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STAR-package Spike Train Analysis with R

Description

Functions to analyze neuronal spike trains

Details

Package: STAR
Type: Package
Version: 0.2-1
Date: 2008-11-02
Depends: gss, survival, mgcv, R2HTML
Suggests: lattice, HiddenMarkov, snow, rstream
License: GPL version 2 or newer
URL: http://sites.google.com/site/spiketrainanalysiswithr

Author(s)

Christophe Pouzat

Maintainer: Christophe Pouzat <christophe.pouzat@gmail.com>

acf.spikeTrain Auto- Covariance and -Correlation Function Estimation for Spike
Train ISIs

Description

The function acf.spikeTrain computes (and by default plots) estimates of the autocovariance or
autocorrelation function of the inter-spike intervals of a spike train.



4 acf.spikeTrain

Usage

acf.spikeTrain(spikeTrain, lag.max = NULL,
type = c("correlation", "covariance", "partial"),
plot = TRUE, na.action = na.fail,
demean = TRUE, xlab = "Lag (in isi #)",
ylab = "ISI acf",
main, ...)

Arguments

spikeTrain a spikeTrain object or a vector which can be coerced to such an object.

lag.max maximum lag at which to calculate the acf. Default is 10 log10(N) where N is
the number of ISIs. Will be automatically limited to one less than the number of
ISIs in the spike train.

type character string giving the type of acf to be computed. Allowed values are
"correlation" (the default), "covariance" or "partial".

plot logical. If TRUE (the default) the acf is plotted.

na.action function to be called to handle missing values. na.pass can be used.

demean logical. Should the covariances be about the sample means?

xlab x axis label.

ylab y axis label.

main title for the plot.

... further arguments to be passed to plot.acf.

Details

Just a wrapper for acf function. The first argument, spikeTrain, is processed first to extract the
inter-spike intervals. acf.spikeTrain is mainly used to plot what Perkel et al (1967) call the serial
correlation coefficient (Eq. 8) or serial covariance coefficient (Eq. 7), p 400.

Value

An object of class "acf", which is a list with the following elements:

lag A three dimensional array containing the lags at which the acf is estimated.

acf An array with the same dimensions as lag containing the estimated acf.

type The type of correlation (same as the type argument).

n.used The number of observations in the time series.

series The name of the series x.

snames The series names for a multivariate time series.

The lag k value returned by ccf(x,y) estimates the correlation between x[t+k] and y[t].

The result is returned invisibly if plot is TRUE.
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Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Perkel D. H., Gerstein, G. L. and Moore G. P. (1967) Neural Spike Trains and Stochastic Point
Processes. I. The Single Spike Train. Biophys. J., 7: 391-418. http://www.pubmedcentral.nih.
gov/articlerender.fcgi?tool=pubmed&pubmedid=4292791

See Also

acf, varianceTime, renewalTestPlot

Examples

## Simulate a log normal train
train1 <- c(cumsum(rlnorm(301,log(0.01),0.25)))
train1 <- as.spikeTrain(train1)
## Get its isi acf
acf.spikeTrain(train1,lag.max=100)

as.repeatedTrain Coerce and Test repeatedTrain Objects

Description

as.repeatedTrain attempts to coerce a list with numeric vector elements to a repeatedTrain
object while is.repeatedTrain tests if its argument is such an object.

Usage

as.repeatedTrain(x)
is.repeatedTrain(x)

Arguments

x An object to be coerced to or to test against a repeatedTrain object.

Details

A repeatedTrain object is list of spikeTrain objects. It is used to store the responses of a given
neuron to repeated stimulations.

Value

as.repeatedTrain returns a repeatedTrain object or an error.

is.repeatedTrain returns TRUE if its argument is a repeatedTrain object and FALSE otherwise.

http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=4292791
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=4292791


6 as.spikeTrain

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

plot.repeatedTrain, print.repeatedTrain, summary.repeatedTrain, psth, raster, as.spikeTrain,
is.spikeTrain

Examples

## load CAL1V data
data(CAL1V)
## convert them to repeatedTrain objects
CAL1V <- lapply(CAL1V, as.repeatedTrain)
## did the conversion work?
sapply(CAL1V, is.repeatedTrain)
## look at the raster of the 1st neuron
CAL1V[["neuron 1"]]

as.spikeTrain Coerce, Test and Extract from spikeTrain Objects

Description

as.spikeTrain attempts to coerce a numeric vector to a spikeTrain object while is.spikeTrain
tests if its argument is such an object. [.spikeTrain, extracts a subset of a spikeTrain object.

Usage

as.spikeTrain(x)
is.spikeTrain(x)
## S3 method for class 'spikeTrain'
x[i]

Arguments

x An object to be coerced to or to test against a spikeTrain object or a spikeTrain
object for [.

i indices specifying elements to extract. No gaps are allowed.

Details

A spikeTrain object is a numeric vector whose elements are strictly increasing (that is, something
which can be interpreted as a sequence of times of successive events with no two events occurring
at the same time). The extractor method, [ requires that the extracted elements are without gaps, an
error is returned otherwise.
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Value

as.spikeTrain returns a spikeTrain object or an error.

is.spikeTrain returns TRUE if its argument is a spikeTrain object and FALSE otherwise.

[ returns a spikeTrain object or an error.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Perkel D. H., Gerstein, G. L. and Moore G. P. (1967) Neural Spike Trains and Stochastic Point
Processes. I. The Single Spike Train. Biophys. J., 7: 391-418. http://www.pubmedcentral.nih.
gov/articlerender.fcgi?tool=pubmed&pubmedid=4292791

See Also

plot.spikeTrain, print.spikeTrain, summary.spikeTrain

Examples

## load CAL1S data
data(CAL1S)
## convert the data into spikeTrain objects
CAL1S <- lapply(CAL1S,as.spikeTrain)
## Are the list eleemnts now spikeTrain objects?
sapply(CAL1S, is.spikeTrain)
## look at the train of the 1st neuron
CAL1S[["neuron 1"]]
## look at the window 10-40 using the extractor function
CAL1S[["neuron 1"]][10 < CAL1S[["neuron 1"]] & CAL1S[["neuron 1"]] < 40]

brt4df Get Backward Recurrence Times from Data Frames Generated by
mkGLMdf

Description

Spike trains discharge models for single neurons are rarely renewal. They require more information
than just the elapsed time since the last spike. Function brt4df generates this additional information
from a data frame obtained by mkGLMdf.

Usage

brt4df(df, varName, max.order = 1, colNames,
auto = TRUE, normalise = function(x) as.numeric(scale(log(x))))

http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=4292791
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=4292791
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Arguments

df A data.frame generated by mkGLMdf and containing the events of a single neu-
ron.

varName The name of one of the variables of df. It should be one of the "elapsed time"
variables, like, lN.x, where x stands for a neuron number.

max.order How many events should looked for in the past?

colNames Names of the columns of the returned data.frame. If missing default names
are provided.

auto A logical. Does varName refer to the elapsed times since the last spike of the
neuron whose spikes are recorded in the event variable (TRUE) or not (FALSE)?

normalise A function applied to the extracted data in order to normalise them. If missing
,nothing is done and the extracted data are left unchanged.

Details

If the spike required to evaluate the elapsed time is not contained in df then NA will be the reported
elapsed time.

Value

A data.frame is returned with as many variable as max.order and as many rows as df.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Kass, Robert E. and Ventura, Val\’erie (2001) A spike-train probability model Neural Comput. 13:
1713–1720.

Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P. and Brown, E. N. (2005) A Point
Process Framework for Relating Neural Spiking Activity to Spiking History, Neural Ensemble and
Extrinsic Covariate Effects J Neurophysiol 93: 1074–1089. http://jn.physiology.org/cgi/
content/abstract/93/2/1074

See Also

mkGLMdf, data.frame, glm, mgcv

Examples

## Not run:
## Let us consider neuron 1 of the CAL2S data set
data(CAL2S)
CAL2S <- lapply(CAL2S,as.spikeTrain)
CAL2S[["neuron 1"]]
renewalTestPlot(CAL2S[["neuron 1"]])
summary(CAL2S[["neuron 1"]])

http://jn.physiology.org/cgi/content/abstract/93/2/1074
http://jn.physiology.org/cgi/content/abstract/93/2/1074
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## Make a data frame with a 4 ms time resolution
cal2Sdf <- mkGLMdf(CAL2S,0.004,0,60)
## keep the part relative to neuron 1
n1.cal2sDF <- cal2Sdf[cal2Sdf$neuron=="1",]
## remove unnecessary data
rm(cal2Sdf)
## Extract the elapsed time since the second to last and
## third to last for neuron 1. Normalise the result.
n1.cal2sDF[c("rlN.1","rsN.1","rtN.1")] <- brt4df(n1.cal2sDF,"lN.1",2,c("rlN.1","rsN.1","rtN.1"))
## load mgcv library
library(mgcv)
## fit a model with a tensorial product involving the last
## three spikes and using a cubic spline basis for the last two
n1S.fitA <- gam(event ~ te(rlN.1,rsN.1,bs="cr") + rtN.1,data=n1.cal2sDF,family=binomial(link="logit"))
summary(n1S.fitA)
## plot the result in 2 different ways
plot(n1S.fitA)
vis.gam(n1S.fitA,phi=20,theta=45)

## End(Not run)

changeScale Change the Scales of a quickPredict Object for an Interaction Term

Description

Designed to transform results of quickPredict obtained on interaction terms from the transformed
scale (on which the variables are approximately uniformly distributed) onto the "native", linear
scale.

Usage

changeScale(obj, xFct, yFct)

Arguments

obj a quickPredict object.

xFct a function to be applied on the xx element of obj. This function should be the
qFct attribute of the function, returned by mkM2U, used to transform the variable
from the "native" to the "uniform" scale.

yFct a function to be applied on the yy element of obj. This function should be the
qFct attribute of the function, returned by mkM2U, used to transform the variable
from the "native" to the "uniform" scale.

Value

A quickPredict object.
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Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

quickPredict, plot.quickPredict

Examples

## Not run:
data(e060824spont)
DFA <- subset(mkGLMdf(e060824spont,0.004,0,59),neuron==1)
DFA <- within(DFA,i1 <- isi(DFA,lag=1))
DFA <- DFA[complete.cases(DFA),]
m2u1 <- mkM2U(DFA,"lN.1",0,29)
m2ui <- mkM2U(DFA,"i1",0,29,maxiter=200)
DFA <- within(DFA,e1t <- m2u1(lN.1))
DFA <- within(DFA,i1t <- m2ui(i1))
with(DFA,plot(ecdf(e1t[time>29]),pch="."))
abline(a=0,b=1,col=2,lty=2)
with(DFA,plot(ecdf(i1t[time>29]),pch="."))
abline(a=0,b=1,col=2,lty=2)
m1.fit <- gssanova(event~e1t*i1t, data=subset(DFA,time>29), family="binomial", seed=20061001)
inter.pred <- m1.fit %qp% "e1t:i1t"
contour(inter.pred,what="mean",nlevels=10,col=2,lwd=2)
contour(inter.pred,what="sd",nlevels=5,col=1,lwd=1,lty=2,add=TRUE)
inter.predN <- changeScale(inter.pred,attr(m2u1,"qFct"),attr(m2ui,"qFct"))
contour(inter.predN,what="mean",nlevels=5,col=2,lwd=1)
contour(inter.predN,what="sd",nlevels=3,col=1,lwd=1,lty=2,add=TRUE)

## End(Not run)

cockroachAlData Spike Trains of several Cockroach Antennal Lobe Neurons Recorded
from Six Animals

Description

Four (CAL1S and CAL1V), three (CAL2S and CAL2C), three (e060517spont and e060517ionon),
three (e060817spont, e060817terpi, e060817citron and e060817mix), two (e060824spont and
e060824citral) and four (e070528spont and e070528citronellal) Cockroach (Periplaneta amer-
icana) antennal lobe neurons (putative projection neurons) were recorded simultaneously and extra-
cellularly during spontaneous activity and odors (vanilin, citral, citronellal, terpineol, beta-ionon)
responses from six different animals. The data sets contain the sorted spike trains of the neurons.
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Usage

data(CAL1S)
data(CAL1V)
data(CAL2S)
data(CAL2C)
data(e060517spont)
data(e060517ionon)
data(e060817spont)
data(e060817terpi)
data(e060817citron)
data(e060817mix)
data(e060824spont)
data(e060824citral)
data(e070528spont)
data(e070528citronellal)

Format

CAL1S is a named list with 4 components ("neuron 1", "neuron 2", "neuron 3", "neuron 4").
Each component contains the spike train (ie, action potentials occurrence times) of one neuron
recorded during 30 s of spontaneous activity. Times are expressed in seconds.

CAL1V is a named list with 4 components ("neuron 1", "neuron 2", "neuron 3", "neuron 4").
Each component is a named list with 20 components: "stim. 1", ..., "stim. 20". Each sub-
list contains the spike train of one neuron during 1 stimulation (odor puff) with vanillin (http:
//en.wikipedia.org/wiki/Vanillin). Each acquisition was 10 s long. The command to the
odor delivery valve was on between sec 4.49 and sec 4.99.

CAL2S is a named list with 3 components ("neuron 1", "neuron 2", "neuron 3"). Each compo-
nent contains the spike train (ie, action potentials occurrence times) of one neuron recorded during
1 mn of spontaneous activity. Times are expressed in seconds.

CAL2C is a named list with 3 components ("neuron 1", "neuron 2", "neuron 3"). Each com-
ponent is a named list with 20 components: "stim. 1", ..., "stim. 20". Each sub-list contains
the spike train of one neuron during 1 stimulation (odor puff) with citral (http://en.wikipedia.
org/wiki/Citral). Each acquisition was 14 s long. The command to the odor delivery valve was
on between sec 5.87 and sec 6.37.

e060517spont is a named list of with 3 components ("neuron 1", "neuron 2", "neuron 3").
Each component is a spikeTrain object (ie, action potentials occurrence times) of one neuron
recorded during 61 s of spontaneous activity. Times are expressed in seconds.

e060517ionon is a named list with 3 components ("neuron 1", "neuron 2", "neuron 3"). Each
component is a repeatedTrain object with 19 spikeTrain objects: "stim. 1", ..., "stim. 19".
Each spikeTrain contains the spike train of one neuron during 1 stimulation (odor puff) with beta-
ionon (http://commons.wikimedia.org/wiki/Image:Beta-Ionon.svg). Each acquisition was
15 s long. The command to the odor delivery valve was on between sec 6.07 and sec 6.57.

e060817spont is a named list of with 3 components ("neuron 1", "neuron 2", "neuron 3").
Each component is a spikeTrain object (ie, action potentials occurrence times) of one neuron
recorded during 60 s of spontaneous activity. Times are expressed in seconds.

http://en.wikipedia.org/wiki/Vanillin
http://en.wikipedia.org/wiki/Vanillin
http://en.wikipedia.org/wiki/Citral
http://en.wikipedia.org/wiki/Citral
http://commons.wikimedia.org/wiki/Image:Beta-Ionon.svg


12 cockroachAlData

e060817terpi is a named list with 3 components ("neuron 1", "neuron 2", "neuron 3"). Each
component is a repeatedTrain object with 20 spikeTrain objects: "stim. 1", ..., "stim. 20".
Each spikeTrain contains the spike train of one neuron during 1 stimulation (odor puff) with
terpineol (http://en.wikipedia.org/wiki/Terpineol). Each acquisition was 15 s long. The
command to the odor delivery valve was on between sec 6.03 and sec 6.53.

e060817citron is a named list with 3 components ("neuron 1", "neuron 2", "neuron 3"). Each
component is a repeatedTrain object with 20 spikeTrain objects: "stim. 1", ..., "stim. 20".
Each spikeTrain contains the spike train of one neuron during 1 stimulation (odor puff) with
citronellal (http://en.wikipedia.org/wiki/Citronellal). Each acquisition was 15 s long.
The command to the odor delivery valve was on between sec 5.99 and sec 6.49.

e060817mix is a named list with 3 components ("neuron 1", "neuron 2", "neuron 3"). Each
component is a repeatedTrain object with 20 spikeTrain objects: "stim. 1", ..., "stim. 20".
Each spikeTrain contains the spike train of one neuron during 1 stimulation (odor puff) with a
mixture of terpinaol and citronellal (the sum of the two previous stim.). Each acquisition was 15 s
long. The command to the odor delivery valve was on between sec 6.01 and sec 6.51.

e060824spont is a named list of with 2 components ("neuron 1", "neuron 2"). Each component
is a spikeTrain object (ie, action potentials occurrence times) of one neuron recorded during 59 s
of spontaneous activity. Times are expressed in seconds.

e060824citral is a named list with 2 components ("neuron 1", "neuron 2"). Each component
is a named list with 20 components: "stim. 1", ..., "stim. 20". Each sub-list contains the spike
train of one neuron during 1 stimulation (odor puff) with citral (http://en.wikipedia.org/wiki/
Citral). Each acquisition was 15 s long. The command to the odor delivery valve was on between
sec 6.01 and sec 6.51.

e070528spont is a named list of with 4 components ("neuron 1", "neuron 2", "neuron 3",
"neuron 4"). Each component is a spikeTrain object (ie, action potentials occurrence times) of
one neuron recorded during 60 s of spontaneous activity. Times are expressed in seconds.

e070528citronellal is a named list with 4 components ("neuron 1", "neuron 2", "neuron 3",
"neuron 4"). Each component is a repeatedTrain object with 15 spikeTrain objects: "stim. 1",
..., "stim. 15". Each spikeTrain contains the spike train of one neuron during 1 stimulation (odor
puff) with citronellal (http://en.wikipedia.org/wiki/Citronellal). Each acquisition was 13
s long. The command to the odor delivery valve was on between sec 6.14 and sec 6.64.

Details

Every repeatedTrain object of these data sets has an attribute named stimTimeCourse con-
taining the openng and closing times of the odor delivery valve.

The data were recorded from neighboring sites on a NeuroNexus (http://neuronexustech.com/)
silicon probe. Sorting was done with SpikeOMatic with superposition resolution which can AND
DOES lead to artifcats on cross-correlograms.

