exposure (Webb and Holick 1988; O’Sullivan et al. 2019), and hence follows
a strong seasonal pattern. The usefulness of vitamin D in providing immune protection
against common maladies is affected by this seasonality. As well as a heterogeneous treat-
ment effect (HTE) between individuals taking a vitamin D supplement, there may be a large
intra-individual heterogeneity in the general effectiveness of supplementation depending on
the season.

The package SimVitD presents simulation based tools to aid planning the comparison of sup-
plementation schemes in vitamin D studies, which aim to account for a set of perceived sources
of variability and heterogeneity in vitamin D benefit. As seasonal variation in solar radiation
is pronounced, there will be a natural, sinusoidal variation in vitamin D status; consequently,
the relative contribution of vitamin D supplementation to the overall vitamin D status, and
it’s impact, will vary seasonally: while vitamin D supplementation may contribute the major-
ity of the vitamin D in Winter, the same dose may be relatively insignificant in the Summer.
Some of the SimVitD schemes are shown in Figures 1la and 1b.

Calculating the study power of a randomised control trial or the sample size required for a
given power is non-trivial under such circumstances. SimVitD uses simulation of exposures
and infections at an individual level (microsimulation), to investigate the effects of various
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vitamin D interventions on disease rates within a study group. Individual vitamin D status
trajectories are simulated throughout the year for two or more groups, exposures and inci-
dencesof infections are simulated based on disease risk at the time of the exposure. The power
of the study (or the sample size needed to obtain a given power) can be approximated via
simulation. These tools can be utilised in the planning of vitamin D studies.

The remainder of this vignette is organised as follows. Section 2 outlines our proposed models
for vitamin D status profiles and supplementation schemes. Section 3 describes simulation of
a body’s response to vitamin D using exposures to a common infection as example. Section 4
describes the scheme for approximation of the power when comparing two supplementation
schemes for vitmain D. Section 5 contains an example on usage of the package.
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2. Model for vitamin D status

This section provides an overview of the main components of the proposed simulation based
approach to estimating power and sample size determination in SimVitD.

Power calculations in SimVitD proceed by simulating many realisations of a study. Within
each study, individuals’ vitamin D status trajectories and potential exposures and protections
from infections are simulated separately. This is akin to a microsimualation. The core steps
of the simulation approach being proposed are:

(i) simulation of an individual’s vitamin D status trajectories
(ii) simulation of an individual’s exposures to infectious agents

(iii) determination of the probability of developing infection at each exposure time, dependent
on an individual’s vitamin D status at exposure
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(iv) simulation of contracting an infection at conditional on step (iii).

The package also contains options to approximate power values for different study designs.
This can be used as an aid for planning the experimental approach, most notably determining
the required sample sizes for a desired power. The power approximations are based upon many
independent replications of the chosen trial design.

2.1. Vitamin D status trajectories

Majority of an individual’s vitamin D is derived from UVB exposure (Webb and Holick 1988;
O’Sullivan et al. 2019). Their vitamin D status will naturally vary throughout the year
with peaks during periods with more exposure to sunlight and troughs when this is not the
case (Kelly et al. 2016; O’Sullivan et al. 2017). With this in mind, a squared sine wave curve
is used as an approximation of an individual’s vitamin D status profile over time. Considering
a study with n individuals,

VP(t) = H; + A;sin®(t), ¢>0 (1)

gives the profile of individual ¢ and ¢ is time. The parameters H; > 0 and A; > 0 control the
overall height of the curve and the level of variability between periods with and without alot
of exposure to sunlight. This guarantees strictly positive Vitamin D levels matching physical
reality. In SimVitD an adjustment is made to account for a 1-2 month lag effect from UVB
exposure to expressed vitamin D level.

Any reasonable model of vitamin D profiles in a group of individuals would allow for random
variation between individuals; we thus assume that

K K2
A; ~ Gamma (/@24, A) H; ~ Gamma (Ii%{, H) .
aop ho
where these are independently drawn. The parameters ag and hg give the expected heights
and profile amplitudes for individuals. The parameters k4 and kg control the deviation of
individual vitamin D profiles around these expected values. More convenient parameterisa-
tions of values are discussed in Section 5.

In SimVitD these curves can be generated using the vitd.curve () function. Multiple curves
can be simulated at once, to generate a group of individuals, as shown for example in Fig-
ure 2. This function also allows generation of curves for some different kinds of vitamin D
supplementation schemes, where an individual takes addtional vitamin D. Two types of sup-
plmentation schemes are avaialable beyond the curve in (1). The curve in (1) corresponds to
no supplementation and is called placebo in the function through the type argument.

Fized dosing scheme

A fixed dosing scheme corresponds to an individual taking a daily vitamin D supplement of
a fixed amount. In this case, the no supplement curve is modified by shifting it up by

VES(t) = 6+ VP(1).
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This assumes that there is a constant daily effect of the supplement. This scheme corresponds
to fixed-dose in the vitd.curve() function and is shown in Figure 1a. The value of § can
be passed to vitd.curve(). Note however, that § represents the change in detected vitamin
D as seen in the blood, and not the dosage of the supplement.

Dynamic dosing scheme

A dynamic dosing scheme allows an individual to be monitored regularly and their vitamin
D status kept above a threshold 7. That is

VA (t) = max { T, VF'(¢) } .

This scheme corresponds to dynamic-dose in the vitd.curve() function. A comparison of
the placebo and dosing schemes is shown in Figure 1b.

Crossover schemes from placebo to fixed or dynamic dosing

For a crossover study, an individual switches from placebo to either one of a fixed dosing or
dynamic dosing scheme. A crossover time ¢ is given, and then

Vi () = VP I(t < &) + Vi (t) I(t > €),

with I(-) the indicator function and “treat” representing the treatment scheme used i.e. either
fixed dosing or dynamic dosing.

Fluctuations and seasonal schedule

The default of the package is to work on the assumption of a northern hemisphere seasonal
schedule with Summer months being June to August. Cyclic vitamin D profiles follow the
assumed yearly periodic curve with troughs in March and peaks in September (Kelly et al.
2016; O’Sullivan et al. 2017). The September peak is an adjustment for the 1-2 month time
lag it takes absorbed UVB to express as serum measurable vitamin D.

3. Response to vitamin D

The SimVitD package allows one to investigate, via simulation, potential benefits of vitamin
D supplementation. It presents a toolbox, to investigate potential outcomes of studies for
particular states of nature. From this perspective the package is designed to examine the
immune boosting properties of having sufficient vitamin D levels. We take an unnamed
infection which vitamin D protects against. The assumption is that there is less likelihood of
getting the infection if one has high vitamin D levels when susceptible and exposed to it.

Exposures to infection

An individual’s exposures to infection over the period of a prospective vitamin D study are
simulated from a Possion process. In the case of seasonally concentrated infections (e.g. flu), a
non-homegeneous Poisson process (NHPP) with rate function A(¢),¢ > 0 is used. Simulations
from an NHPP in SimVitD are done through the R package poisson (Brock and Slade 2015).
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Figure 2: Examples of vitamin D profiles simulated using the vid.curve() function. (a)
Typical curves displaying random variation for a group of participant’s without any supple-
mentation (placebo). (b) Curves for a group where vitamin D is monitored and supplemented
so as to be consistently be above 50 (units).

The function A\(¢) is defined by rescaling an overall rate \yg which gives the rate of exposures
when most intense
At)=Xov(t), 0<wv(t)<1, t>0.

The function v(t) may be passed by the user. A convenience function intensity.function()
gives a step function for simple Summer/Winter rates, as shown in Figure 3.

Likelihood of infection

The likelihood an individual gets infection after an exposure depends on their vitamin D
status at exposure. This is modulated by a baseline (healthy) prevalence py and a relative risk
curve. The probability pg gives the probability of a vitamin D replete individual contracting
an infection after exposure. The relative risk curve is a member of generalised logistic family

u—F

90) =L vt

where z is the vitamin D status. The parameters ¢, u give the lowest and highest relative risk
values. The value of u states how much more likely one is to get infection when completely
depleted in vitamin D compared with when one is fully replete. The values of a and b are
determined by providing points of inflection of the relative risk curve. These points default
to 10 and 70 nmol/l in the package; these are values where we see the greatest change in
immunity due to vitamin D supplementation. See Figures 6a and 6b for examples.

Summary of simulation steps

We now summarise the simulation of exposures and infections. Consider individual ¢ and let
T1,...,Txn denote the times at which they are exposed. Exposure times only within the frame
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of the study are used: Ty < Tp < Tong, k=1,...,N.

Ti,...., Ty ~ NHPP(A(t)) simulate the exposure time

L, = VP (Ty) find the individual’s vitamin D status k =1,..., N
P, = pog(Lg) get the probability of infection after exposure k =1,..., N
I, ~ Bernoulli(Py) simulate developing infection at exposures k =1,..., N.

In the case of infections (I = 1), SimVitD includes an option to impose a “holding time”; an
exponentially distributed amount of time where the infected individual is not susceptible to
a new infection.
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Figure 3: Examples of intensity functions simulated using intensity.function()

4. Study power

SimVitD has functionality to approximate the power of study comparing two supplementation
schemes for three kinds of tests. It is perceivable that the three tests used might be the kind
used on data arising from such a study. Denote the supplementation schemes being compared
by A (placebo) and B (treatment). Scheme B is hypothesised to boost the immune system
and reduce infection incidence. Assume an equal number of participants n assigned to both
schemes.