Source

Recording and spike sorting performed by Antoine Chaffiol <antoine.chaffiol@univ-paris5.fr>
at the Cerebral Physiology Lab, CNRS UMR 8118: http://www.biomedicale.univ-paris5.
fr/physcerv/physiologie_cerebrale.htm.

http://en.wikipedia.org/wiki/Terpineol
http://en.wikipedia.org/wiki/Citronellal
http://en.wikipedia.org/wiki/Citral
http://en.wikipedia.org/wiki/Citral
http://en.wikipedia.org/wiki/Citronellal
http://neuronexustech.com/
http://www.biomedicale.univ-paris5.fr/physcerv/physiologie_cerebrale.htm
http://www.biomedicale.univ-paris5.fr/physcerv/physiologie_cerebrale.htm
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References

http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/Doc/ChaffiolEtAl_FENS2006.
pdf

Examples

## load CAL1S data
data(CAL1S)
## convert the data into spikeTrain objects
CAL1S <- lapply(CAL1S,as.spikeTrain)
## look at the train of the 1sd neuron
CAL1S[["neuron 1"]]
## fit the 6 different renewal models to the 1st neuron spike train
compModels(CAL1S[["neuron 1"]])
## look at the ISI distribution with the fitted invgauss dist for
## this 1st neuron
isiHistFit(CAL1S[["neuron 1"]],model="invgauss")

## load CAL1V data
data(CAL1V)
## convert them to repeatedTrain objects
CAL1V <- lapply(CAL1V, as.repeatedTrain)
## look at the raster of the 1st neuron
CAL1V[["neuron 1"]]

## load e070528spont data
data(e070528spont)
## look at the spike train of the 1st neuron
e070528spont[["neuron 1"]]

## load e070528citronellal data
data(e070528citronellal)
## Get the stimulus time course
attr(e070528citronellal[["neuron 1"]],"stimTimeCourse")
## look at the raster of the 1st neuron
plot(e070528citronellal[["neuron 1"]],stim=c(6.14,6.64))

## Not run:
## A "detailed" analysis of e060817 were 2 odors as well as there mixtures
## were used.
## Load the terpineol, citronellal and mixture response data
data(e060817terpi)
data(e060817citron)
data(e060817mix)
## get smooth psths with gsspsth0
e060817terpiN1PSTH <- gsspsth0(e060817terpi[["neuron 1"]])
e060817terpiN2PSTH <- gsspsth0(e060817terpi[["neuron 2"]])
e060817terpiN3PSTH <- gsspsth0(e060817terpi[["neuron 3"]])
e060817citronN1PSTH <- gsspsth0(e060817citron[["neuron 1"]])
e060817citronN2PSTH <- gsspsth0(e060817citron[["neuron 2"]])
e060817citronN3PSTH <- gsspsth0(e060817citron[["neuron 3"]])
e060817mixN1PSTH <- gsspsth0(e060817mix[["neuron 1"]])

http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/Doc/ChaffiolEtAl_FENS2006.pdf
http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/Doc/ChaffiolEtAl_FENS2006.pdf
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e060817mixN2PSTH <- gsspsth0(e060817mix[["neuron 2"]])
e060817mixN3PSTH <- gsspsth0(e060817mix[["neuron 3"]])
## look at them
## Neuron 1
plot(e060817terpiN1PSTH,stimTimeCourse=attr(e060817terpi[["neuron 1"]],"stimTimeCourse"),colCI=2)
plot(e060817citronN1PSTH,stimTimeCourse=attr(e060817citron[["neuron 1"]],"stimTimeCourse"),colCI=2)
plot(e060817mixN1PSTH,stimTimeCourse=attr(e060817mix[["neuron 1"]],"stimTimeCourse"),colCI=2)
## Neuron 2
plot(e060817terpiN2PSTH,stimTimeCourse=attr(e060817terpi[["neuron 2"]],"stimTimeCourse"),colCI=2)
plot(e060817citronN2PSTH,stimTimeCourse=attr(e060817citron[["neuron 2"]],"stimTimeCourse"),colCI=2)
plot(e060817mixN2PSTH,stimTimeCourse=attr(e060817mix[["neuron 2"]],"stimTimeCourse"),colCI=2)
## Neuron 3
plot(e060817terpiN3PSTH,stimTimeCourse=attr(e060817terpi[["neuron 3"]],"stimTimeCourse"),colCI=2)
plot(e060817citronN3PSTH,stimTimeCourse=attr(e060817citron[["neuron 3"]],"stimTimeCourse"),colCI=2)
plot(e060817mixN3PSTH,stimTimeCourse=attr(e060817mix[["neuron 3"]],"stimTimeCourse"),colCI=2)

## Make now fancier plots with superposed psths ####
## Take into account the fact that the stimuli onsets are not identical

## Neuron 1
plot(e060817mixN1PSTH$mids-0.02,e060817mixN1PSTH$ciUp,type="n",ylim=c(0,max(e060817mixN1PSTH$ciUp)),xlim=c(5,14),xlab="Time (s)",ylab="Firing rate (Hz)",main="Neuron 1 e060817")
rect(5.99,0,6.49,max(e060817mixN1PSTH$ciUp),col="grey80",border=NA)
abline(h=0)
polygon(c(e060817mixN1PSTH$mids-0.02,rev(e060817mixN1PSTH$mids-0.02)),c(e060817mixN1PSTH$ciLow,rev(e060817mixN1PSTH$ciUp)),col=rgb(1,0,1,0.5),border=NA)
polygon(c(e060817citronN1PSTH$mids,rev(e060817citronN1PSTH$mids)),c(e060817citronN1PSTH$ciLow,rev(e060817citronN1PSTH$ciUp)),col=rgb(1,0,0,0.5),border=NA)
polygon(c(e060817terpiN1PSTH$mids-0.04,rev(e060817terpiN1PSTH$mids-0.04)),c(e060817terpiN1PSTH$ciLow,rev(e060817terpiN1PSTH$ciUp)),col=rgb(0,0,1,0.5),border=NA)
lines(e060817terpiN1PSTH$mids-0.04,e060817terpiN1PSTH$freq,col=rgb(0,0,1),lwd=2)
lines(e060817citronN1PSTH$mids,e060817citronN1PSTH$freq,col=rgb(1,0,0),lwd=2)
lines(e060817mixN1PSTH$mids-0.02,e060817mixN1PSTH$freq,col=rgb(0,0,0),lwd=2)
legend(8,0.9*max(e060817mixN1PSTH$ciUp),c("Terpineol","Citronellal","Mixture"),col=c(4,2,1),lwd=2)

## Neuron 2
plot(e060817mixN2PSTH$mids-0.02,e060817mixN2PSTH$ciUp,type="n",ylim=c(0,max(e060817mixN2PSTH$ciUp)),xlim=c(5,14),xlab="Time (s)",ylab="Firing rate (Hz)",main="Neuron 2 e060817")
rect(5.99,0,6.49,max(e060817mixN2PSTH$ciUp),col="grey80",border=NA)
abline(h=0)
polygon(c(e060817mixN2PSTH$mids-0.02,rev(e060817mixN2PSTH$mids-0.02)),c(e060817mixN2PSTH$ciLow,rev(e060817mixN2PSTH$ciUp)),col=rgb(1,0,1,0.5),border=NA)
polygon(c(e060817citronN2PSTH$mids,rev(e060817citronN2PSTH$mids)),c(e060817citronN2PSTH$ciLow,rev(e060817citronN2PSTH$ciUp)),col=rgb(1,0,0,0.5),border=NA)
polygon(c(e060817terpiN2PSTH$mids-0.04,rev(e060817terpiN2PSTH$mids-0.04)),c(e060817terpiN2PSTH$ciLow,rev(e060817terpiN2PSTH$ciUp)),col=rgb(0,0,1,0.5),border=NA)
lines(e060817terpiN2PSTH$mids-0.04,e060817terpiN2PSTH$freq,col=rgb(0,0,1),lwd=2)
lines(e060817citronN2PSTH$mids,e060817citronN2PSTH$freq,col=rgb(1,0,0),lwd=2)
lines(e060817mixN2PSTH$mids-0.02,e060817mixN2PSTH$freq,col=rgb(0,0,0),lwd=2)
legend(8,0.9*max(e060817mixN2PSTH$ciUp),c("Terpineol","Citronellal","Mixture"),col=c(4,2,1),lwd=2)

## Neuron 3
plot(e060817mixN3PSTH$mids-0.02,e060817mixN3PSTH$ciUp,type="n",ylim=c(0,max(e060817mixN3PSTH$ciUp)),xlim=c(5,14),xlab="Time (s)",ylab="Firing rate (Hz)",main="Neuron 3 e060817")
rect(5.99,0,6.49,max(e060817mixN3PSTH$ciUp),col="grey80",border=NA)
abline(h=0)
polygon(c(e060817mixN3PSTH$mids-0.02,rev(e060817mixN3PSTH$mids-0.02)),c(e060817mixN3PSTH$ciLow,rev(e060817mixN3PSTH$ciUp)),col=rgb(1,0,1,0.5),border=NA)
polygon(c(e060817citronN3PSTH$mids,rev(e060817citronN3PSTH$mids)),c(e060817citronN3PSTH$ciLow,rev(e060817citronN3PSTH$ciUp)),col=rgb(1,0,0,0.5),border=NA)
polygon(c(e060817terpiN3PSTH$mids-0.04,rev(e060817terpiN3PSTH$mids-0.04)),c(e060817terpiN3PSTH$ciLow,rev(e060817terpiN3PSTH$ciUp)),col=rgb(0,0,1,0.5),border=NA)
lines(e060817terpiN3PSTH$mids-0.04,e060817terpiN3PSTH$freq,col=rgb(0,0,1),lwd=2)
lines(e060817citronN3PSTH$mids,e060817citronN3PSTH$freq,col=rgb(1,0,0),lwd=2)
lines(e060817mixN3PSTH$mids-0.02,e060817mixN3PSTH$freq,col=rgb(0,0,0),lwd=2)
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legend(8,0.9*max(e060817mixN3PSTH$ciUp),c("Terpineol","Citronellal","Mixture"),col=c(4,2,1),lwd=2)

## End(Not run)

coef.durationFit Utility Functions for durationFit Objects

Description

coef.durationFit and logLik.durationFit extract components of a durationFit object, while
is.durationFit tests if its argument is such an object.

Usage

## S3 method for class 'durationFit'
coef(object,...)
## S3 method for class 'durationFit'
logLik(object,...)
is.durationFit(obj)

Arguments

object a durationFit object.

obj an object to be tested against a durationFit object.

... see coef and logLik.

Details

Everything is trivial here.

Value

coef.durationFit returns the coefficients or the estimates or the fitted parameters of the object: a
2 elements named vector.

logLik.durationFit returns the loglikelihood value.

is.durationFit returns TRUE if its argument is a durationFit object and FALSE otherwise.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

compModels, invgaussMLE, lnormMLE, llogisMLE, rexpMLE, gammaMLE, weibullMLE
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Examples

## Not run:
## load CAL1S data
data(CAL1S)
## convert the data into spikeTrain objects
CAL1S <- lapply(CAL1S,as.spikeTrain)
## look at the train of the 1sd neuron
CAL1S[["neuron 1"]]
## fit a invgauss model to the 1st neuron spike train
n1SDFig <- invgaussMLE(CAL1S[["neuron 1"]])
is.durationFit(n1SDFig)
coef(n1SDFig)
logLik(n1SDFig)

## End(Not run)

compModels Compare Duration Models on a Specific Data Set

Description

Fit duration models with the maximum likelihood method to a given duration data set. The data
can be censored. The models should be among the following list: inverse Gaussian, log normal, log
logistic, gamma, Weibull, refractory exponential. The Akaike information criterion (AIC) is used
to produce a numerical output. Diagnostic QQ or survival plots can also be generated.

Usage

compModels(yi, ni = numeric(length(yi)) + 1,
si = numeric(length(yi)) + 1,
models = c("invgauss","lnorm","gamma","weibull","llogis","rexp"),
type = c("qq","s"), log = TRUE, plot = TRUE)

Arguments

yi vector of (possibly binned) observations or a spikeTrain object.

ni vector of counts for each value of yi; default: numeric(length(yi))+1.

si vector of counts of uncensored observations for each value of yi; default: numeric(length(yi))+1.

models a character vector whose elements are selected among: "invgauss", "lnorm",
"gamma", "weibull", "llogis", "rexp".

type should a QQ plot ("qq") or a survival plot ("s") be generated?

log should a log scale be used?

plot should a plot be generated?

Details

Fits are performed by maximizing the likelihood.



compModels 17

Value

A vector whose component are nammed according to the model used and ordered along increasing
AIC values.

if argument plot is set to TRUE (the default), a plot is generated as a side effect.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Lindsey, J.K. (2004) The Statistical Analysis of Stochastic Processes in Time. CUP.

See Also

qqDuration, invgaussMLE, lnormMLE, llogisMLE, rexpMLE, gammaMLE, weibullMLE

Examples

## Not run:
## load spontaneous data of 4 putative projection neurons
## simultaneously recorded from the cockroach (Periplaneta
## americana) antennal lobe
data(CAL1S)
## convert data into spikeTrain objects
CAL1S <- lapply(CAL1S,as.spikeTrain)
## look at the individual trains
## first the "raw" data
CAL1S[["neuron 1"]]
## next some summary information
summary(CAL1S[["neuron 1"]])
## next the renewal tests
renewalTestPlot(CAL1S[["neuron 1"]])
## It does not look too bad so let fit simple models
compModels(CAL1S[["neuron 1"]])

## Simulate a sample with 100 events from an inverse Gaussian
set.seed(1102006,"Mersenne-Twister")
mu.true <- 0.075
sigma2.true <- 3
sampleSize <- 100
sampIG <- rinvgauss(sampleSize,mu=mu.true,sigma2=sigma2.true)

## Compare models and display QQ plot
compModels(sampIG,type="qq")

## Compare models and display survival plot
compModels(sampIG,type="s")

## Generate a censored sample using an exponential distribution
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sampEXP <- rexp(sampleSize,1/(2*mu.true))
sampIGtime <- pmin(sampIG,sampEXP)
sampIGstatus <- as.numeric(sampIG <= sampEXP)
## Compare models and display QQ plot
## WARNING with censored data like here the QQ plot is misleading
compModels(yi=sampIGtime,si=sampIGstatus,type="qq")
## Compare models and display survival plot
compModels(yi=sampIGtime,si=sampIGstatus,type="s")

## End(Not run)

crossGeneral Computations of Boundary Crossing Probabilities for the Wiener Pro-
cess

Description

Computes the distribution of the first passage time through an arbitrary (crossGeneral) or a "tight"
(crossTight) boundary for a Wiener process. The method of Loader and Deely (1987) is used. A
tight boundary is a boundary generating the tighest confidence band for the process (Kendall et al,
2007). Utility function and methods: mkTightBMtargetFct, print, summary, plot, lines, are
also provided to use and explore the results.

Usage

crossGeneral(tMax = 1, h = 0.001, cFct, cprimeFct, bFct, withBounds = FALSE, Lplus)
crossTight(tMax = 1, h = 0.001, a = 0.3, b = 2.35, withBounds = TRUE, logScale = FALSE)
mkTightBMtargetFct(ci = 0.95, tMax = 1, h = 0.001, logScale = FALSE)
## S3 method for class 'FirstPassageTime'
print(x, ...)
## S3 method for class 'FirstPassageTime'
summary(object, digits, ...)
## S3 method for class 'FirstPassageTime'
plot(x, y, which = c("Distribution", "density"), xlab, ylab, ...)
## S3 method for class 'FirstPassageTime'
lines(x, which = c("Distribution", "density"), ...)

Arguments

tMax A positive numeric. The "time" during which the Wiener process is followed.

h A positive numeric. The integration time step used for the numerical solution
of the Volterra integral equation (see details).

cFct A function defining the boundary to be crossed. The first argument of the
function should be a "time" argument. If the first argument is a vector, the
function should return a vector of the same length.
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cprimeFct A function defining time derivative of the boundary to be crossed. Needs to
be specified only if a check of the sign of the kernel derivative (see details)
is requested. The first argument of the function should be a "time" argument.
If the first argument is a vector, the function should return a vector of the same
length.

bFct A function. The "b" function of Loader and Deely (1987). Does not need to
be specified (i.e., can be missing) but can be used to improve convergence. The
first argument of the function should be a "time" argument. If the first argument
is a vector, the function should return a vector of the same length.

withBounds A logical. Should bounds on the distribution be calculated? If yes, set it to
TRUE, leave it to its default value, FALSE, otherwise.

Lplus A logical. If bounds are requested (withBounds=TRUE) and if the sign of the
time derivative of the kernel is known to be positive or null, set to TRUE, if it
is known to be negative, set it to FALSE. If the sign is unknown, leave Lplus
unspecified and provide a cprimeFct function.

logScale A logical. Should intermediate calculations in crossTight be carried out on
the log scale for numerical precision? If yes, set it to TRUE, leave it to its default,
FALSE, otherwise.

a,b numerics, the two parameters of the "tight" boundary: c(t) = a + b*sqrt(t).
See details.

ci A numeric larger than 0 and smaller than 1. The nominal coverage probability
desired for a "tight" confidence band (see details).

x,object A FirstPassageTime object returned by crossGeneral or crossTight.

y Not used but required for a plot method.

which A character string, "Distribution" or "density", specifying if a probability
distribution or a probability density should be graphed.

xlab,ylab See plot.

digits A positive integer. The number of digits to print in summary. If bounds were
computed, the value of digits is computed internally based on the bounds
width.

... Used in plot and lines to pass further arguments (see plot and lines), not
used in print and summary.

Details

The Loader and Deely (1987) method to compute the probability G(t) that the first passage of a
Wiener process / Brownian motion occurs between 0 and t (argument tMax of crossGeneral and
crossTight) through a boundary defined by c(t) is based on the numerical solution of a Volterra
integral equation of the first kind satisfied by G() and defined by their Eq. 2.2:

F (t) =

∫ t

0

K(t, u)dG(u)

where, F (t) is defined by:

F (t) = Φ(−c(t)√
t

) + exp
(
− 2b(t) (c(t)− tb(t))

)
Φ(
−c(t) + 2 t b(t)√

t
)
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K(t, u) is defined by:

K(t, u) = Φ(
c(u)− c(t)√

t− u
)+exp

(
−2b(t) (c(t)−c(u)−(t−u)b(t))

)
Φ(
c(u)− c(t) + 2 (t− u) b(t)√

t− u
)

and b(t) is an additional function (that can be uniformly 0) that is chosen to improve convergence
speed and to get error bounds. Argument h is the step size used in the numerical solution of the
above Volterra integral equation. The mid-point method (Eq. 3.1 and 3.2 of Loader and Deely
(1987)) is implemented. If tMax is not a multiple of h it is modified as follows: tMax <- round(tMax/h)*h.

crossGeneral generates functions F () and K(, ) internally given c() (argument cFct) and b()
(argument bFct). If bFct is not given (i.e., missing(bFct) returns TRUE) it is taken as uniformly
0. If a numeric is given for cFct then c() is defined as a uniform function returning the first element
of the argument (cFct).

Function crossTight assumes the following functional form for c(): c(t) = a+ b
√

(t). b() is set
to c′() (the derivative of c()). Arguments a and b of crossTight correspond to the 2 parameters of
c().

If argument withBounds is set to TRUE then bounds on G() are computed. Function crossTight
uses Eq. 3.6 and 3.7 of Loader and Deely (1987) to compute these bounds, GL(t) and GU (t).
Function crossGeneral uses Eq. 3.6 and 3.7 (if argument Lplus is set to TRUE) or Eq. 3.10 and
3.11 (if argument Lplus is set to FALSE). Here Lplus stands for the sign of the partial derivative of
the kernel K(, ) with respect to its second argument. If the sign is not known the user can provide
the derivative c′() of c() as argument cprimeFct. A (slow) numerical check is then performed to
decide wether Lplus should be TRUE or FALSE or if it changes sign (in which case bounds cannot
be obtained and an error is returned).

In function crossTight argument logScale controls the way some intermediate computations of
the mid-point method are implemented. If set to FALSE (the default) a literal implementation of Eq.
3.2 of Loader and Deely (1987) is used. If set to TRUE then additions subtractions are computed on
the log scale using functions logspace_add and logspace_sub of the R API. The computation is
then slightly slower and it turns out that the gain in numerical precision is not really significant, so
you can safely leave this argument to its default value.

Value

crossGeneral and crossTight return a FirstPassageTime object which is a list with the fol-
lowing components:

time A numeric vector of "times" at which the first passage time probability has been
evaluated.

G A numeric vector of first passage probability.

Gu A numeric vector with the upper bound of first passage probability. Only if
withBounds was set to TRUE.

Gl A numeric vector with the lower bound of first passage probability. Only if
withBounds was set to TRUE.

mids A numeric vector of "times" at which the first passage time probability density
has been evaluated. Mid points of component time.

g A numeric vector of first passage probability density.

h A numeric. The value of argument h of crossGeneral or crossTight.
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call The matched call.

mkTightBMtargetFct returns a function which can be used in optim. This function returns the
square of the difference between (1-ci)/2 (remember the "symmetry" of the Wiener processes
paths, that is, for every path there is a symmetric one with respect to the abscissa having with the
same probability) and the probability to have the first passage time of the Wiener process smaller
or equal to 1 when the boundary is the "tight" boundary defined by: a+ b

√
t. The function takes a

single vector argument containing the log of the parameters a (vector’s first element) and b (vector’s
second element).