Types of tests
Define

pa = Pr{individual gets > 1 infection receiving scheme A}

m4 = median number of infections for individual receiving scheme A
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and define pp and mp similarly. SimVitD can approximate power for testing the sets of
hypotheses

Hy :pa <pp Ha:pa>pB (2)
Hy:my <mp Hp:mapa > mp. (3)

A test of (2) is carried out using a proportions test (prop.test in package stats), and (3)
is tested using a Wilcoxon rank sum test (wilcox.test in package stats) for comparing
two populations. There is also a crossover study design considered where individuals switch
supplementation at a specified stage in the study. The median difference A, of the number of
infections on scheme A less scheme B in the crossover is tested,

Hy:A<O0 Hy:A>0 (4)

using paired samples, through a Binomial test (binom.test in package stats).

Approzimating the power

The power of a test is
Power = Pr{reject Hy | H4 is true}.

The rejection decision depends on a significance level «, giving the probability of a Type I
error,
a = Pr{reject Hy| Hy is true}.

SimVitD approximates the power for n participants in each of schemes A and B (or n total
in a crossover design) by simulating a large number, N, of studies, and carrying out the test
in each of these. The scheme is outlined in Figure 4.

S_pemfy.settm.gs f:or fSlmulate many Carry out a test Combine all decisions
simulation of indivuals instances of the of H, for each to approximate power
in schemes A and B study study pp 13

Hj decision 1

Give n and settings for
simulation of vitamin D
profiles under schemes

A and B, exposures rate
function A(t), po, g(x), hy-
potheses to test Hy, Ha
and a.

Approximate the power
via

Hy decision 2

— # H, rejected
Power = — N

Hj decision N

Figure 4: Flowchart showing the simulation process for estimating the power of a study.

Each of the N instances of the study are simulated under H 4 being true. For each instance,
the test of hypothesis for Hy is applied to the study’s data. The decision (reject or not) is
recorded. A sample estimate of the power is then given by

——  # Hj rejected

Power = ——————,

N
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the proportion of times Hy was rejected when H 4 was the actual state of nature. By the law
of large numbers, we have .
Power — Power

as N — oo and we also have )
error {Power} X ——.
vN
Functionality for approximation of the power in SimVitD is through the power.calc() func-
tion. Investigation of the error in approximation of the power is also possible through the
mc.error argument.

5. Using the package

This section aims to outline an example use case for the package. In this example one group is
given a dynamic dosing scheme, keeping vitamin D levels above 50 nmol/l. This is compared
to a group given no supplementation (i.e. placebo). The primary endpoint is the number of
respiratory tract infections seen in the two groups. The study takes place in Ireland where
mean maximum vitamin D levels are approximately 80 nmol/l and mean minimum levels are
approximately 10 nmol/l. The researcher aims to enrol a diverse cohort of participants, who
will be randomly assigned to one of the two groups. Thus, a large scatter around these mean
levels may be expected. The study will last one year, indicated by the arguments start and
end.

Vitamin D status trajectories for the supplemetation schemes described in Section 2.1 are
generated using the vitd.curve() function. The values of k4, a9, kg and hg giving the am-
plitudes and height of simulated vitamin D status trajectories are determined through the
prior expectations about the groups under study. The value of ag is determined from the dif-
ference of the arguments Min.Height and Max.Height in the package, while the value of hg
is identical to the value passed for Min.Height. The values ag and hg give the expected am-
plitude and mean level of the Vitamin D profile curve. The values of k4 and sy quantify the
spread about the mean level in multiples of the mean. Regarding the inputs into our package,
the value of k4, for example, is derived from the Spread.Max argument via 100/Spread.Max;
this translates as larger values of Spread.Max corresponding to more variance in the generated
Vitamin D profiles. The value of xy is derived analogously using the Spread.Min argument.

Simulating and plotting vitamin D status profiles

The two groups are generated and plotted using the below code.

R> control <- vitd.curve( 20, type = "placebo", start = 0, end = 1, Min.Height = 10,
Max.Height = 80, Spread.Min 10, Spread.Max = 10 )

R> plot(control)
R> treatment <- vitd.curve( 20, type = "dynamic-dose", start = 0, end = 1,

Min.Height = 10, Max.Height = 80, Flat.Height = 50,
10, Spread.Max = 10, Spread.FH = 10 )

R Spread.Min
R> plot(treatment)
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Figure 5: Vitamin D profiles for the placebo and dynamic dosing groups with exposures in
red and infections in blue

FExposures to infection and resulting cases

Next exposure times to respiratory tract infections are simulated. The same intensity function
is used for both groups, with a mean of one exposure per week and with no exposures occurring
outside of flu season.