Methods print.FirstPassageTime and summary.FirstPassageTime output the probability to
observe the first exit between 0 and tMax. If bounds were computed, the precision on the probability
is also returned (as an attribute for print.FirstPassageTime). summary.FirstPassageTime also
gives the integration time step, h, used.

Warning

crossGeneral with withBounds = TRUE and a negative kernel derivative is presently poorly tested,
so be careful and let me know if mistakes show up.

Note

Using logScale = TRUE in crossTight seems to be an overkill, that is, it doubles computation’s
time without bringing significant numerical improvement.

crossGeneral is for now pure R code. The first passage probability is obtained by solving the lower
triangular system (Eq. 3.1 of Loader and Deely (1987)) with forwardsolve and is therefore rather
fast (but can be memory "hungry"). The bounds are computed by 2 nested loops and can therefore
be long to compute.

crossTight is calling a C code and is fast.

Loader and Deely paper also describes a method where G(t) is solution of a Volterra integral equa-
tion of the second kind (their Eq. 2.7). This approach is presently not implemented in the above
functions.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

C. R. Loader and J. J. Deely (1987) Computations of Boundary Crossing Probabilities for the
Wiener Process. J. Statist. Comput. Simul. 27: 95–105.

W. S. Kendall, J.- M. Marin and C. P. Robert (2007) Brownian Confidence Bands on Monte Carlo
Output. Statistics and Computing 17: 1–10. Preprint available at: http://www.ceremade.dauphine.
fr/%7Exian/kmr04.rev.pdf

See Also

print, summary, plot, lines, pinvgauss

http://www.ceremade.dauphine.fr/%7Exian/kmr04.rev.pdf
http://www.ceremade.dauphine.fr/%7Exian/kmr04.rev.pdf
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Examples

## Not run:
## Reproduce Table 1 (p 101) of Loader and Deely (1987)
## define a vector of n values
nLD <- c(8,16,32,64,128)

## Part 1: c(t) = sqrt(1+t) and tMax=1
## define cFct
cFT1p1 <- function(t) sqrt(1+t)
## define the different bFct
bFT1p1.ii <- function(t) 0.5/sqrt(1+t)
bFT1p1.iii <- function(t) (cFT1p1(t)-cFT1p1(0))/t
bFT1p1.iv <- function(t) 0.5*(bFT1p1.ii(t)+bFT1p1.iii(t))
bFT1p1.v <- function(t) (2*t-4/5*((1+t)^2.5-1))/t^3+3*cFT1p1(t)/2/t
## Do the calculations
round(t(sapply(nLD,

function(n) {
c(n=n,

i=crossGeneral(tMax=1,h=1/n,cFct=cFT1p1)$G[n],
ii=crossGeneral(tMax=1,h=1/n,cFct=cFT1p1,bFct=bFT1p1.ii)$G[n],
iii=crossGeneral(tMax=1,h=1/n,cFct=cFT1p1,bFct=bFT1p1.iii)$G[n],
iv=crossGeneral(tMax=1,h=1/n,cFct=cFT1p1,bFct=bFT1p1.iv)$G[n],
v=crossGeneral(tMax=1,h=1/n,cFct=cFT1p1,bFct=bFT1p1.v)$G[n])})),

digits=6)

## Part 2: c(t) = exp(-t) and tMax=1
## define cFct
cFT1p2 <- function(t) exp(-t)
## define the different bFct
cFT1p2 <- function(t) exp(-t)
bFT1p2.ii <- function(t) -exp(-t)
bFT1p2.iii <- function(t) (cFT1p2(t)-cFT1p2(0))/t
bFT1p2.iv <- function(t) 0.5*(bFT1p2.ii(t)+bFT1p2.iii(t))
bFT1p2.v <- function(t) 3*(1-t-exp(-t))/t^3+3*cFT1p2(t)/2/t
## Do the calculations
round(t(sapply(nLD,

function(n) {
c(n=n,

i=crossGeneral(tMax=1,h=1/n,cFct=cFT1p2)$G[n],
ii=crossGeneral(tMax=1,h=1/n,cFct=cFT1p2,bFct=bFT1p2.ii)$G[n],
iii=crossGeneral(tMax=1,h=1/n,cFct=cFT1p2,bFct=bFT1p2.iii)$G[n],
iv=crossGeneral(tMax=1,h=1/n,cFct=cFT1p2,bFct=bFT1p2.iv)$G[n],
v=crossGeneral(tMax=1,h=1/n,cFct=cFT1p2,bFct=bFT1p2.v)$G[n])})),

digits=6)

## Part 3: c(t) = t^2 + 3*t + 1 and tMax=1
## define cFct
cFT1p3 <- function(t) t^2+3*t+1
## define the different bFct
bFT1p3.ii <- function(t) 2*t+3
bFT1p3.iii <- function(t) (cFT1p3(t)-cFT1p3(0))/t
bFT1p3.v <- function(t) 5*t/4+3
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bFT1p3.vi <- function(t) rep(3,length(t))
round(t(sapply(nLD,

function(n) {
c(n=n,

i=crossGeneral(tMax=1,h=1/n,cFct=cFT1p3)$G[n],
ii=crossGeneral(tMax=1,h=1/n,cFct=cFT1p3,bFct=bFT1p3.ii)$G[n],
iii=crossGeneral(tMax=1,h=1/n,cFct=cFT1p3,bFct=bFT1p3.iii)$G[n],
v=crossGeneral(tMax=1,h=1/n,cFct=cFT1p3,bFct=bFT1p3.v)$G[n],
vi=crossGeneral(tMax=1,h=1/n,cFct=cFT1p3,bFct=bFT1p3.vi)$G[n])})),

digits=6)

## Part 3: c(t) = t^2 + 3*t + 1 and tMax=1
## define cFct
cFT1p4 <- function(t) 1/t
## Here only column (i) and (vii) are reproduced.
## If one attempts to reproduce (ii) directly with crossGeneral
## a NaN appears (when a -Inf is the correct value) in functions
## F() and K(,) (see details) for instance when t=0 in F.
## Then as crossGeneral is presently written R attempts to
## compute t*b(t), where b(t) is c'(t), that is, t*(-1/t^2) which is
## NaN (for R) when t=0.
bFT1p4.vii <- function(t) rep(-1,length(t))
round(t(sapply(nLD,

function(n) {
c(n=n,

i=crossGeneral(tMax=1,h=1/n,cFct=cFT1p4)$G[n],
vii=crossGeneral(tMax=1,h=1/n,cFct=cFT1p4,bFct=bFT1p4.vii)$G[n])})),

digits=6)
## The last 3 rows of column (vii) are not the same as in the paper

## Reproduce Table 4 (p 104) of Loader and Deely (1987)
## As before the probability of first passage between
## 0 and 1 is computed. This time only three boundary
## functions are considered. The error bounds are
## obtained

## Part 1: c(t) = sqrt(1+t)
## Left columns pair: b(t) = c'(t)
round(t(sapply(nLD,

function(n) {
res <- crossGeneral(tMax=1,h=1/n,cFct=cFT1p1,bFct=bFT1p1.ii,withBounds=TRUE,Lplus=TRUE)

c(Gl=res$Gl[n],Gu=res$Gu[n])
}
)

),
digits=5)

## Right columns pair: b(t) = 0
round(t(sapply(nLD,

function(n) {
res <- crossGeneral(tMax=1,h=1/n,cFct=cFT1p1,withBounds=TRUE,Lplus=TRUE)
c(n=n,Gl=res$Gl[n],Gu=res$Gu[n])

}
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)
),

digits=5)

## Part 2: c(t) = t^2 + 3*t + 1
## Left columns pair: b(t) = 3 - 2*t
round(t(sapply(nLD,

function(n) {
res <- crossGeneral(tMax=1,h=1/n,cFct=cFT1p3,bFct=function(t) 3-2*t,withBounds=TRUE,Lplus=TRUE)

c(n=n,Gl=res$Gl[n],Gu=res$Gu[n])
}
)

),
digits=5)

## Right columns pair: b(t) = 3 - t
round(t(sapply(nLD,

function(n) {
res <- crossGeneral(tMax=1,h=1/n,cFct=cFT1p3,bFct=function(t) 3-2*t,withBounds=TRUE,Lplus=TRUE)

c(n=n,Gl=res$Gl[n],Gu=res$Gu[n])
}
)

),
digits=5)

## Part 3: c(t) = 1 + sin(t)
## Left columns pair: b(t) = c'(t)
round(t(sapply(nLD,

function(n) {
res <- crossGeneral(tMax=1,h=1/n,cFct=function(t) 1+sin(t),bFct=function(t) cos(t),withBounds=TRUE,Lplus=TRUE)

c(n=n,Gl=res$Gl[n],Gu=res$Gu[n])
}
)

),
digits=5)

## Left columns pair: b(t) = 0.5
round(t(sapply(nLD,

function(n) {
res <- crossGeneral(tMax=1,h=1/n,cFct=function(t) 1+sin(t),bFct=function(t) rep(0.5,length(t)),withBounds=TRUE,Lplus=TRUE)

c(n=n,Gl=res$Gl[n],Gu=res$Gu[n])
}
)

),
digits=5)

## Check crossGeneral against an analytical inverse Gaussian
## distribution
## Define inverse Gaussian parameters
mu.true <- 0.075
sigma2.true <- 3
## Define a function transforming the "drift" (mu.true) and
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## "noise variance" (sigma2.true) of the default inverse
## Gaussian parametrization of STAR into a
## linear boundary of an equivalent Wiener process first
## passage time problem
star2ld <- function(mu,sigma2) c(sqrt(1/sigma2),-sqrt(1/sigma2)/mu)
## Get the "equivalent" boundary parameters (y intercept and slope)
parB1 <- star2ld(mu.true,sigma2.true)
## Plot the "target" inverse Gaussian density
xx <- seq(0.001,0.3,0.001)
plot(xx,dinvgauss(xx,mu=mu.true,sigma2=sigma2.true),type="l")
## Get the numerical estimate of the density using Loader and
## Deely Volterra integral equation method
igB1 <- crossGeneral(tMax=0.3,h=0.001,cFct=function(t) parB1[1]+parB1[2]*t,withBounds=FALSE)
## superpose the numerical estimate to the exact solution
## use lines method to do that
lines(igB1,"density",col=2)

## Use of crossTight and associated function
## Get the paramters, a and b, of the "approximate"
## tightest boundary: c(t) = a + b*sqrt(t), giving a
## 0.05 probability of exit between 0 and 1
## (in fact we are discussing here a pair of symmetrical
## bounaries, c(t) and -c(t)). See Kendall et al (2007)
## for details
## Start by defining the target function
target95 <- mkTightBMtargetFct(ci=0.95)
## get the optimal log(a) and log(b) using
## the values of table 1 of Kendall et al as initial
## guesses
p95 <- optim(log(c(0.3,2.35)),target95,method="BFGS")
## check the convergence of BFGS
p95$convergence
## check if the parameters changed a lot
exp(p95$par)
## Get the bounds on G(1) for these optimal parameters
d95 <- crossTight(a=exp(p95$par[1]),b=exp(p95$par[2]),withBound=TRUE,logScale=FALSE)
## print out the summary
summary(d95)
## Do the same for the 0.01 probability of first passage
target99 <- mkTightBMtargetFct(ci=0.99)
p99 <- optim(p95$par,target99,method="BFGS")
p99$convergence
exp(p99$par)
d99 <- crossTight(a=exp(p99$par[1]),b=exp(p99$par[2]),withBound=TRUE,logScale=FALSE)
summary(d99)

## End(Not run)
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df4counts Generates a Data Frame from a repeatedTrain Object After Time Bin-
ning

Description

Generates a data.frame object out of a repeatedTrain object after time binning in order to study
trials stationarity with a glm fit.

Usage

df4counts(repeatedTrain, breaks = length(repeatedTrain))

Arguments

repeatedTrain a repeatedTrain object or a list which can be coerced to such an object.

breaks a numeric. A single number is interpreted has the number of bins; a vector is
interpreted as the position of the "breaks" between bins.

Details

The bins are placed between the floor of the smallest spike time and the ceiling of the largest
one when breaks is a scalar. After time binning the number of spikes of each trial falling in each
bin is counted (in the same way as the counts component of a psth list is obtained). This matrix
of count is then formatted as a data frame.

Value

A data.frame with the following variables:

Count a count (number of spikes in a given bin at a given trial).

Bin the bin index (a factor.

Trial the trial index (a factor.

Rate the count divided by the length of the corresponding bin.

Time the time of the midpoints of the bins.

Note

When a glm of the poisson family is used for subsequent analysis the important implicit hypothesis
of an inhomogenous Poisson train is of course made.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

as.repeatedTrain, psth
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Examples

## Not run:
## Load the Vanillin responses of the first
## cockroach data set
data(CAL1V)
## convert them into repeatedTrain objects
## The stimulus command is on between 4.49 s and 4.99s
CAL1V <- lapply(CAL1V,as.repeatedTrain)
## Generate raster plot for neuron 1
raster(CAL1V[["neuron 1"]],c(4.49,4.99))
## make a smooth PSTH of these data
psth(CAL1V[["neuron 1"]],stimTimeCourse=c(4.49,4.99),breaks=c(bw=0.5,step=0.05),colCI=2,xlim=c(0,10))
## add a grid to the plot
grid()
## The response starts after 4.5 s and is mostly over after 6 s: create
## breaks accordingly
myBreaks <- c(0,2.25,4.5,seq(4.75,6.25,0.25),seq(6.5,11,0.5))
## get a count data frame
CAL1Vn1DF <- df4counts(CAL1V[["neuron 1"]],myBreaks)
## use a box plot to look at the result
boxplot(Rate ~ Time, data=CAL1Vn1DF)
## watch out here the time scale is distorted because of our
## choice of unequal bins
## Fit a glm of the Poisson family taking both Bin and Trial effects
CAL1Vn1DFglm <- glm(Count ~ Bin + Trial,family=poisson,data=CAL1Vn1DF)
## use an anova to see that both the Bin effect and the trial effect are
## highly significant
anova(CAL1Vn1DFglm, test="Chisq")

## End(Not run)

diff.spikeTrain diff method for spikeTrain objects

Description

diff method for spikeTrain objects.

Usage

## S3 method for class 'spikeTrain'
diff(x, ...)

Arguments

x a spikeTrain object.

... see diff
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Value

a numeric

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

diff, as.spikeTrain, is.spikeTrain

Examples

data(CAL1S)
## convert data into spikeTrain objects
CAL1S <- lapply(CAL1S,as.spikeTrain)
## look at the individual trains
## first the "raw" data
CAL1S[["neuron 1"]]
## get the isi of neuron 1
n1.isi <- diff(CAL1S[["neuron 1"]])

dinvgauss The Inverse Gaussian Distribution

Description

Density, distribution function, quantile function, and random generation for the inverse Gaussian.

Usage

dinvgauss(x, mu = 1, sigma2 = 1, boundary = NULL,
log = FALSE)

pinvgauss(q, mu = 1, sigma2 = 1,
boundary = NULL, lower.tail = TRUE,
log.p = FALSE)

qinvgauss(p, mu = 1, sigma2 = 1,
boundary = NULL)

rinvgauss(n = 1, mu = 1, sigma2 = 1, boundary = NULL)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.
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mu mean value of the distribution in the default parameterization, mean value / boundary
otherwise. Can also be viewed as the inverse of the drift of the latent Brownian
motion.

sigma2 variance of the latent Brownian motion. When this parameterization is used (the
default) the distance between the "starting" point and the boundary ("absorbing
barrier") is set to 1.

boundary distance between the starting point and the "absorbing barrier" of the latent
Brownian motion. When this parameterization is used the Brownian motion
variance is set to 1.

lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].

log, log.p logical; if TRUE, probabilities p are given as log(p).

Details

With the default, "sigma2", parameterization (mu = m, sigma2 = s^2) the inverse Gaussian
distribution has density:

f(x) =
1√

2π σ2 x3
exp(−1

2

(x− µ)2

xσ2 µ2
)

with σ2 > 0. The theoretical mean is: µ and the theoretical variance is: µ3σ2. With the default,
"boundary", parameterization (mu = m, boundary = b)the inverse Gaussian distribution has
density:

f(x) =
b√

2π x3
exp(−1

2

(x− b µ)2

xµ2
)

with σ2 > 0. The theoretical mean is: µ b and the theoretical variance is: µ3σ2. The latent
Brownian motion is described in Lindsey (2004) pp 209-213, Whitemore and Seshadri (1987),
Aalen and Gjessing (2001) and Gerstein and Mandelbrot (1964).

The expression for the distribution function is given in Eq. 4 of Whitemore and Seshadri (1987).

Initial guesses for the inversion of the distribution function used in qinvgauss are obtained with
the transformation of Whitemore and Yalovsky (1978).

Random variates are obtained with the method of Michael et al (1976) which is also described by
Devroye (1986, p 148) and Gentle (2003, p 193).

Value

dinvgauss gives the density, pinvgauss gives the distribution function, qinvgauss gives the quan-
tile function and rinvgauss generates random deviates.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Gerstein, George L. and Mandelbrot, Benoit (1964) Random Walk Models for the Spike Activity of
a Single Neuron. Biophys J. 4: 41–68. http://www.pubmedcentral.nih.gov/articlerender.
fcgi?tool=pubmed&pubmedid=14104072.

http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=14104072
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=14104072
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Whitemore, G. A. and Yalovsky, M. (1978) A normalizing logarithmic transformation for inverse
Gaussian random variables. Technometrics 20: 207–208.

Whitmore, G. A. and Seshadri, V. (1987) A Heuristic Derivation of the Inverse Gaussian Distribu-
tion. The American Statistician 41: 280–281.

Aalen, Odd O. and Gjessing, Hakon K. (2001) Understanding the Shape of the Hazard Rate: A
Process Point of View. Statistical Science 16: 1–14.

Lindsey, J.K. (2004) Introduction to Applied Statistics: A Modelling Approach. OUP.

Michael, J. R., Schucany, W. R. and Haas, R. W. (1976) Generating random variates using transfor-
mations with multiple roots. The American Statistician 30: 88–90.

Devroye, L. (1986) Non-Uniform Random Variate Generation. Springer-Verlag. http://cg.scs.
carleton.ca/~luc/rnbookindex.html.

Gentle, J. E. (2003) Random Number Generation and Monte Carlo Methods. Springer.

See Also

invgaussMLE, Lognormal, hinvgauss

Examples

## Not run:
## Start with the inverse Gauss
## Define standard mu and sigma
mu.true <- 0.075 ## a mean ISI of 75 ms
sigma2.true <- 3
## Define a sequence of points on the time axis
X <- seq(0.001,0.3,0.001)
## look at the density
plot(X,dinvgauss(X,mu.true,sigma2.true),type="l",xlab="ISI (s)",ylab="Density")

## Generate a sample of 100 ISI from this distribution
sampleSize <- 100
sampIG <- rinvgauss(sampleSize,mu=mu.true,sigma2=sigma2.true)
## check out the empirical survival function (obtained with the Kaplan-Meyer
## estimator) against the true one
library(survival)
sampIG.KMfit <- survfit(Surv(sampIG,1+numeric(length(sampIG))) ~1)
plot(sampIG.KMfit,log=TRUE)
lines(X,pinvgauss(X,mu.true,sigma2.true,lower.tail=FALSE),col=2)

## Get a ML fit
sampIGmleIG <- invgaussMLE(sampIG)
## compare true and estimated parameters
rbind(est = sampIGmleIG$estimate,se = sampIGmleIG$se,true = c(mu.true,sigma2.true))
## plot contours of the log relative likelihood function
Mu <- seq(sampIGmleIG$estimate[1]-3*sampIGmleIG$se[1],

sampIGmleIG$estimate[1]+3*sampIGmleIG$se[1],
sampIGmleIG$se[1]/10)

Sigma2 <- seq(sampIGmleIG$estimate[2]-7*sampIGmleIG$se[2],
sampIGmleIG$estimate[2]+7*sampIGmleIG$se[2],
sampIGmleIG$se[2]/10)

http://cg.scs.carleton.ca/~luc/rnbookindex.html
http://cg.scs.carleton.ca/~luc/rnbookindex.html


dllogis 31

sampIGmleIGcontour <- sapply(Mu, function(mu) sapply(Sigma2, function(s2) sampIGmleIG$r(mu,s2)))
contour(Mu,Sigma2,t(sampIGmleIGcontour),

levels=c(log(c(0.5,0.1)),-0.5*qchisq(c(0.95,0.99),df=2)),
labels=c("log(0.5)",

"log(0.1)",
"-1/2*P(Chi2=0.95)",
"-1/2*P(Chi2=0.99)"),

xlab=expression(mu),ylab=expression(sigma^2))
points(mu.true,sigma2.true,pch=16,col=2)
## We can see that the contours are more parabola like on a log scale
contour(log(Mu),log(Sigma2),t(sampIGmleIGcontour),

levels=c(log(c(0.5,0.1)),-0.5*qchisq(c(0.95,0.99),df=2)),
labels=c("log(0.5)",

"log(0.1)",
"-1/2*P(Chi2=0.95)",
"-1/2*P(Chi2=0.99)"),

xlab=expression(log(mu)),ylab=expression(log(sigma^2)))
points(log(mu.true),log(sigma2.true),pch=16,col=2)
## make a deviance test for the true parameters
pchisq(-2*sampIGmleIG$r(mu.true,sigma2.true),df=2)
## check fit with a QQ plot
qqDuration(sampIGmleIG,log="xy")

## Generate a censored sample using an exponential distribution
sampEXP <- rexp(sampleSize,1/(2*mu.true))
sampIGtime <- pmin(sampIG,sampEXP)
sampIGstatus <- as.numeric(sampIG <= sampEXP)
## fit the censored sample
sampIG2mleIG <- invgaussMLE(sampIGtime,,sampIGstatus)
## look at the results
rbind(est = sampIG2mleIG$estimate,

se = sampIG2mleIG$se,
true = c(mu.true,sigma2.true))

pchisq(-2*sampIG2mleIG$r(mu.true,sigma2.true),df=2)
## repeat the survival function estimation
sampIG2.KMfit <- survfit(Surv(sampIGtime,sampIGstatus) ~1)
plot(sampIG2.KMfit,log=TRUE)
lines(X,pinvgauss(X,sampIG2mleIG$estimate[1],sampIG2mleIG$estimate[2],lower.tail=FALSE),col=2)

## End(Not run)

dllogis The Log Logistic Distribution

Description

Density, distribution function, quantile function, and random generation for the log logistic.
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Usage

dllogis(x, location = 0, scale = 1, log = FALSE)
pllogis(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qllogis(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rllogis(n, location = 0, scale = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

location, scale

location and scale parameters (non-negative numeric).

lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].

log, log.p logical; if TRUE, probabilities p are given as log(p).

Details

If location or scale are omitted, they assume the default values of 0 and 1 respectively.

The log-Logistic distribution with location = m and scale = s has distribution function

F(x) =
1

1 + exp(− log(x)−m
s )

and density

f(x) =
1

s x

exp(− log(x)−m
s )

(1 + exp(− log(x)−m
s ))2

Value

dllogis gives the density, pllogis gives the distribution function, qllogis gives the quantile
function and rllogis generates random deviates.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Lindsey, J.K. (2004) Introduction to Applied Statistics: A Modelling Approach. OUP.

Lindsey, J.K. (2004) The Statistical Analysis of Stochastic Processes in Time. CUP.

See Also

llogisMLE, Lognormal, hllogis
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Examples

## Not run:
tSeq <- seq(0.001,0.6,0.001)
location.true <- -2.7
scale.true <- 0.025
Yd <- dllogis(tSeq, location.true, scale.true)
Yh <- hllogis(tSeq, location.true, scale.true)
max.Yd <- max(Yd)
max.Yh <- max(Yh)
Yd <- Yd / max.Yd
Yh <- Yh / max.Yh
oldpar <- par(mar=c(5,4,4,4))
plot(tSeq, Yd, type="n", axes=FALSE, ann=FALSE,

xlim=c(0,0.6), ylim=c(0,1))
axis(2,at=seq(0,1,0.2),labels=round(seq(0,1,0.2)*max.Yd,digits=2))
mtext("Density (1/s)", side=2, line=3)
axis(1,at=pretty(c(0,0.6)))
mtext("Time (s)", side=1, line=3)
axis(4, at=seq(0,1,0.2), labels=round(seq(0,1,0.2)*max.Yh,digits=2))
mtext("Hazard (1/s)", side=4, line=3, col=2)
mtext("Log Logistic Density and Hazard Functions", side=3, line=2,cex=1.5)
lines(tSeq,Yd)
lines(tSeq,Yh,col=2)
par(oldpar)

## End(Not run)

drexp The Refractory Exponential Distribution

Description

Density, distribution function, quantile function, and random generation for the refractory exponen-
tial.

Usage

drexp(x, rate = 10, rp = 0.005, log = FALSE)
prexp(q, rate = 10, rp = 0.005, lower.tail = TRUE, log.p = FALSE)
qrexp(p, rate = 10, rp = 0.005, lower.tail = TRUE, log.p = FALSE)
rrexp(n, rate = 10, rp = 0.005)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.
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lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].

log, log.p logical; if TRUE, probabilities p are given as log(p).

rate rate parameter (non-negative numeric).

rp refractory period parameter (non-negative numeric).

Details

The refractory exponential distribution with rate, r, and refractory period, rp, has density:

f(x) = r exp(- r (x-rp))

for x >= rp.

Value

drexp gives the density, prexp gives the distribution function, qrexp gives the quantile function
and rrexp generates random deviates.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Johnson, D. H. and Swami, A. (1983) The transmission of signals by auditory-nerve fiber discharge
patterns. J. Acoust. Soc. Am. 74: 493–501.

See Also

rexpMLE

Examples

## Not run:
tSeq <- seq(0.001,0.6,0.001)
rate.true <- 20
rp.true <- 0.01
Yd <- drexp(tSeq, rate.true, rp.true)
Yh <- hrexp(tSeq, rate.true, rp.true)
max.Yd <- max(Yd)
max.Yh <- max(Yh)
Yd <- Yd / max.Yd
Yh <- Yh / max.Yh
oldpar <- par(mar=c(5,4,4,4))
plot(tSeq, Yd, type="n", axes=FALSE, ann=FALSE,

xlim=c(0,0.6), ylim=c(0,1))
axis(2,at=seq(0,1,0.2),labels=round(seq(0,1,0.2)*max.Yd,digits=2))
mtext("Density (1/s)", side=2, line=3)
axis(1,at=pretty(c(0,0.6)))
mtext("Time (s)", side=1, line=3)
axis(4, at=seq(0,1,0.2), labels=round(seq(0,1,0.2)*max.Yh,digits=2))
mtext("Hazard (1/s)", side=4, line=3, col=2)
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mtext("Refractory Exponential Density and Hazard Functions", side=3, line=2,cex=1.5)
lines(tSeq,Yd)
lines(tSeq,Yh,col=2)
par(oldpar)

## End(Not run)

frt Computes Forward Recurrence Times from Two transformedTrain Ob-
jects

Description

Computes the (transformed) time differences between spikes of a refTrain and the (next) ones of
a testTrain. Both refTrain and testTrain should be transformedTrain objects.

Usage

frt(refTrain, testTrain)
refTrain %frt% testTrain

Arguments

refTrain a transformedTrain object.

testTrain a transformedTrain object.

Details

When two spike trains have been time transformed using the same procedure, which does make
one of the trains (the testTrain) the realization a homogeneous Poisson process with rate 1, the
elapsed time between the spikes of the other train (refTrain) and the ones of testTrain should be
exponentially distributed with rate 1. These elapsed times are returned by frt.

Value

An object of class frt containing the elapsed times.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

transformedTrain, plot.frt, summary.frt, mkGLMdf
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Examples

## Not run:
## Let us consider neuron 1 of the CAL2S data set
data(CAL2S)
CAL2S <- lapply(CAL2S,as.spikeTrain)
CAL2S[["neuron 1"]]
renewalTestPlot(CAL2S[["neuron 1"]])
summary(CAL2S[["neuron 1"]])
## Make a data frame with a 4 ms time resolution
cal2Sdf <- mkGLMdf(CAL2S,0.004,0,60)
## keep the part relative to neuron 1, 2 and 3 separately
n1.cal2sDF <- cal2Sdf[cal2Sdf$neuron=="1",]
n2.cal2sDF <- cal2Sdf[cal2Sdf$neuron=="2",]
n3.cal2sDF <- cal2Sdf[cal2Sdf$neuron=="3",]
## remove unnecessary data
rm(cal2Sdf)
## Extract the elapsed time since the second to last and
## third to last for neuron 1. Normalise the result.
n1.cal2sDF[c("rlN.1","rsN.1","rtN.1")] <- brt4df(n1.cal2sDF,"lN.1",2,c("rlN.1","rsN.1","rtN.1"))
## load mgcv library
library(mgcv)
## fit a model with a tensorial product involving the last
## three spikes and using a cubic spline basis for the last two
## To gain time use a fixed df regression spline
n1S.fitA <- gam(event ~ te(rlN.1,rsN.1,bs="cr",fx=TRUE) + rtN.1,data=n1.cal2sDF,family=binomial(link="logit"))
## transform time
N1.Lambda <- transformedTrain(n1S.fitA)
## check out the resulting spike train using the fact
## that transformedTrain objects inherit from spikeTrain
## objects
N1.Lambda
## Use more formal checks
summary(N1.Lambda)
plot(N1.Lambda,which=c(1,2,4,5),ask=FALSE)
## Transform spike trains of neuron 2 and 3
N2.Lambda <- transformedTrain(n1S.fitA,n2.cal2sDF$event)
N3.Lambda <- transformedTrain(n1S.fitA,n3.cal2sDF$event)
## Check interactions
summary(N2.Lambda %frt% N1.Lambda)
summary(N3.Lambda %frt% N1.Lambda)
plot(N2.Lambda %frt% N1.Lambda,ask=FALSE)
plot(N3.Lambda %frt% N1.Lambda,ask=FALSE)

## End(Not run)

gamlockedTrain Function to Smooth a lockedTrain Object and Related Methods: The
Penalized Regression Spline Approach
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Description

Smooths a lockedTrain object using a gam model with the Poisson family after binning the object.

Usage

gamlockedTrain(lockedTrain, bw = 0.001, bs = "cr", k = 100, ...)
## S3 method for class 'gamlockedTrain'
print(x, ...)
## S3 method for class 'gamlockedTrain'
summary(object, ...)
## S3 method for class 'gamlockedTrain'
plot(x, xlab, ylab, main, xlim, ylim, col, lwd, ...)

Arguments

lockedTrain a lockedTrain object.

bw the bin width (in s) used to generate the observations on which the gam fit will
be performed. See details below.

bs the type of splines used. See s.

k the dimension of the basis used to represent the smooth psth. See s.

x an gamlockedTrain object.

object an gamlockedTrain object.

xlim a numeric (default value supplied). See plot.

ylim a numeric (default value supplied). See plot.

xlab a character (default value supplied). See plot.

ylab a character (default value supplied). See plot.

main a character (default value supplied). See plot.

lwd line width used to plot the estimated density. See plot.

col color used to plot the estimated density. See plot.

... additional arguments passed to gam in gamlockedTrain. Not used in print.gamlockedTrain
and summary.gamlockedTrain. Passed to plot in plot.gamlockedTrain.

Details

gamlockedTrain essentially generates a smooth version of the histogram obtained by hist.lockedTrain.
The Idea is to build the histogram first with a "too" small bin width before fitting a regression spline
to it with a Poisson distribution of the observed counts.

Value

A list of class gamlockedTrain is returned by gamlockedTrain. This list has the following com-
ponents:

gamFit the gamObject generated.
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Time the vector of bin centers.

nRef the number of spikes in the reference train. See hist.lockedTrain.

testFreq the mean frequency of the test neuron. See hist.lockedTrain.

bwV the vector of bin widths used.

CCH a logical which is TRUE if a cross-intensity was estimated and FALSE in the case
of an auto-intensity.

call the matched call.

print.gamlockedTrain returns the result of print.gam applied to the component gamFit of its
argument.

summary.gamlockedTrain returns the result of summary.gam applied to the component gamFit of
its argument.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Wood S.N. (2006) Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC
Press.

See Also

lockedTrain, plot.lockedTrain, gam

Examples

## Not run:
## load e070528spont data set
data(e070528spont)
## create a lockedTrain object with neuron 1 as reference
## and neuron 3 as test up to lags of +/- 250 ms
lt1.3 <- lockedTrain(e070528spont[[1]],e070528spont[[3]],laglim=c(-1,1)*0.25)
## look at the cross raster plot
lt1.3
## build a histogram of it using a 10 ms bin width
hist(lt1.3,bw=0.01)
## do it the smooth way
slt1.3 <- gamlockedTrain(lt1.3)
plot(slt1.3)
## do some check on the gam fit
summary(slt1.3)
gam.check(gamObj(slt1.3))

## End(Not run)
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gammaMLE Maximum Likelihood Parameter Estimation of a Gamma Model with
Possibly Censored Data

Description

Estimate Gamma model parameters by the maximum likelihood method using possibly censored
data. Two different parameterizations of the Gamma distribution can be used.

Usage

gammaMLE(yi, ni = numeric(length(yi)) + 1,
si = numeric(length(yi)) + 1, scale = TRUE)

Arguments

yi vector of (possibly binned) observations or a spikeTrain object.

ni vector of counts for each value of yi; default: numeric(length(yi))+1.

si vector of counts of uncensored observations for each value of yi; default: numeric(length(yi))+1.

scale logical should the scale (TRUE) or the rate parameterization (FALSE) be used?

Details

There is no closed form expression for the MLE of a Gamma distribution. The numerical method
implemented here uses the profile likelihood described by Monahan (2001) pp 210-216.

In order to ensure good behavior of the numerical optimization routines, optimization is performed
on the log of the parameters (shape and scale or rate).

Standard errors are obtained from the inverse of the observed information matrix at the MLE. They
are transformed to go from the log scale used by the optimization routine to the parameterization
requested.

Value

A list of class durationFit with the following components:

estimate the estimated parameters, a named vector.

se the standard errors, a named vector.

logLik the log likelihood at maximum.

r a function returning the log of the relative likelihood function.

mll a function returning the opposite of the log likelihood function using the log of
the parameters.

call the matched call.
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Note

The returned standard errors (component se) are valid in the asymptotic limit. You should plot
contours using function r in the returned list and check that the contours are reasonably close to
ellipses.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Monahan, J. F. (2001) Numerical Methods of Statistics. CUP.

Lindsey, J.K. (2004) Introduction to Applied Statistics: A Modelling Approach. OUP.

See Also

GammaDist, invgaussMLE, lnormMLE

Examples

## Not run:
## Simulate sample of size 100 from a gamma distribution
set.seed(1102006,"Mersenne-Twister")
sampleSize <- 100
shape.true <- 6
scale.true <- 0.012
sampGA <- rgamma(sampleSize,shape=shape.true,scale=scale.true)
sampGAmleGA <- gammaMLE(sampGA)
rbind(est = sampGAmleGA$estimate,se = sampGAmleGA$se,true = c(shape.true,scale.true))

## Estimate the log relative likelihood on a grid to plot contours
Shape <- seq(sampGAmleGA$estimate[1]-4*sampGAmleGA$se[1],

sampGAmleGA$estimate[1]+4*sampGAmleGA$se[1],
sampGAmleGA$se[1]/10)

Scale <- seq(sampGAmleGA$estimate[2]-4*sampGAmleGA$se[2],
sampGAmleGA$estimate[2]+4*sampGAmleGA$se[2],
sampGAmleGA$se[2]/10)

sampGAmleGAcontour <- sapply(Shape, function(sh) sapply(Scale, function(sc) sampGAmleGA$r(sh,sc)))
## plot contours using a linear scale for the parameters
## draw four contours corresponding to the following likelihood ratios:
## 0.5, 0.1, Chi2 with 2 df and p values of 0.95 and 0.99
X11(width=12,height=6)
layout(matrix(1:2,ncol=2))
contour(Shape,Scale,t(sampGAmleGAcontour),

levels=c(log(c(0.5,0.1)),-0.5*qchisq(c(0.95,0.99),df=2)),
labels=c("log(0.5)",

"log(0.1)",
"-1/2*P(Chi2=0.95)",
"-1/2*P(Chi2=0.99)"),

xlab="shape",ylab="scale",
main="Log Relative Likelihood Contours"
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)
points(sampGAmleGA$estimate[1],sampGAmleGA$estimate[2],pch=3)
points(shape.true,scale.true,pch=16,col=2)
## The contours are not really symmetrical about the MLE we can try to
## replot them using a log scale for the parameters to see if that improves
## the situation
contour(log(Shape),log(Scale),t(sampGAmleGAcontour),

levels=c(log(c(0.5,0.1)),-0.5*qchisq(c(0.95,0.99),df=2)),
labels="",
xlab="log(shape)",ylab="log(scale)",
main="Log Relative Likelihood Contours",
sub="log scale for the parameters")

points(log(sampGAmleGA$estimate[1]),log(sampGAmleGA$estimate[2]),pch=3)
points(log(shape.true),log(scale.true),pch=16,col=2)

## make a parametric boostrap to check the distribution of the deviance
nbReplicate <- 10000
sampleSize <- 100
system.time(

devianceGA100 <- replicate(nbReplicate,{
sampGA <- rgamma(sampleSize,shape=shape.true,scale=scale.true)

sampGAmleGA <- gammaMLE(sampGA)
-2*sampGAmleGA$r(shape.true,scale.true)

}
)

)[3]

## Get 95 and 99% confidence intervals for the QQ plot
ci <- sapply(1:nbReplicate,

function(idx) qchisq(qbeta(c(0.005,0.025,0.975,0.995),
idx,
nbReplicate-idx+1),

df=2)
)

## make QQ plot
X <- qchisq(ppoints(nbReplicate),df=2)
Y <- sort(devianceGA100)
X11()
plot(X,Y,type="n",

xlab=expression(paste(chi[2]^2," quantiles")),
ylab="MC quantiles",
main="Deviance with true parameters after ML fit of gamma data",
sub=paste("sample size:", sampleSize,"MC replicates:", nbReplicate)
)

abline(a=0,b=1)
lines(X,ci[1,],lty=2)
lines(X,ci[2,],lty=2)
lines(X,ci[3,],lty=2)
lines(X,ci[4,],lty=2)
lines(X,Y,col=2)

## End(Not run)
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gamObj Generic Function and Methods for Extracting a gamObject

Description

Some functions of STAR, like gampsth and gamlockedTrain perform gam fits internally and keep
as a list component or within the environment of a returned function the result of this fit. Method
gamObj extracts this gam object.

Usage

gamObj(object, ...)
## S3 method for class 'gampsth'
gamObj(object, ...)
## S3 method for class 'gamlockedTrain'
gamObj(object, ...)

Arguments

object an object containing a gamObject. Currently the result of a call to gampsth or
to gamlockedTrain.

... not used for now

Value

A gamObject

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

gam, gamObject, gampsth, gamlockedTrain

Examples

##
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gampsth Smooth Peri Stimulus Time Histogram Related Functions and Meth-
ods: The Penalized Regression Spline Approach

Description

Function gampsth computes a smooth psth, while method print.gampsth prints and summary.gampsth
summarises the gamObject contained in the returned gampsth object and plot.gampsth plots it.