R> intensfun <- intensity.function( summer.rate = 0, winter.rate = 1, flu = TRUE )
R> control_expos <- exposure.levels( control, rate = 1, intensfun, end = 1 )
R> treatment_expos <- exposure.levels( treatment, rate = 1, intensfun, end = 1 )
R> control_inf <- infection.count( control_expos, baseline = 0.03,
. RR = 3, holding.time = 2 )
R> treatment_inf <- infection.count( treatment_expos, baseline = 0.03,
RR = 3, holding.time = 2 )

The exposures and infections may be plotted over the vitamin D status profiles.

R> plot(control)

R> plot(control_expos)

R> infection.count.plot(control_expos, control_inf)

R> plot(treatment)

R> plot(treatment_expos)

R> infection.count.plot(treatment_expos, treatment_inf)

Ezploring seasonal variation in risk

rr.curve.plot() visualises where exposures occur on the relative risk curve. Figures 6a
and 6b show the output of
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Figure 6: Relative risk curve with exposures and infections overlain. Output from
rr.curve.plot().

R> rr.curve.plot(control_expos, control_inf )
R> rr.curve.plot(treatment_expos, treatment_inf )

elucidating the discrepancy between the placebo and dynamic dosing schemes by indicating
what the risk level is for infection in each group.

The rr.profile.plot () function gives a visualisation tool to explore the seasonal variation
in risk for an individual. It indicates where exposures occurred in the vitamin D status profile
and the corresponding relative risk side-by-side. The exposures resulting in infection are also
indicated. An example is shown in Figures 7a and 7b which are obtained from

R> rr.profile.plot( control, control_expos, control_inf )
R> rr.profile.plot( treatment, treatment_expos, treatment_inf )

Approximating power of detecting difference in treatment

The summaries from the infection.count objects show a difference in the mean between
the placebo and dynamic dosing groups. The mean of the dynamically dosed group being
lower than the mean of the control group. The power.calc function is used to determine the
sample size needed to obtain at least 80% power.

R> pow <- power.calc( num.participants = c(20,40,60), num.sims = 500,
test.type = "count", sig.level = 0.05,

vitdcurves.placebo = control, vitdcurves.treatment = treatment,
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Figure 7: Profiles and relative risk for single participants with exposures in red and infections
in blue. Output from rr.profile.plot().

baseline = 0.03, RR = c(2,3,4), rate = 1, intensity.func = intensfun, holding.t
R> plot( pow, x.legend = 20, y.legend = 1,

main.legend = "Relative Risk", legend.size = 0.8 )

R> abline( h = 0.8, 1ty = 2 )

A large value of num. sims should be used. A value of at least 500 is recommended.

The power calculation shows that in order to get a power of 80% the study would need to
enrol at least 60 participants in each group, when a relative risk of 3 is assumed.
Exploring the Monte Carlo error in power approzimation

Monte Carlo error in the power approximation may be explored by using the mc.error argu-
ment to pow.calc().

R> pow_mc <- power.calc( num.participants = c(20,40,60), num.sims = 500,
test.type = "count", sig.level 0.05,
vitdcurves.placebo = control, vitdcurves.treatment = treatment,
baseline = 0.03, RR = c(2,3,4), rate = 1,

intensity.func = intensfun, holding.time = 2, mc.error=10 )

R> plot (pow_mc)

Crossover design

For the crossover design there are two options. Participants swap from placebo to either one
of fixed or dynamic dosing. In the code below, a two year trial is considered, with a crossover
from placebo to dynamic dosing after the first year.
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Figure 8: Output from plot(pow) showing esitmate of the power at each relative risk level
and specified value of n.
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Figure 9: Output from plot (pow_mc) showing the result of the estimation of power over ten
runs at each relative risk level and value of n.

R> crossover <- vitd.curve( 20, type = "cross-placebo-dynamic-dose",

start = 0, end = 2, cross = 1,

Max.Height = 80, Min.Height = 10, Flat.Height = 50,
Spread.Min = 10, Spread.Max = 10, Spread.FH = 20 )
R> plot(crossover)

The plot output is shown in Figure 10 where the cross from placebo to supplementation is
clear.

Approximation of the power can also be carried out using pow.calc(). In this case, only the
vitdcurves.treatment argument will be passed. Figure 11 shows the approximate power.

R> pow_cross <- power.calc( num.participants = c(20,40,60), num.sims = 500,
test.type = '"crossover", sig.level = 0.05,
vitdcurves.treatment = crossover,

baseline = 0.03, RR = ¢(2,3,4), rate = 1,

intensity.func = intensfun, holding.time = 2, mc.error=10 )
R> plot(pow_cross)
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Figure 10: Status curves for two year crossover from placebo to dynamic dosing.
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