Usage

gampsth(repeatedTrain, binSize = 0.025, k = 100,
bs = "tp", plot = TRUE,...)

## S3 method for class 'gampsth'
print(x, ...)
## S3 method for class 'gampsth'
summary(object, ...)
## S3 method for class 'gampsth'
plot(x, stimTimeCourse = NULL, colStim = "grey80",

colCI = NULL, xlab, ylab, main, xlim, ylim,
lwd = 2, col = 1, ...)

Arguments

repeatedTrain a repeatedTrain object or a list which can be coerced to such an object.

binSize the bin size (in s) used to generate the observations on which the gam fit will be
performed. See details below.

k the dimension of the basis used to represent the smooth psth. See s.

bs the type of splines used. See s.

plot corresponding argument of hist. Should a plot be generated or not?

object a gampsth object.

x a gampsth object.

stimTimeCourse NULL (default) or a two elements vector specifying the time boundaries (in s) of
a stimulus presentation.

colStim the background color used for the stimulus.

colCI if not NULL (default) a confidence band is plotted with the specified color; two
dashed lines are plotted otherwise.

xlim a numeric (default value supplied). See plot.

ylim a numeric (default value supplied). See plot.

xlab a character (default value supplied). See plot.

ylab a character (default value supplied). See plot.

main a character (default value supplied). See plot.
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lwd line width used to plot the estimated density. See plot.

col color used to plot the estimated density. See plot.

... in gampsth, if plot is set to TRUE then the . . . are passed to plot.gampsth. In
plot.gampsth they are passed to plot which is called internally. They are not
used otherwise.

Details

For gampsth, the raw data contained in repeatedTrain are pre-processed with hist using a bin
size given by argument binSize. This binSize should be small "enough". That is, the rate of the
aggregated train created by collapsing the spike times of the different trials onto a single "pseudo"
spike train, should not change too much on the scale of binSize (see Ventura et al (2002) Sec. 4.2
p8 for more details).

Value

When plot is set to FALSE in gampsth, a list of class gampsth is returned and no plot is generated.
This list has the following components:

freq a vector containing the instantaneous firing rate in the middle of the "thin" bins
used for preprocessing.

ciUp a vector with the upper limit of a pointwise 95% confidence interval. Check
predict.gam for details.

ciLow a vector with the lower limit of a pointwise 95% confidence interval.

breaks a vector with 2 elements the ealiest and the latest spike in repeatedTrain.

mids a numeric vector with the mid points of the bins.

counts a vector with the actual number of spikes in each bin.

nbTrials the number of trials in repeatedTrain.

lambdaFct a function of a single time argument returning the estimated intensity (or instan-
taneous rate) at its argument.

LambdaFct a function of a single time argument returning the integrale of estimated inten-
sity (or instantaneous rate) at its argument. That is, the integrated intensity.
integrate is used by this function.

call the matched call.

When plot is set to TRUE nothing is returned and a plot is generated as a side effect. Of course the
same occurs upon calling plot.gampsth with a gampsth object argument.

print.gampsth returns the result of print.gam applied to the gamObject generated by gampsth
and stored in the environment of both lambdaFct and LambdaFct.

summary.gampsth returns the result of summary.gam applied to the gamObject generated by gampsth
and stored in the environment of both lambdaFct and LambdaFct.

Note

Most of the components of the list returned by gampsth are not of direct interest for the user but
they are used by, for instance, reportHTML.repeatedTrain.
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Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Ventura, V., Carta, R., Kass, R. E., Gettner, S. N. and Olson, C. R. (2002) Statistical analysis of
temporal evolution in single-neuron firing rates. Biostatistics 3: 1–20.

Kass, R. E., Ventura, V. and Cai, C. (2003) Statistical smoothing of neuronal data. Network: Com-
putation in Neural Systems 14: 5–15.

Wood S.N. (2006) Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC
Press.

See Also

psth, plot.psth, gam, print.gam, summary.gam, gam.check, reportHTML.repeatedTrain,

Examples

## Not run:
## Get the e070528citronellal data set into workspace
data(e070528citronellal)
## Compute gampsth without a plot for neuron 1
## using a cubic regression spline
n1CitrGAMPSTH <- gampsth(e070528citronellal[[1]],plot=FALSE,bs="cr")
## plot the result
plot(n1CitrGAMPSTH,stim=c(6.14,6.64),colCI=2)
## get a summary of the gam fit
summary(n1CitrGAMPSTH)
## perhaps get a more complete check wit gam.check
n1CitrGAMPSTHgo <- gamObj(n1CitrGAMPSTH)
gam.check(n1CitrGAMPSTHgo)
## It does not look too bad
## Now take a look at the observation on which the gam
## was actually performed
plot(n1CitrGAMPSTH$mids,n1CitrGAMPSTH$counts,type="l")
## put dots at the positions of the knots
X <- n1CitrGAMPSTHgo$smooth[[1]][["xp"]]
rug(X,col=2)
## Add the estimated smooth psth after proper scaling
theBS <- diff(n1CitrGAMPSTH[["mids"]])[1]
Y <- n1CitrGAMPSTH$lambdaFct(n1CitrGAMPSTH$mids)*theBS*n1CitrGAMPSTH$nbTrials
lines(n1CitrGAMPSTH$mids,Y,col=4,lwd=2)

## End(Not run)
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gsslockedTrain Function to Smooth a lockedTrain Object and Related Methods: The
Smoothing Spline Approach

Description

Smooths a lockedTrain object using a smoothing spline (gssanova or gssanova0) with the Pois-
son family after binning the object.

Usage

gsslockedTrain(lockedTrain, bw = 0.001, ...)
gsslockedTrain0(lockedTrain, bw = 0.001, ...)
## S3 method for class 'gsslockedTrain'
print(x, ...)
## S3 method for class 'gsslockedTrain0'
print(x, ...)
## S3 method for class 'gsslockedTrain'
summary(object, ...)
## S3 method for class 'gsslockedTrain0'
summary(object, ...)
## S3 method for class 'gsslockedTrain'
plot(x, xlab, ylab, main, xlim, ylim, col, lwd, ...)
## S3 method for class 'gsslockedTrain0'
plot(x, xlab, ylab, main, xlim, ylim, col, lwd, ...)

Arguments

lockedTrain a lockedTrain object.
bw the bin width (in s) used to generate the observations on which the gss fit will be

performed. See details below.
x an gsslockedTrain or a gsslockedTrain0 object.
object an gsslockedTrain or a gsslockedTrain0 object.
xlim a numeric (default value supplied). See plot.
ylim a numeric (default value supplied). See plot.
xlab a character (default value supplied). See plot.
ylab a character (default value supplied). See plot.
main a character (default value supplied). See plot.
lwd line width used to plot the estimated density. See plot.
col color used to plot the estimated density. See plot.
... in gsslockedTrain, respectively gsslockedTrain0, the . . . are passed to the in-

ternally called gssanova, repectively gssanova0. Not used in print.gsslockedTrain
and summary.gsslockedTrain and their counterparts for gsslockedTrain0
objects. Passed to plot in plot.gsslockedTrain and plot.gsslockedTrain0.
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Details

gsslockedTrain calls internally gssanova while gsslockedTrain0 calls gssanova0. See the re-
spective documentations and references therein for an explanation of the differences. gsslockedTrain
and gsslockedTrain0 essentially generate a smooth version of the histogram obtained by hist.lockedTrain.
The Idea is to build the histogram first with a "too" small bin width before fitting a regression spline
to it with a Poisson distribution of the observed counts.

Value

A list of class gsslockedTrain, respectively gsslockedTrain0, is returned by gsslockedTrain,
respectively gsslockedTrain0. These lists have the following components:

gssFit the gss object generated by gssanova or gssanova0.

Time the vector of bin centers.

nRef the number of spikes in the reference train. See hist.lockedTrain.

testFreq the mean frequency of the test neuron. See hist.lockedTrain.

bwV the vector of bin widths used.

CCH a logical which is TRUE if a cross-intensity was estimated and FALSE in the case
of an auto-intensity.

call the matched call.

print.gsslockedTrain returns the result of print applied to the gssanova object generated by
gsslockedTrain and stored in the the component gssFit of its argument. The same goes for
print.gsslockedTrain0.

summary.gsslockedTrain returns the result of summary.gssanova applied to the gssanova object
generated by gsspsth and stored in the component gssFit of its argument. The same goes for
summary.gsslockedTrain0.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Gu C. (2002) Smoothing Spline ANOVA Models. Springer.

See Also

lockedTrain, plot.lockedTrain, gssanova, gssanova0

Examples

## Not run:
## load e070528spont data set
data(e070528spont)
## create a lockedTrain object with neuron 1 as reference
## and neuron 3 as test up to lags of +/- 250 ms
lt1.3 <- lockedTrain(e070528spont[[1]],e070528spont[[3]],laglim=c(-1,1)*0.25)
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## look at the cross raster plot
lt1.3
## build a histogram of it using a 10 ms bin width
hist(lt1.3,bw=0.01)
## do it the smooth way
slt1.3 <- gsslockedTrain(lt1.3)
plot(slt1.3)
## do some check on the gss fit
summary(slt1.3)

## do the same with gsslockedTrain0
slt1.3 <- gsslockedTrain0(lt1.3)
plot(slt1.3)
## do some check on the gss fit
summary(slt1.3)

## End(Not run)

gssObj Generic Function and Methods for Extracting a gss object

Description

Some functions of STAR, like gsspsth, gsspsth0 and gsslockedTrain, gsslockedTrain0 per-
form gss fits internally and keep as a list component or within the environment of a returned function
the result of this fit. Method gssObj extracts this gss object.

Usage

gssObj(object, ...)
## S3 method for class 'gsspsth'
gssObj(object, ...)
## S3 method for class 'gsspsth0'
gssObj(object, ...)
## S3 method for class 'gsslockedTrain'
gssObj(object, ...)
## S3 method for class 'gsslockedTrain0'
gssObj(object, ...)

Arguments

object an object containing a gssanova or a gssanova0 object. Currently the result of
a call to gsspsth, gsspsth0 or to gsslockedTrain, gsslockedTrain0.

... not used for now

Value

A gssanova or a gssanova0 object.
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Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

gssanova, gssanova0, gsspsth, gsspsth0, gsslockedTrain, gsslockedTrain0

Examples

##

gsspsth Smooth Peri Stimulus Time Histogram Related Functions and Meth-
ods: The Smoothing Spline Approach

Description

Function gsspsth and gsspsth0 compute a smooth psth, while method print.gsspsth and print.gsspsth0
print and summary.gsspsth or summary.gsspsth0 summarize the gssanova / gssanova0 objects
contained in the returned gsspsth or gsspsth0 objects, plot.gsspsth or plot.gsspsth0 plot
them and simulate.gsspsth or simulate.gsspsth0 simulate data from fitted objects.

Usage

gsspsth(repeatedTrain, binSize = 0.025, plot = FALSE, ...)
gsspsth0(repeatedTrain, binSize = 0.025, plot = FALSE, ...)
## S3 method for class 'gsspsth'
print(x, ...)
## S3 method for class 'gsspsth0'
print(x, ...)
## S3 method for class 'gsspsth'
summary(object, ...)
## S3 method for class 'gsspsth0'
summary(object, ...)
## S3 method for class 'gsspsth'
plot(x, stimTimeCourse = NULL, colStim = "grey80",

colCI = NULL, xlab, ylab, main, xlim, ylim,
lwd = 2, col = 1, ...)

## S3 method for class 'gsspsth0'
plot(x, stimTimeCourse = NULL, colStim = "grey80",

colCI = NULL, xlab, ylab, main, xlim, ylim,
lwd = 2, col = 1, ...)

## S3 method for class 'gsspsth'
simulate(object, nsim = 1, seed = NULL, ...)
## S3 method for class 'gsspsth0'
simulate(object, nsim = 1, seed = NULL, ...)
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Arguments

repeatedTrain a repeatedTrain object or a list which can be coerced to such an object.

binSize the bin size (in s) used to generate the observations on which the gss fit will be
performed. See details below.

plot corresponding argument of hist. Should a plot be generated or not?

object a gsspsth or a gsspsth0 object.

x a gsspsth or a gsspsth0 object.

stimTimeCourse NULL (default) or a two elements vector specifying the time boundaries (in s) of
a stimulus presentation.

colStim the background color used for the stimulus.

colCI if not NULL (default) a confidence band is plotted with the specified color; two
dashed lines are plotted otherwise.

xlim a numeric (default value supplied). See plot.

ylim a numeric (default value supplied). See plot.

xlab a character (default value supplied). See plot.

ylab a character (default value supplied). See plot.

main a character (default value supplied). See plot.

lwd line width used to plot the estimated density. See plot.

col color used to plot the estimated density. See plot.

nsim number of repeatedTrain objects to simulate. Defaults to 1.

seed see simulate.

... in gsspsth, respectively gsspsth0, the . . . are passed to the internally called
gssanova, repectively gssanova0. In plot.gsspsth and plot.gsspsth0 they
are passed to plot which is called internally. They are not used otherwise.

Details

gsspsth calls internally gssanova while gsspsth0 calls gssanova0. See the respective docu-
mentations and references therein for an explanation of the differences. For both gsspsth and
gsspsth0, the raw data contained in repeatedTrain are pre-processed with hist using a bin size
given by argument binSize. This binSize should be small "enough". That is, the rate of the aggre-
gated train created by collapsing the spike times of the different trials onto a single "pseudo" spike
train, should not change too much on the scale of binSize (see Ventura et al (2002) Sec. 4.2 p8 for
more details). Argument nbasis of gssanova called internally by gsspsth is set to the number of
bins of the histogram resulting from the preprocessing stage.

simulate.gsspsth and simulate.gsspsth0 perform exact simuations of inhomogenous Poisson
processes whose (time dependent) rate/intensity function is accessible through the componenent
lambdaFct of objects of class gsspsth and gsspsth0. The inhomogenous Poisson processes are
simulated with the thinning method (Devroye, 1986, pp 253-256).
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Value

When plot is set to FALSE in gsspsth, repectively gsspsth0, a list of class gsspsth, respectively
gsspsth0, is returned and no plot is generated. These list have the following components:

freq a vector containing the instantaneous firing rate in the middle of the "thin" bins
used for preprocessing.

ciUp a vector with the upper limit of a pointwise 95% confidence interval. Check
predict.ssanova for details.

ciLow a vector with the lower limit of a pointwise 95% confidence interval.

breaks a vector with 2 elements the ealiest and the latest spike in repeatedTrain.

mids a numeric vector with the mid points of the bins.

counts a vector with the actual number of spikes in each bin.

nbTrials the number of trials in repeatedTrain.

lambdaFct a function of a single time argument returning the estimated intensity (or instan-
taneous rate) at its argument.

LambdaFct a function of a single time argument returning the integrale of estimated inten-
sity (or instantaneous rate) at its argument. That is, the integrated intensity.
integrate is used by this function.

call the matched call.

When plot is set to TRUE nothing is returned and a plot is generated as a side effect. Of course the
same occurs upon calling plot.gsspsth with a gsspsth object argument or plot.gsspsth0 with
a gsspsth0.

print.gsspsth returns the result of print applied to the gssanova object generated by gsspsth
and stored in the environment of both lambdaFct and LambdaFct. The same goes for print.gsspsth0.

summary.gsspsth returns the result of summary.gssanova applied to the gssanova object gener-
ated by gsspsth and stored in the environment of both lambdaFct and LambdaFct. The same
goes for summary.gsspsth0.

simulate.gsspsth and simulate.gsspsth0 return a repeatedTrain object if argument nsim is
set to one and a list of such objects if it is greater than one.

Note

Most of the components of the list returned by gsspsth and gsspsth0 are not of direct interest for
the user but they are used by, for instance, reportHTML.repeatedTrain.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Gu C. (2002) Smoothing Spline ANOVA Models. Springer.

Ventura, V., Carta, R., Kass, R. E., Gettner, S. N. and Olson, C. R. (2002) Statistical analysis of
temporal evolution in single-neuron firing rates. Biostatistics 3: 1–20.
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Kass, R. E., Ventura, V. and Cai, C. (2003) Statistical smoothing of neuronal data. Network: Com-
putation in Neural Systems 14: 5–15.

Devroye Luc (1986) Non-Uniform Random Variate Generation. Springer. Book available in pdf
format at: http://cg.scs.carleton.ca/~luc/rnbookindex.html.

See Also

psth, plot.psth, gssanova, gssanova0, summary.gssanova, summary.gssanova0, reportHTML.repeatedTrain,
simulate

Examples

## Not run:
## Get the e070528citronellal data set into workspace
data(e070528citronellal)
## Compute gsspsth without a plot for neuron 1
## using a smmothing spline with gssanova0, and default bin size of 25 ms.
n1CitrGSSPSTH0 <- gsspsth0(e070528citronellal[[1]])
## plot the result
plot(n1CitrGSSPSTH0,stim=c(6.14,6.64),colCI=2)
## get a summary of the gss fit
summary(n1CitrGSSPSTH0)
## Now take a look at the observation on which the gss
## was actually performed
plot(n1CitrGSSPSTH0$mids,n1CitrGSSPSTH0$counts,type="l")
## Add the estimated smooth psth after proper scaling
theBS <- diff(n1CitrGSSPSTH0[["mids"]])[1]
Y <- n1CitrGSSPSTH0$lambdaFct(n1CitrGSSPSTH0$mids)*theBS*n1CitrGSSPSTH0$nbTrials
lines(n1CitrGSSPSTH0$mids,Y,col=4,lwd=2)

## check the (absence of) effect of the pre-binning by using a smaller
## and larger one, say 10 and 75 ms
n1CitrGSSPSTH0_10 <- gsspsth0(e070528citronellal[[1]],binSize=0.01)
n1CitrGSSPSTH0_75 <- gsspsth0(e070528citronellal[[1]],binSize=0.075)
## plot the "high resolution" smoothed-psth
plot(n1CitrGSSPSTH0_10,colCI="grey50")
## add to it the estimate obtained with the "low resolution" one
Y_75 <- n1CitrGSSPSTH0_75$lambdaFct(n1CitrGSSPSTH0_10$mids)
lines(n1CitrGSSPSTH0_10$mids,Y_75,col=2,lwd=2)

## simulate data from the first fitted model
s1 <- simulate(n1CitrGSSPSTH0)
## look at the result
s1

## Do the same thing with gsspsth
n1CitrGSSPSTH <- gsspsth(e070528citronellal[[1]])
plot(n1CitrGSSPSTH,stim=c(6.14,6.64),colCI=2)
summary(n1CitrGSSPSTH)
plot(n1CitrGSSPSTH$mids,n1CitrGSSPSTH$counts,type="l")
theBS <- diff(n1CitrGSSPSTH[["mids"]])[1]
Y <- n1CitrGSSPSTH$lambdaFct(n1CitrGSSPSTH$mids)*theBS*n1CitrGSSPSTH$nbTrials

http://cg.scs.carleton.ca/~luc/rnbookindex.html
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lines(n1CitrGSSPSTH$mids,Y,col=4,lwd=2)
## check the (absence of) effect of the pre-binning by using a smaller
## and larger one, say 10 and 75 ms
n1CitrGSSPSTH_10 <- gsspsth(e070528citronellal[[1]],binSize=0.01)
n1CitrGSSPSTH_75 <- gsspsth(e070528citronellal[[1]],binSize=0.075)
## plot the "high resolution" smoothed-psth
plot(n1CitrGSSPSTH_10,colCI="grey50")
## add to it the estimate obtained with the "low resolution" one
Y_75 <- n1CitrGSSPSTH_75$lambdaFct(n1CitrGSSPSTH_10$mids)
lines(n1CitrGSSPSTH_10$mids,Y_75,col=2,lwd=2)
## simulate data from the first fitted model
s1 <- simulate(n1CitrGSSPSTH)
## look at the result
s1

## End(Not run)

hgamma Hazard Functions for Some Common Duration Distributions

Description

Hazard functions for the gamma, weibull, lognormal, inverse Gaussian, log logistic and refractory
exponential distributions

Usage

hgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)
hweibull(x, shape, scale = 1, log = FALSE)
hlnorm(x, meanlog = 0, sdlog = 1, log = FALSE)
hinvgauss(x, mu = 1, sigma2 = 1, boundary = NULL,

log = FALSE)
hllogis(x, location = 0, scale = 1, log = FALSE)
hrexp(x, rate = 10, rp = 0.005, log = FALSE)

Arguments

x vector of quantiles.
shape, scale, rate, sdlog

strictly positive parameters. See corresponding distributions for detail.
mu, sigma2, boundary

parameters associated with the inverse Gaussian distribution.

meanlog parameter associated with the log normal distribution.

location, rp parameters of the log logistic and refratory exponential.

log should the log hazard be returned? FALSE by default.
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Details

These functions are simply obtained by deviding the density by the survival fucntion.

Value

A vector of hazard rates.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Lindsey, J.K. (2004) Introduction to Applied Statistics: A Modelling Approach. OUP.

Lindsey, J.K. (2004) The Statistical Analysis of Stochastic Processes in Time. CUP.

See Also

dinvgauss, dllogis, drexp

Examples

## Not run:
## use a few plots to compare densities and hazard functions

## lognormal
tSeq <- seq(0.001,0.6,0.001)
meanlog.true <- -2.4
sdlog.true <- 0.4
Yd <- dlnorm(tSeq,meanlog.true,sdlog.true)
Yh <- hlnorm(tSeq,meanlog.true,sdlog.true)
max.Yd <- max(Yd)
max.Yh <- max(Yh)
Yd <- Yd / max.Yd
Yh <- Yh / max.Yh
oldpar <- par(mar=c(5,4,4,4))
plot(tSeq, Yd, type="n", axes=FALSE, ann=FALSE,

xlim=c(0,0.6), ylim=c(0,1))
axis(2,at=seq(0,1,0.2),labels=round(seq(0,1,0.2)*max.Yd,digits=2))
mtext("Density (1/s)", side=2, line=3)
axis(1,at=pretty(c(0,0.6)))
mtext("Time (s)", side=1, line=3)
axis(4, at=seq(0,1,0.2), labels=round(seq(0,1,0.2)*max.Yh,digits=2))
mtext("Hazard (1/s)", side=4, line=3, col=2)
mtext("Lognormal Density and Hazard Functions", side=3, line=2,cex=1.5)
lines(tSeq,Yd)
lines(tSeq,Yh,col=2)
par(oldpar)

## inverse Gaussian
tSeq <- seq(0.001,0.6,0.001)
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mu.true <- 0.075
sigma2.true <- 3
Yd <- dinvgauss(tSeq,mu.true,sigma2.true)
Yh <- hinvgauss(tSeq,mu.true,sigma2.true)
max.Yd <- max(Yd)
max.Yh <- max(Yh)
Yd <- Yd / max.Yd
Yh <- Yh / max.Yh
oldpar <- par(mar=c(5,4,4,4))
plot(tSeq, Yd, type="n", axes=FALSE, ann=FALSE,

xlim=c(0,0.6), ylim=c(0,1))
axis(2,at=seq(0,1,0.2),labels=round(seq(0,1,0.2)*max.Yd,digits=2))
mtext("Density (1/s)", side=2, line=3)
axis(1,at=pretty(c(0,0.6)))
mtext("Time (s)", side=1, line=3)
axis(4, at=seq(0,1,0.2), labels=round(seq(0,1,0.2)*max.Yh,digits=2))
mtext("Hazard (1/s)", side=4, line=3, col=2)
mtext("Inverse Gaussian Density and Hazard Functions", side=3, line=2,cex=1.5)
lines(tSeq,Yd)
lines(tSeq,Yh,col=2)
par(oldpar)

## gamma
tSeq <- seq(0.001,0.6,0.001)
shape.true <- 6
scale.true <- 0.012
Yd <- dgamma(tSeq, shape=shape.true, scale=scale.true)
Yh <- hgamma(tSeq, shape=shape.true, scale=scale.true)
max.Yd <- max(Yd)
max.Yh <- max(Yh)
Yd <- Yd / max.Yd
Yh <- Yh / max.Yh
oldpar <- par(mar=c(5,4,4,4))
plot(tSeq, Yd, type="n", axes=FALSE, ann=FALSE,

xlim=c(0,0.6), ylim=c(0,1))
axis(2,at=seq(0,1,0.2),labels=round(seq(0,1,0.2)*max.Yd,digits=2))
mtext("Density (1/s)", side=2, line=3)
axis(1,at=pretty(c(0,0.6)))
mtext("Time (s)", side=1, line=3)
axis(4, at=seq(0,1,0.2), labels=round(seq(0,1,0.2)*max.Yh,digits=2))
mtext("Hazard (1/s)", side=4, line=3, col=2)
mtext("Gamma Density and Hazard Functions", side=3, line=2,cex=1.5)
lines(tSeq,Yd)
lines(tSeq,Yh,col=2)
par(oldpar)

## Weibull
tSeq <- seq(0.001,0.6,0.001)
shape.true <- 2.5
scale.true <- 0.085
Yd <- dweibull(tSeq, shape=shape.true, scale=scale.true)
Yh <- hweibull(tSeq, shape=shape.true, scale=scale.true)
max.Yd <- max(Yd)
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max.Yh <- max(Yh)
Yd <- Yd / max.Yd
Yh <- Yh / max.Yh
oldpar <- par(mar=c(5,4,4,4))
plot(tSeq, Yd, type="n", axes=FALSE, ann=FALSE,

xlim=c(0,0.6), ylim=c(0,1))
axis(2,at=seq(0,1,0.2),labels=round(seq(0,1,0.2)*max.Yd,digits=2))
mtext("Density (1/s)", side=2, line=3)
axis(1,at=pretty(c(0,0.6)))
mtext("Time (s)", side=1, line=3)
axis(4, at=seq(0,1,0.2), labels=round(seq(0,1,0.2)*max.Yh,digits=2))
mtext("Hazard (1/s)", side=4, line=3, col=2)
mtext("Weibull Density and Hazard Functions", side=3, line=2,cex=1.5)
lines(tSeq,Yd)
lines(tSeq,Yh,col=2)
par(oldpar)

## refractory exponential
tSeq <- seq(0.001,0.6,0.001)
rate.true <- 20
rp.true <- 0.01
Yd <- drexp(tSeq, rate.true, rp.true)
Yh <- hrexp(tSeq, rate.true, rp.true)
max.Yd <- max(Yd)
max.Yh <- max(Yh)
Yd <- Yd / max.Yd
Yh <- Yh / max.Yh
oldpar <- par(mar=c(5,4,4,4))
plot(tSeq, Yd, type="n", axes=FALSE, ann=FALSE,

xlim=c(0,0.6), ylim=c(0,1))
axis(2,at=seq(0,1,0.2),labels=round(seq(0,1,0.2)*max.Yd,digits=2))
mtext("Density (1/s)", side=2, line=3)
axis(1,at=pretty(c(0,0.6)))
mtext("Time (s)", side=1, line=3)
axis(4, at=seq(0,1,0.2), labels=round(seq(0,1,0.2)*max.Yh,digits=2))
mtext("Hazard (1/s)", side=4, line=3, col=2)
mtext("Refractory Exponential Density and Hazard Functions", side=3, line=2,cex=1.5)
lines(tSeq,Yd)
lines(tSeq,Yh,col=2)
par(oldpar)

## log logistic
tSeq <- seq(0.001,0.6,0.001)
location.true <- -2.7
scale.true <- 0.025
Yd <- dllogis(tSeq, location.true, scale.true)
Yh <- hllogis(tSeq, location.true, scale.true)
max.Yd <- max(Yd)
max.Yh <- max(Yh)
Yd <- Yd / max.Yd
Yh <- Yh / max.Yh
oldpar <- par(mar=c(5,4,4,4))
plot(tSeq, Yd, type="n", axes=FALSE, ann=FALSE,
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xlim=c(0,0.6), ylim=c(0,1))
axis(2,at=seq(0,1,0.2),labels=round(seq(0,1,0.2)*max.Yd,digits=2))
mtext("Density (1/s)", side=2, line=3)
axis(1,at=pretty(c(0,0.6)))
mtext("Time (s)", side=1, line=3)
axis(4, at=seq(0,1,0.2), labels=round(seq(0,1,0.2)*max.Yh,digits=2))
mtext("Hazard (1/s)", side=4, line=3, col=2)
mtext("Log Logistic Density and Hazard Functions", side=3, line=2,cex=1.5)
lines(tSeq,Yd)
lines(tSeq,Yh,col=2)
par(oldpar)

## End(Not run)

hist.lockedTrain Auto- and Cross-Intensity Function Estimate for Spike Trains

Description

hist.lockedTrain constructs and plot.hist.lockedTrain plots estimates of what Cox and Lewis
(1966) call the auto- or cross-intensity functions. The auto-intensity function is also called the
renewal density by Cox and Lewis and by Perkel et al (1967) while it is called the intensity of
the Palm distribution by Ogata (1988). The (estimate of) the cross-intensity function is called
cross-correlation function by Perkel et al (1967b) and cross-correlation histogram by Brillinger et
al (1976).

Usage

## S3 method for class 'lockedTrain'
hist(x, bw, breaks = NULL, plot = TRUE, ...)
## S3 method for class 'hist.lockedTrain'
plot(x, style = c("Ogata", "Brillinger"),

CI, unit = "s", xlab, ylab, xlim, ylim,
type, pch, ...)

Arguments

x a lockedTrain object returned by the lockedTrain function.

bw a non-negative numeric, the bin width.

breaks a vector giving the breakpoints between cells. If NULL (default) breaks are built
using argument bw and component laglim of obj.

plot a logical. If TRUE a plot is generated as a side effect and nothing is returned, if
FALSE a list of class hist.lockedTime is returned.

style a character. The style of the plot, "Ogata" or "Brillinger".

CI a numeric vector with at most two elements. The coverage probability of the
confidence intervals.
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unit a character. The unit in which the spike times are expressed.

xlab a character. The x label. Default supplied.

ylab a character. The y label. Default supplied.

xlim a numeric. See plot. Default supplied.

ylim a numeric. See plot. Default supplied.

type see lines. Default supplied.

pch see plot. Default supplied.

... see plot.

Details

The intensity of the Palm distribution (Ogata, 1988, p 13) is estimated by:

m(s) =
Prob(event in (t+ s, t+ s+ ∆s) | event at t)

∆s

It is called renewal density by Perkel et al (1967) and defined by their Eq. 10, p 404. Under the null
hypothesis of a stationary Poisson process it is a constant whose value is the mean discharge rate.

The cross-intensity function of two spike trains A and B is estimated by (Perkel et al, 1967b, p424,
Eq. 4 and 5):

mAB(s) =
Prob(B event in (t+ s, t+ s+ ∆s) | A event at t)

∆s

The style argument of plot.hist.lockedTrain generates a plot looking like Fig. 6, p 18 of
Ogata (1988) if set to "Ogata". Using style "Brillinger" plots the square root of the estimate.

Value

When argument plot in hist.lockedTrain is set to FALSE a list of class hist.lockedTrain with
the following components is returned:

density the density estimate. Equivalent of the component density returned by hist.

breaks a numeric vector with the breaks in between which spikes were counted. Similar
to the component of the same name returned by hist.

mids a numeric vector with the mid points of breaks. . Similar to the component of
the same name returned by hist.

bw the bin width used.

nRef the total number of reference spikes used.

refFreq the mean frequency of the reference neuron.

testFreq the mean frequency of the test neuron.

obsTime the total observation time used (in s).

CCH a logical which is TRUE if a cross-intensity was estimated and FALSE in the case
of an auto-intensity.

call the matched call.
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Note

The confidence intervals are obtained from a Poisson distribution with parameter: refFreq *
testFreq * bw * obsTime. Once the quantiles of the Poisson distribution have been obtained
they are divided by: refFreq * bw * obsTime

These intervals are valid under the stationary Poisson null hypothesis for the auto-intensity esti-
mates. They are valid under the stationary independent null hypothesis for the cross-intensity.
There is NO NEED to assume that the test train is Poisson or renewal. See Perkel et al (1967b) and
McFadden (1962) for a justification/proof of that. The square root transform of Brillinger (1976)
and Brillinger et al (1976) is (in my opinion) a perfect example of shooting at a sparrow with a
bazooka. An oversized method to get at an intuitively obvious result. There is moreover no need to
stabilize the variance if your testing against a Poisson with a constant rate since then the variance of
the null hypothesis is stable to start with. These (square root) transforms are useful for least square
fits with a Poisson noise but NOT in the present context.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References
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See Also

varianceTime, renewalTestPlot, lockedTrain

Examples

## Reproduce Fig. 6 of Ogata 1988
data(ShallowShocks)
shalShocks <- lockedTrain(as.spikeTrain(ShallowShocks$Date),,c(0,500))
shalShocksH <- hist(shalShocks,5,plot=FALSE)

http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=4292791
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=4292791
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=4292792
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=4292792
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plot(shalShocksH,"Ogata",c(0.95,0.99),xlab="TIME LAG (DAYS)",ylab="NUMBER OF EVENTS PER DAY")
## Reproduce Fig. 7 of Ogata 1988
myBinNb <- 101
myMidPoints <- seq(from = 1, to = 6, length.out=myBinNb)
myMidPoints <- 10^myMidPoints/200
myBreaks <- c(0,myMidPoints[-myBinNb] + diff(myMidPoints) / 2)
shalShocksH2 <- hist(shalShocks,breaks=myBreaks,plot=FALSE)
yy <- abs(shalShocksH2$density - shalShocksH2$refFreq)
plot(shalShocksH2$mids[shalShocksH2$density>0],

yy[shalShocksH2$density>0],
pch = 1,
xlim = c(0.001,10000),
log = "xy",
xlab = "TIME LAG (DAYS)",
ylab = "NUMBER OF EVENTS PER DAY"
)

invgaussMLE Maximum Likelihood Parameter Estimation of an Inverse Gaussian
Model with Possibly Censored Data

Description

Estimate inverse Gaussian model parameters by the maximum likelihood method using possibly
censored data. Two different parameterizations of the inverse Gaussian distribution can be used.

Usage

invgaussMLE(yi, ni = numeric(length(yi)) + 1,
si = numeric(length(yi)) + 1,
parameterization = "sigma2")

Arguments

yi vector of (possibly binned) observations or a spikeTrain object.

ni vector of counts for each value of yi; default: numeric(length(yi))+1.

si vector of counts of uncensored observations for each value of yi; default: numeric(length(yi))+1.
parameterization

parameterization used, "sigma2" (default) of "boundary".

Details

The 2 different parameterizations of the inverse Gaussian distribution are discussed in the manual
of dinvgauss.

In the absence of censored data the ML estimates are available in closed form (Lindsey, 2004, p
212) together with the Hessian matrix at the MLE. In presence of censored data an initial guess for
the parameters is obtained using the uncensored data before maximizing the likelihood function to
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the full data set using optim with the BFGS method. ML estimation is always performed with the
"sigma2" parameterization. Parameters and variance-covariance matrix are transformed at the end
if the "boundary" parameterization is requested.

In order to ensure good behavior of the numerical optimization routines, optimization is performed
on the log of the parameters (mu and sigma2).

Standard errors are obtained from the inverse of the observed information matrix at the MLE. They
are transformed to go from the log scale used by the optimization routine, when the latter is used
(ie, for censored data) to the parameterization requested.

Value

A list of class durationFit with the following components:

estimate the estimated parameters, a named vector.

se the standard errors, a named vector.

logLik the log likelihood at maximum.

r a function returning the log of the relative likelihood function.

mll a function returning the opposite of the log likelihood function using the log of
the parameters.

call the matched call.

Note

The returned standard errors (component se) are valid in the asymptotic limit. You should plot
contours using function r in the returned list and check that the contours are reasonably close to
ellipses.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Lindsey, J.K. (2004) Introduction to Applied Statistics: A Modelling Approach. OUP.

See Also

dinvgauss,lnormMLE,gammaMLE,weibullMLE,llogisMLE,rexpMLE.

Examples

## Simulate sample of size 100 from an inverse Gaussian
## distribution
set.seed(1102006,"Mersenne-Twister")
sampleSize <- 100
mu.true <- 0.075
sigma2.true <- 3
sampleSize <- 100
sampIG <- rinvgauss(sampleSize,mu=mu.true,sigma2=sigma2.true)
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## Make a maximum likelihood fit
sampIGmleIG <- invgaussMLE(sampIG)
## Compare estimates with actual values
rbind(est = coef(sampIGmleIG),se = sampIGmleIG$se,true = c(mu.true,sigma2.true))
## In the absence of censoring the MLE of the inverse Gaussian is available in a
## closed form together with its variance (ie, the observed information matrix)
## we can check that we did not screw up at that stage by comparing the observed
## information matrix obtained numerically with the analytical one. To do that we
## use the MINUS log likelihood function returned by invgaussMLE to get a numerical
## estimate
detailedFit <- optim(par=as.vector(log(sampIGmleIG$estimate)),

fn=sampIGmleIG$mll,
method="BFGS",
hessian=TRUE)

## We should not forget that the "mll" function uses the log of the parameters while
## the "se" component of sampIGmleIG list is expressed on the linear scale we must therefore
## transform one into the other as follows (Kalbfleisch, 1985, p71):
## if x = exp(u) and y = exp(v) and if we have the information matrix in term of
## u and v (that's the hessian component of list detailedFit above), we create matrix:
## du/dx du/dy
## Q =
## dv/dx dv/dy
## and we get I in term of x and y by the following matrix product:
## I(x,y) <- t(Q) %*% I(u,v) %*% Q
## In the present case:
## du/dx = 1/exp(u), du/dy = 0, dv/dx = 0, dv/dy = 1/exp(v)
## Therefore:
Q <- diag(1/exp(detailedFit$par))
numericalI <- t(Q) %*% detailedFit$hessian %*% Q
seComp <- rbind(sampIGmleIG$se, sqrt(diag(solve(numericalI))))
colnames(seComp) <- c("mu","sigma2")
rownames(seComp) <- c("analytical", "numerical")
seComp
## We can check the relative differences between the 2
apply(seComp,2,function(x) abs(diff(x))/x[1])

## Not run:
## Estimate the log relative likelihood on a grid to plot contours
Mu <- seq(coef(sampIGmleIG)[1]-4*sampIGmleIG$se[1],

coef(sampIGmleIG)[1]+4*sampIGmleIG$se[1],
sampIGmleIG$se[1]/10)

Sigma2 <- seq(coef(sampIGmleIG)[2]-4*sampIGmleIG$se[2],
coef(sampIGmleIG)[2]+4*sampIGmleIG$se[2],
sampIGmleIG$se[2]/10)

sampIGmleIGcontour <- sapply(Mu, function(mu) sapply(Sigma2, function(s2) sampIGmleIG$r(mu,s2)))
## plot contours using a linear scale for the parameters
## draw four contours corresponding to the following likelihood ratios:
## 0.5, 0.1, Chi2 with 2 df and p values of 0.95 and 0.99
X11(width=12,height=6)
layout(matrix(1:2,ncol=2))
contour(Mu,Sigma2,t(sampIGmleIGcontour),

levels=c(log(c(0.5,0.1)),-0.5*qchisq(c(0.95,0.99),df=2)),
labels=c("log(0.5)",
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"log(0.1)",
"-1/2*P(Chi2=0.95)",
"-1/2*P(Chi2=0.99)"),

xlab=expression(mu),ylab=expression(sigma^2),
main="Log Relative Likelihood Contours"
)

points(coef(sampIGmleIG)[1],coef(sampIGmleIG)[2],pch=3)
points(mu.true,sigma2.true,pch=16,col=2)
## The contours are not really symmetrical about the MLE we can try to
## replot them using a log scale for the parameters to see if that improves
## the situation
contour(log(Mu),log(Sigma2),t(sampIGmleIGcontour),

levels=c(log(c(0.5,0.1)),-0.5*qchisq(c(0.95,0.99),df=2)),
labels="",
xlab=expression(log(mu)),ylab=expression(log(sigma^2)),
main="Log Relative Likelihood Contours",
sub="log scale for the parameters")

points(log(coef(sampIGmleIG)[1]),log(coef(sampIGmleIG)[2]),pch=3)
points(log(mu.true),log(sigma2.true),pch=16,col=2)

## Even with the log scale the contours are not ellipsoidal, so let us compute profiles
## For that we are going to use the returned MINUS log likelihood function
logMuProfFct <- function(logMu,...) {

myOpt <- optimise(function(x) sampIGmleIG$mll(c(logMu,x))+logLik(sampIGmleIG),...)
as.vector(unlist(myOpt[c("objective","minimum")]))

}
logMuProfCI <- function(logMu,

CI,
a=logS2Seq[1],

b=logS2Seq[length(logS2Seq)]) logMuProfFct(logMu,c(a,b))[1] - qchisq(CI,1)/2

logS2ProfFct <- function(logS2,...) {
myOpt <- optimise(function(x) sampIGmleIG$mll(c(x,logS2))+logLik(sampIGmleIG),...)
as.vector(unlist(myOpt[c("objective","minimum")]))

}
logS2ProfCI <- function(logS2, CI,

a=logMuSeq[1],
b=logMuSeq[length(logMuSeq)]) logS2ProfFct(logS2,c(a,b))[1] - qchisq(CI,1)/2

## We compute profiles (on the log scale) eploxing +/- 3 times
## the se about the MLE
logMuSE <- sqrt(diag(solve(detailedFit$hessian)))[1]
logMuSeq <- seq(log(coef(sampIGmleIG)[1])-3*logMuSE,

log(coef(sampIGmleIG)[1])+3*logMuSE,
logMuSE/10)

logS2SE <- sqrt(diag(solve(detailedFit$hessian)))[2]
logS2Seq <- seq(log(coef(sampIGmleIG)[2])-3*logS2SE,

log(coef(sampIGmleIG)[2])+3*logS2SE,
logS2SE/10)

logMuProf <- sapply(logMuSeq,logMuProfFct,
lower=logS2Seq[1],
upper=logS2Seq[length(logS2Seq)])
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## Get 95
logMuCI95 <- c(uniroot(logMuProfCI,

interval=c(logMuSeq[1],log(coef(sampIGmleIG)[1])),
CI=0.95)$root,

uniroot(logMuProfCI,
interval=c(log(coef(sampIGmleIG)[1]),logMuSeq[length(logMuSeq)]),
CI=0.95)$root

)
logMuCI99 <- c(uniroot(logMuProfCI,

interval=c(logMuSeq[1],log(coef(sampIGmleIG)[1])),
CI=0.99)$root,

uniroot(logMuProfCI,
interval=c(log(coef(sampIGmleIG)[1]),logMuSeq[length(logMuSeq)]),
CI=0.99)$root

)

logS2Prof <- sapply(logS2Seq,logS2ProfFct,
lower=logMuSeq[1],
upper=logMuSeq[length(logMuSeq)])

## Get 95
logS2CI95 <- c(uniroot(logS2ProfCI,

interval=c(logS2Seq[1],log(coef(sampIGmleIG)[2])),
CI=0.95)$root,

uniroot(logS2ProfCI,
interval=c(log(coef(sampIGmleIG)[2]),logS2Seq[length(logS2Seq)]),
CI=0.95)$root

)
logS2CI99 <- c(uniroot(logS2ProfCI,

interval=c(logS2Seq[1],log(coef(sampIGmleIG)[2])),
CI=0.99)$root,

uniroot(logS2ProfCI,
interval=c(log(coef(sampIGmleIG)[2]),logS2Seq[length(logS2Seq)]),
CI=0.99)$root

)

## Add profiles to the previous plot
lines(logMuSeq,logMuProf[2,],col=2,lty=2)
lines(logS2Prof[2,],logS2Seq,col=2,lty=2)

## We can now check the deviations of the (profiled) deviances
## from the asymptotic parabolic curves
X11()
layout(matrix(1:4,nrow=2))
oldpar <- par(mar=c(4,4,2,1))
logMuSeqOffset <- logMuSeq-log(coef(sampIGmleIG)[1])
logMuVar <- diag(solve(detailedFit$hessian))[1]
plot(logMuSeq,2*logMuProf[1,],type="l",xlab=expression(log(mu)),ylab="Deviance")
lines(logMuSeq,logMuSeqOffset^2/logMuVar,col=2)
points(log(coef(sampIGmleIG)[1]),0,pch=3)
abline(h=0)
abline(h=qchisq(0.95,1),lty=2)
abline(h=qchisq(0.99,1),lty=2)
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lines(rep(logMuCI95[1],2),c(0,qchisq(0.95,1)),lty=2)
lines(rep(logMuCI95[2],2),c(0,qchisq(0.95,1)),lty=2)
lines(rep(logMuCI99[1],2),c(0,qchisq(0.99,1)),lty=2)
lines(rep(logMuCI99[2],2),c(0,qchisq(0.99,1)),lty=2)
## We can also "linearize" this last graph
plot(logMuSeq,

sqrt(2*logMuProf[1,])*sign(logMuSeqOffset),
type="l",
xlab=expression(log(mu)),
ylab=expression(paste("signed ",sqrt(Deviance)))
)

lines(logMuSeq,
sqrt(logMuSeqOffset^2/logMuVar)*sign(logMuSeqOffset),
col=2)

points(log(coef(sampIGmleIG)[1]),0,pch=3)

logS2SeqOffset <- logS2Seq-log(coef(sampIGmleIG)[2])
logS2Var <- diag(solve(detailedFit$hessian))[2]
plot(logS2Seq,2*logS2Prof[1,],type="l",xlab=expression(log(sigma^2)),ylab="Deviance")
lines(logS2Seq,logS2SeqOffset^2/logS2Var,col=2)
points(log(coef(sampIGmleIG)[2]),0,pch=3)
abline(h=0)
abline(h=qchisq(0.95,1),lty=2)
abline(h=qchisq(0.99,1),lty=2)
lines(rep(logS2CI95[1],2),c(0,qchisq(0.95,1)),lty=2)
lines(rep(logS2CI95[2],2),c(0,qchisq(0.95,1)),lty=2)
lines(rep(logS2CI99[1],2),c(0,qchisq(0.99,1)),lty=2)
lines(rep(logS2CI99[2],2),c(0,qchisq(0.99,1)),lty=2)
## We can also "linearize" this last graph
plot(logS2Seq,

sqrt(2*logS2Prof[1,])*sign(logS2SeqOffset),
type="l",
xlab=expression(log(sigma^2)),
ylab=expression(paste("signed ",sqrt(Deviance)))
)

lines(logS2Seq,
sqrt(logS2SeqOffset^2/logS2Var)*sign(logS2SeqOffset),
col=2)

points(log(coef(sampIGmleIG)[2]),0,pch=3)
par(oldpar)

## make a parametric boostrap to check the distribution of the deviance
nbReplicate <- 1000 #10000
sampleSize <- 100
system.time(
devianceIG100 <- lapply(1:nbReplicate,

function(idx) {
if ((idx
sampIG <- rinvgauss(sampleSize,mu=mu.true,sigma2=sigma2.true)
sampIGmleIG <- invgaussMLE(sampIG)
Deviance <- -2*sampIGmleIG$r(mu.true,sigma2.true)
logPara <- log(coef(sampIGmleIG))
logParaSE <- sampIGmleIG$se/coef(sampIGmleIG)
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intervalMu <- function(n) c(-n,n)*logParaSE[1]+logPara[1]
intervalS2 <- function(n) c(-n,n)*logParaSE[2]+logPara[2]
logMuProfFct <- function(logMu,...) {

optimise(function(x)
sampIGmleIG$mll(c(logMu,x))+logLik(sampIGmleIG),...)$objective

}
logMuProfCI <- function(logMu,

CI,
a=intervalS2(4)[1],
b=intervalS2(4)[2])

logMuProfFct(logMu,c(a,b)) - qchisq(CI,1)/2

logS2ProfFct <- function(logS2,...) {
optimise(function(x)
sampIGmleIG$mll(c(x,logS2))+logLik(sampIGmleIG),...)$objective

}
logS2ProfCI <- function(logS2, CI,

a=intervalMu(4)[1],
b=intervalMu(4)[2])

logS2ProfFct(logS2,c(a,b)) - qchisq(CI,1)/2

factor <- 4
while((logMuProfCI(intervalMu(factor)[2],0.99) *

logMuProfCI(logPara[1],0.99) >= 0) ||
(logMuProfCI(intervalMu(factor)[1],0.99) *
logMuProfCI(logPara[1],0.99) >= 0)

) factor <- factor+1
##browser()
logMuCI95 <- c(uniroot(logMuProfCI,

interval=c(intervalMu(factor)[1],logPara[1]),
CI=0.95)$root,

uniroot(logMuProfCI,
interval=c(logPara[1],intervalMu(factor)[2]),

CI=0.95)$root
)

logMuCI99 <- c(uniroot(logMuProfCI,
interval=c(intervalMu(factor)[1],logPara[1]),

CI=0.99)$root,
uniroot(logMuProfCI,
interval=c(logPara[1],intervalMu(factor)[2]),

CI=0.99)$root
)

factor <- 4
while((logS2ProfCI(intervalS2(factor)[2],0.99) *

logS2ProfCI(logPara[2],0.99) >= 0) ||
(logS2ProfCI(intervalS2(factor)[1],0.99) *
logS2ProfCI(logPara[2],0.99) >= 0)

) factor <- factor+1
logS2CI95 <- c(uniroot(logS2ProfCI,

interval=c(intervalS2(factor)[1],logPara[2]),
CI=0.95)$root,

uniroot(logS2ProfCI,
interval=c(logPara[2],intervalS2(factor)[2]),
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CI=0.95)$root
)

logS2CI99 <- c(uniroot(logS2ProfCI,
interval=c(intervalS2(factor)[1],logPara[2]),

CI=0.99)$root,
uniroot(logS2ProfCI,
interval=c(logPara[2],intervalS2(factor)[2]),

CI=0.99)$root
)

list(deviance=Deviance,
logMuCI95=logMuCI95,

logMuNorm95=qnorm(c(0.025,0.975),logPara[1],logParaSE[1]),
logMuCI99=logMuCI99,

logMuNorm99=qnorm(c(0.005,0.995),logPara[1],logParaSE[1]),
logS2CI95=logS2CI95,

logS2Norm95=qnorm(c(0.025,0.975),logPara[2],logParaSE[2]),
logS2CI99=logS2CI99,

logS2Norm99=qnorm(c(0.005,0.995),logPara[2],logParaSE[2]))
}
)

)[3]
## Find out how many times the true parameters was within the computed CIs
nLogMuCI95 <- sum(sapply(devianceIG100,

function(l) l$logMuCI95[1] <= log(mu.true) &&
log(mu.true)<= l$logMuCI95[2]
)

)
nLogMuNorm95 <- sum(sapply(devianceIG100,

function(l) l$logMuNorm95[1] <= log(mu.true) &&
log(mu.true)<= l$logMuNorm95[2]
)

)
nLogMuCI99 <- sum(sapply(devianceIG100,

function(l) l$logMuCI99[1] <= log(mu.true) &&
log(mu.true)<= l$logMuCI99[2]
)

)
nLogMuNorm99 <- sum(sapply(devianceIG100,

function(l) l$logMuNorm99[1] <= log(mu.true) &&
log(mu.true)<= l$logMuNorm99[2]
)

)
## Check if these counts are compatible with the nominal CIs
c(prof95Mu=nLogMuCI95,norm95Mu=nLogMuNorm95)
qbinom(c(0.005,0.995),nbReplicate,0.95)
c(prof95Mu=nLogMuCI99,norm95Mu=nLogMuNorm99)
qbinom(c(0.005,0.995),nbReplicate,0.99)

nLogS2CI95 <- sum(sapply(devianceIG100,
function(l) l$logS2CI95[1] <= log(sigma2.true) &&
log(sigma2.true)<= l$logS2CI95[2]
)

)
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nLogS2Norm95 <- sum(sapply(devianceIG100,
function(l) l$logS2Norm95[1] <= log(sigma2.true) &&
log(sigma2.true)<= l$logS2Norm95[2]
)

)
nLogS2CI99 <- sum(sapply(devianceIG100,

function(l) l$logS2CI99[1] <= log(sigma2.true) &&
log(sigma2.true)<= l$logS2CI99[2]
)

)
nLogS2Norm99 <- sum(sapply(devianceIG100,

function(l) l$logS2Norm99[1] <= log(sigma2.true) &&
log(sigma2.true)<= l$logS2Norm99[2]
)

)
## Check if these counts are compatible with the nominal CIs
c(prof95S2=nLogS2CI95,norm95S2=nLogS2Norm95)
qbinom(c(0.005,0.995),nbReplicate,0.95)
c(prof95S2=nLogS2CI99,norm95S2=nLogS2Norm99)
qbinom(c(0.005,0.995),nbReplicate,0.99)

## Get 95 and 99% confidence intervals for the QQ plot
ci <- sapply(1:nbReplicate,

function(idx) qchisq(qbeta(c(0.005,0.025,0.975,0.995),
idx,
nbReplicate-idx+1),

df=2)
)

## make QQ plot
X <- qchisq(ppoints(nbReplicate),df=2)
Y <- sort(sapply(devianceIG100,function(l) l$deviance))
X11()
plot(X,Y,type="n",

xlab=expression(paste(chi[2]^2," quantiles")),
ylab="MC quantiles",
main="Deviance with true parameters after ML fit of IG data",
sub=paste("sample size:", sampleSize,"MC replicates:", nbReplicate)
)

abline(a=0,b=1)
lines(X,ci[1,],lty=2)
lines(X,ci[2,],lty=2)
lines(X,ci[3,],lty=2)
lines(X,ci[4,],lty=2)
lines(X,Y,col=2)

## End(Not run)

isi Get Lagged Inter Spike Intervals (ISIs) From Data Frames Generated
by mkGLMdf
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Description

A utility function to create a vector containing the ith preceding inter spike interval (isi) at a given
time.

Usage

isi(dataFrame, lag = 1)

Arguments

dataFrame a data.frame typically generated by mkGLMdf. Should at least contain an event
and a time variable.

lag a strictly positive integer. Set to 1 if the previous isi is required, to 2 is the isi
preceding the last one is required, etc...

Details

Look at the (short) source file for details.

Value

A numeric vector with the value of the lagth isi preceding the time of the corresponding bin center.

Note

Before plugging the result into gssanova, do not forget to remove the NA elements (see the exam-
ple).

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

mkGLMdf, gssanova, %tt%

Examples

## Not run:
## load e060517spont data set
data(e060517spont)
## make a data frame using a 2 ms bin width
e060517spontDF <- mkGLMdf(e060517spont,0.002,0,60)
## Keep data relevant to neuron 1
e060517spontDFn1 <- e060517spontDF[e060517spontDF$neuron == "1",]
## get the isi at lag 1 and 2
e060517spontDFn1$isi1 <- isi(e060517spontDFn1,lag=1)
e060517spontDFn1$isi2 <- isi(e060517spontDFn1,lag=2)
## keep only defined elements
e060517spontDFn1 <- e060517spontDFn1[!is.na(e060517spontDFn1$isi2),]
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## split the data set into an "early" and a "late" part
e060517spontDFn1e <- e060517spontDFn1[e060517spontDFn1$time <= 30,]
e060517spontDFn1l <- e060517spontDFn1[e060517spontDFn1$time > 30,]
## Fit the late part
e060517spontDFn1lGF <- gssanova(event ~ lN.1*isi1+isi2, data=e060517spontDFn1l, family="binomial", seed=20061001)
## Time transform the early part and perform goodness of fit tests
e060517spont.n1e.tt <- e060517spontDFn1lGF %tt% e060517spontDFn1e
e060517spont.n1e.tt
summary(e060517spont.n1e.tt)
plot(summary(e060517spont.n1e.tt))

## End(Not run)

isiHistFit ISI Histogram With Fitted Model and CI

Description

Fits a duration model to isis from a spike train. Confidence intervals are also drawn.

Usage

isiHistFit(spikeTrain, model, nbins = 10, CI = 0.95, ...)

Arguments

spikeTrain a spikeTrain object or a numeric vector that can be coerced to such an object.

model a character vector whose elements are selected among: "invgauss", "lnorm",
"gamma", "weibull", "llogis", "rexp".

nbins the number of bins to use.

CI the confidence coefficient.

... additional arguments passed to hist, see hist.

Details

Assuming that the train is reasonably well described by a renewal process, a model distribution is
fitted to the inter-spike intervals (isis) obtained from spikeTrain. The fitted distribution is then
used to set the histogram breaks such that a uniform bin count would be expected if the fitted
distribution was the true one. Confidence segments are also obtained from the binomial distribution.
The histogram is build and the fitted density together with confidence intervals are drawn.

Value

Nothing returned, isiHistFit is used for its side effect, a plot is generated on the current graphic
device.
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Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

compModels, hist

Examples

## Not run:
## load spontaneous data of 4 putative projection neurons
## simultaneously recorded from the cockroach (Periplaneta
## americana) antennal lobe
data(CAL1S)
## convert data into spikeTrain objects
CAL1S <- lapply(CAL1S,as.spikeTrain)
## look at the individual trains
## first the "raw" data
CAL1S[["neuron 1"]]
## next some summary information
summary(CAL1S[["neuron 1"]])
## next the renewal tests
renewalTestPlot(CAL1S[["neuron 1"]])
## It does not look too bad so let fit simple models
compModels(CAL1S[["neuron 1"]])
## the best one is the invgauss. Let's look at
## it in detail
isiHistFit(CAL1S[["neuron 1"]],"invgauss",xlim=c(0,0.5))

## End(Not run)

jpsth Related Functions and Methods for Joint-PSTHs and Joint Scatter Di-
agrams

Description

Some mainly graphical tools to probe interactions between 2 neurons recorded in the presence of a
repeated stimulation.

Usage

jsd(xRT, yRT, acquisitionWindow, xlab, ylab,
main, pch = ".", ...)

jpsth(xRT, yRT, xBreaks, yBreaks,
acquisitionWindow, nbEvtPerBin = 50)

## S3 method for class 'jpsth'
contour(x, xlab, ylab, main, ...)
## S3 method for class 'jpsth'
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image(x, xlab, ylab, main, ...)
## S3 method for class 'jpsth'
persp(x, xlab, ylab, main, ...)
jpsth2df(object)

Arguments

xRT a repeatedTrain object whose spike times will appear on the abscissa of the
plots.

yRT a repeatedTrain object whose spike times will appear on the ordinate of the
plots. It must have the same length as xRT.

x, object jpsth objects.
xBreaks, yBreaks

A single number (the bin width) or a vector defining bins boundaries on the X
and Y axis. If missing a default is provided.

acquisitionWindow

a 2 elements vector specifying the begining and the end of the acquisition. If
missing values are obtained using the floor of the smallest spike time and the
ceiling of the largest one.

nbEvtPerBin If both xBreaks and xBreaks are missing a bin width, bw, is computed such
that the expected value of the count per cell (2 dimensional bin) would be
nbEvtPerBin assuming a stationary Poisson discharge for both neurons.

xlab a character (default value supplied). See plot.

ylab a character (default value supplied). See plot.

main a character (default value supplied). See plot.

pch the type of "points" displayed by jsd. See plot.

... additional arguments passed to plot by jsd and to respective generic methods
by contour.jpsth, image.jpsth and persp.jpsth.

Details

The joint scatter diagram was introduced by Gerstein and Perkel (1972). The joint peristimulus
time histogram is a binned version of it (Aertsen et al, 1989). jpsth2df allows the reformating of
a jpsth object in order to compute a smooth version of it with gssanova, gssanova0 or gam.

Value

jsd is used for its side effect, a plot is generated and nothing is returned.

jpsth2df returns a data.frame with the following variables: Count, the counts per cell; X, the
position of the cell on the X axis; Y, the position of the cell on the Y axis; and attributes: xBreaks,
yBreaks, xTotal, yTotal, nbTrials, acquisitionWindow corresponding to the components of its
argument with the same name and originalCall corresponding to component call.

jpsth returns a list of class jpsth with the following components:

counts a matrix storing the counts per cell.

density a matrix storing the density in each cell.
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xMids a vector containing the X positions of the cells.

yMids a vector containing the Y positions of the cells.

xBreaks a vector containing the bin boundaries of the cells along the X axis.

yBreaks a vector containing the bin boundaries of the cells along the X axis.

xTotal the total number of spikes of the "X" neuron.

yTotal the total number of spikes of the "Y" neuron.

xFreq the mean freqency of the "X" neuron.

yFreq the mean freqency of the "Y" neuron.

nbTrials the number of trials of xRT (and yRT).
acquisitionWindow

the boundaries of the acquisition window.

call the matched call.

Note

I use "joint scatter diagram" for what Gerstein and Perkel (1972) more properly call a "joint peris-
timulus time scatter diagram".

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Gerstein, G. L. and Perkel, D. H. (1972) Mutual temporal relationships among neuronal spike
trains. Statistical techniques for display and analysis. Biophys J 12: 453–473. http://www.
pubmedcentral.nih.gov/articlerender.fcgi?artid=1484144

Aertsen, A. M., Gerstein, G. L., Habib, M. K., Palm, G. (1989) Dynamics of neuronal firing
correlation: modulation of "effective connectivity". J Neurophysiol 61: 900–917. http://jn.
physiology.org/cgi/content/abstract/61/5/900

See Also

lockedTrain, plot.lockedTrain, hist.lockedTrain, gsslockedTrain, plot.gsslockedTrain,
gsslockedTrain0, plot.gsslockedTrain0, gamlockedTrain, plot.gamlockedTrain, contour,
image, persp, attr, attributes

Examples

## load e070528citronellal data
data(e070528citronellal)
## plot a jsd with neuron 1 on X and neuron 2 on Y
jsd(e070528citronellal[[1]],e070528citronellal[[2]])
## now make the jpsth
j1.2 <- jpsth(e070528citronellal[[1]],e070528citronellal[[2]])
## make a contour plot
contour(j1.2)

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1484144
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1484144
http://jn.physiology.org/cgi/content/abstract/61/5/900
http://jn.physiology.org/cgi/content/abstract/61/5/900
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## make an image plot
image(j1.2)
## make a persp plot
persp(j1.2)
## Not run:
## fit a gss model with interactions
## use a larger bin width for the jpsth
j1.2 <- jpsth(e070528citronellal[[1]],e070528citronellal[[2]],0.2,0.2)
## get a data frame
j1.2DF <- jpsth2df(j1.2)
## To save computation time start analyzing
## just before the stimulation time
j1.2DF <- j1.2DF[j1.2DF$X > 6 & j1.2DF$Y>6,]
gf <- gssanova(Count ~ X*Y, family="poisson", data=j1.2DF,seed=20061001)
## Use the project function of gss to check the significance
## of the interaction term
project(gf2,inc=c("X","Y"))

## End(Not run)
## Not run:
## fit a gam model assuming no interaction
## get a data frame
j1.2DF <- jpsth2df(j1.2)
fitNoI <- gam(Count ~ s(X,k=100,bs="cr") + s(Y,k=100,bs="cr"),data=j1.2DF,family=poisson())

## End(Not run)

llogisMLE Maximum Likelihood Parameter Estimation of a Log Logistic Model
with Possibly Censored Data

Description

Estimate log logistic model parameters by the maximum likelihood method using possibly censored
data.

Usage

llogisMLE(yi, ni = numeric(length(yi)) + 1,
si = numeric(length(yi)) + 1)

Arguments

yi vector of (possibly binned) observations or a spikeTrain object.

ni vector of counts for each value of yi; default: numeric(length(yi))+1.

si vector of counts of uncensored observations for each value of yi; default: numeric(length(yi))+1.
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Details

The MLE for the log logistic is not available in closed formed and is therefore obtained numerically
obtained by calling optim with the BFGS method.

In order to ensure good behavior of the numerical optimization routines, optimization is performed
on the log of parameter scale.

Standard errors are obtained from the inverse of the observed information matrix at the MLE. They
are transformed to go from the log scale used by the optimization routine to the requested parame-
terization.

Value

A list of class durationFit with the following components:

estimate the estimated parameters, a named vector.

se the standard errors, a named vector.

logLik the log likelihood at maximum.

r a function returning the log of the relative likelihood function.

mll a function returning the opposite of the log likelihood function using the log of
parameter sdlog.

call the matched call.

Note

The returned standard errors (component se) are valid in the asymptotic limit. You should plot
contours using function r in the returned list and check that the contours are reasonably close to
ellipses.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Lindsey, J.K. (2004) Introduction to Applied Statistics: A Modelling Approach. OUP.

Lindsey, J.K. (2004) The Statistical Analysis of Stochastic Processes in Time. CUP.

See Also

dllogis, invgaussMLE, gammaMLE, weibullMLE, rexpMLE, lnormMLE

Examples

## Not run:
## Simulate sample of size 100 from a log logisitic
## distribution
set.seed(1102006,"Mersenne-Twister")
sampleSize <- 100
location.true <- -2.7
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scale.true <- 0.025
sampLL <- rllogis(sampleSize,location=location.true,scale=scale.true)
sampLLmleLL <- llogisMLE(sampLL)
rbind(est = sampLLmleLL$estimate,se = sampLLmleLL$se,true = c(location.true,scale.true))

## Estimate the log relative likelihood on a grid to plot contours
Loc <- seq(sampLLmleLL$estimate[1]-4*sampLLmleLL$se[1],

sampLLmleLL$estimate[1]+4*sampLLmleLL$se[1],
sampLLmleLL$se[1]/10)

Scale <- seq(sampLLmleLL$estimate[2]-4*sampLLmleLL$se[2],
sampLLmleLL$estimate[2]+4*sampLLmleLL$se[2],
sampLLmleLL$se[2]/10)

sampLLmleLLcontour <- sapply(Loc, function(m) sapply(Scale, function(s) sampLLmleLL$r(m,s)))
## plot contours using a linear scale for the parameters
## draw four contours corresponding to the following likelihood ratios:
## 0.5, 0.1, Chi2 with 2 df and p values of 0.95 and 0.99
X11(width=12,height=6)
layout(matrix(1:2,ncol=2))
contour(Loc,Scale,t(sampLLmleLLcontour),

levels=c(log(c(0.5,0.1)),-0.5*qchisq(c(0.95,0.99),df=2)),
labels=c("log(0.5)",

"log(0.1)",
"-1/2*P(Chi2=0.95)",
"-1/2*P(Chi2=0.99)"),

xlab="Location",ylab="Scale",
main="Log Relative Likelihood Contours"
)

points(sampLLmleLL$estimate[1],sampLLmleLL$estimate[2],pch=3)
points(location.true,scale.true,pch=16,col=2)
## The contours are not really symmetrical about the MLE we can try to
## replot them using a log scale for the parameters to see if that improves
## the situation
contour(Loc,log(Scale),t(sampLLmleLLcontour),

levels=c(log(c(0.5,0.1)),-0.5*qchisq(c(0.95,0.99),df=2)),
labels="",
xlab="log(Location)",ylab="log(Scale)",
main="Log Relative Likelihood Contours",
sub="log scale for parameter: scale")

points(sampLLmleLL$estimate[1],log(sampLLmleLL$estimate[2]),pch=3)
points(location.true,log(scale.true),pch=16,col=2)

## make a parametric boostrap to check the distribution of the deviance
nbReplicate <- 10000
sampleSize <- 100
system.time(

devianceLL100 <- replicate(nbReplicate,{
sampLL <- rllogis(sampleSize,location=location.true,scale=scale.true)
sampLLmleLL <- llogisMLE(sampLL)
-2*sampLLmleLL$r(location.true,scale.true)

}
)

)[3]
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## Get 95 and 99
ci <- sapply(1:nbReplicate,

function(idx) qchisq(qbeta(c(0.005,0.025,0.975,0.995),
idx,
nbReplicate-idx+1),

df=2)
)

## make QQ plot
X <- qchisq(ppoints(nbReplicate),df=2)
Y <- sort(devianceLL100)
X11()
plot(X,Y,type="n",

xlab=expression(paste(chi[2]^2," quantiles")),
ylab="MC quantiles",
main="Deviance with true parameters after ML fit of log logistic data",
sub=paste("sample size:", sampleSize,"MC replicates:", nbReplicate)
)

abline(a=0,b=1)
lines(X,ci[1,],lty=2)
lines(X,ci[2,],lty=2)
lines(X,ci[3,],lty=2)
lines(X,ci[4,],lty=2)
lines(X,Y,col=2)

## End(Not run)

lnormMLE Maximum Likelihood Parameter Estimation of a Log Normal Model
with Possibly Censored Data

Description

Estimate log normal model parameters by the maximum likelihood method using possibly censored
data.

Usage

lnormMLE(yi, ni = numeric(length(yi)) + 1,
si = numeric(length(yi)) + 1)

Arguments

yi vector of (possibly binned) observations or a spikeTrain object.

ni vector of counts for each value of yi; default: numeric(length(yi))+1.

si vector of counts of uncensored observations for each value of yi; default: numeric(length(yi))+1.
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Details

In the absence of censored data the ML estimates are available in closed form together with the
Hessian matrix at the MLE. In presence of censored data an initial guess for the parameters is
obtained using the uncensored data before maximizing the likelihood function to the full data set
using optim with the BFGS method.

In order to ensure good behavior of the numerical optimization routines, optimization is performed
on the log of parameter sdlog.

Standard errors are obtained from the inverse of the observed information matrix at the MLE. They
are transformed to go from the log scale used by the optimization routine, when the latter is used
(ie, for censored data) to the parameterization requested.

Value

A list of class durationFit with the following components:

estimate the estimated parameters, a named vector.

se the standard errors, a named vector.

logLik the log likelihood at maximum.

r a function returning the log of the relative likelihood function.

mll a function returning the opposite of the log likelihood function using the log of
parameter sdlog.

call the matched call.

Note

The returned standard errors (component se) are valid in the asymptotic limit. You should plot
contours using function r in the returned list and check that the contours are reasonably close to
ellipses.

Author(s)

Christophe Pouzat <christophe.pouzat@univ-paris5.fr>

References

Lindsey, J.K. (2004) Introduction to Applied Statistics: A Modelling Approach. OUP.

See Also

Lognormal,invgaussMLE

Examples

## Simulate sample of size 100 from a log normal
## distribution
set.seed(1102006,"Mersenne-Twister")
sampleSize <- 100
meanlog.true <- -2.4
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sdlog.true <- 0.4
sampLN <- rlnorm(sampleSize,meanlog.true,sdlog.true)
sampLNmleLN <- lnormMLE(sampLN)
rbind(est = sampLNmleLN$estimate,se = sampLNmleLN$se,true = c(meanlog.true,sdlog.true))
## In the absence of censoring the MLE of the log normal is available in a
## closed form together with its variance (ie, the observed information matrix)
## we can check that we did not screw up at that stage by comparing the observed
## information matrix obtained numerically with the analytical one. To do that we
## use the MINUS log likelihood function returned by lnormMLE to get a numerical
## estimate
detailedFit <- optim(fn=sampLNmleLN$mll,

par=as.vector(c(sampLNmleLN$estimate[1],log(sampLNmleLN$estimate[2]))),
method="BFGS",
hessian=TRUE)

## We should not forget that the "mll" function uses the log of the sdlog parameter while
## the "se" component of sampLNmleLN list is expressed on the linear scale we must therefore
## transform one into the other as follows (Kalbfleisch, 1985, p71):
## if x = u and y = exp(v) and if we have the information matrix in term of
## u and v (that's the hessian component of list detailedFit above), we create matrix:
## du/dx du/dy
## Q =
## dv/dx dv/dy
## and we get I in term of x and y by the following matrix product:
## I(x,y) <- t(Q) %*% I(u,v) %*% Q
## In the present case:
## du/dx = 1, du/dy = 0, dv/dx = 0, dv/dy = 1/exp(v)
## Therefore:
Q <- diag(c(1,1/exp(detailedFit$par[2])))
numericalI <- t(Q) %*% detailedFit$hessian %*% Q
seComp <- rbind(sampLNmleLN$se, sqrt(diag(solve(numericalI))))
colnames(seComp) <- c("meanlog","sdlog")
rownames(seComp) <- c("analytical", "numerical")
seComp
## We can check the relative differences between the 2
apply(seComp,2,function(x) abs(diff(x))/x[1])

## Not run:
## Estimate the log relative likelihood on a grid to plot contours
MeanLog <- seq(sampLNmleLN$estimate[1]-4*sampLNmleLN$se[1],

sampLNmleLN$estimate[1]+4*sampLNmleLN$se[1],
sampLNmleLN$se[1]/10)

SdLog <- seq(sampLNmleLN$estimate[2]-4*sampLNmleLN$se[2],
sampLNmleLN$estimate[2]+4*sampLNmleLN$se[2],
sampLNmleLN$se[2]/10)

sampLNmleLNcontour <- sapply(MeanLog, function(mu) sapply(SdLog, function(s) sampLNmleLN$r(mu,s)))
## plot contours using a linear scale for the parameters
## draw four contours corresponding to the following likelihood ratios:
## 0.5, 0.1, Chi2 with 2 df and p values of 0.95 and 0.99
X11(width=12,height=6)
layout(matrix(1:2,ncol=2))
contour(MeanLog,SdLog,t(sampLNmleLNcontour),

levels=c(log(c(0.5,0.1)),-0.5*qchisq(c(0.95,0.99),df=2)),
labels=c("log(0.5)",



80 lnormMLE

"log(0.1)",
"-1/2*P(Chi2=0.95)",
"-1/2*P(Chi2=0.99)"),

xlab=expression(mu),ylab=expression(sigma),
main="Log Relative Likelihood Contours"
)

points(sampLNmleLN$estimate[1],sampLNmleLN$estimate[2],pch=3)
points(meanlog.true,sdlog.true,pch=16,col=2)
## The contours are not really symmetrical about the MLE we can try to
## replot them using a log scale for the parameters to see if that improves
## the situation
contour(MeanLog,log(SdLog),t(sampLNmleLNcontour),

levels=c(log(c(0.5,0.1)),-0.5*qchisq(c(0.95,0.99),df=2)),
labels="",
xlab=expression(mu),ylab=expression(log(sigma)),
main="Log Relative Likelihood Contours",
sub=expression(paste("log scale for parameter: ",sigma)))

points(sampLNmleLN$estimate[1],log(sampLNmleLN$estimate[2]),pch=3)
points(meanlog.true,log(sdlog.true),pch=16,col=2)

## make a parametric boostrap to check the distribution of the deviance
nbReplicate <- 10000
sampleSize <- 100
system.time(

devianceLN100 <- replicate(nbReplicate,{
sampLN <- rlnorm(sampleSize,meanlog=meanlog.true,sdlog=sdlog.true)

sampLNmleLN <- lnormMLE(sampLN)
-2*sampLNmleLN$r(meanlog.true,sdlog.true)

}
)

)[3]

## Get 95 and 99% confidence intervals for the QQ plot
ci <- sapply(1:nbReplicate,

function(idx) qchisq(qbeta(c(0.005,0.025,0.975,0.995),
idx,
nbReplicate-idx+1),

df=2)
)

## make QQ plot
X <- qchisq(ppoints(nbReplicate),df=2)
Y <- sort(devianceLN100)
X11()
plot(X,Y,type="n",

xlab=expression(paste(chi[2]^2," quantiles")),
ylab="MC quantiles",
main="Deviance with true parameters after ML fit of logNorm data",
sub=paste("sample size:", sampleSize,"MC replicates:", nbReplicate)
)

abline(a=0,b=1)
lines(X,ci[1,],lty=2)
lines(X,ci[2,],lty=2)
lines(X,ci[3,],lty=2)



lockedTrain 81

lines(X,ci[4,],lty=2)
lines(X,Y,col=2)

## End(Not run)

lockedTrain Construct and Plot Time-Dependent Cross-correlation Diagram

Description

lockedTrain constructs and plot.lockedTrain (and print.lockedTrain) plot what van Stokkum
et al (1986) call a time-dependent cross-correlation diagram. The lags between spikes of a test and
a reference trains are plotted against the time of occurrence or the rank of the reference train spikes.

Usage

lockedTrain(stRef, stTest, laglim, acquisitionWindow)
## S3 method for class 'lockedTrain'
plot(x, keepTime = FALSE,

stimTimeCourse = NULL, colStim = "grey80",
xlim, pch, xlab, ylab, main, ...)

## S3 method for class 'lockedTrain'
print(x,...)

Arguments

stRef a spikeTrain or a repeatedTrain object.

stTest a spikeTrain or a repeatedTrain object. If missing(stTest) is TRUE then
stRef is used.

x a lockedTrain object.

laglim a two elements vector, the time window (in s) in which spikes in stTest around
spikes in stRef are looked for. Default value are supplied when the argument is
missing (+/- 3 times the sd of the inter-spike intervals of stRef).

acquisitionWindow

a 2 elements vector specifying the begining and the end of the acquisition. If
missing values are obtained using the floor of the smallest spike time and the
ceiling of the largest one.

keepTime a logical, if TRUE the ordinate is shown in s, otherwise (default) the spike index
is shown.

stimTimeCourse NULL (default) or a two elements vector specifying the time boundaries (in s) of
a stimulus presentation.

colStim the background color used for the stimulus.

xlim a numeric (default value supplied). See plot.

pch data symbol used for the spikes. See plot.
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xlab a character (default value supplied). See plot.

ylab a character (default value supplied). See plot.

main a character (default value supplied). See plot.

... see plot or print.

Details

The time-dependent cross-correlation diagram is described in van Stokkum et al (1986) and is also
used by Brillinger (1992) Fig. 4. For each spike of stRef neighboring spikes of stTest are selected
within a window defined by laglim. The lag between these stTest spikes and the ones of stRef
are displayed (that is, the times of the stRef spikes is subtracted from the times of the neighboring
spikes in stTest).

If repeatedTrains are given for stRef and stTest they must have the same number of compo-
nents and are interpreted as coming from repetitions of the same stimulation, the spike times of the
different trains of stRef are therefore reordered.

The ordinate on the plot generated by plot.lockedTrain can be in term of real time or in term of
stRef spike indexes.

If stimTimeCourse is specified a box corresponding to the stimulus presentation is drawn in the
background.

Value

lockedTrain returns a LIST of class lockedTrain with the following components:

shiftedT a list of lists. Each sublist has three components: refTime, the time of the
reference spike; repIdx, the index of the stimulus repeat to which the reference
spike belongs; crossTime, a vector of shifted times of the test neurons. These
times are shifted because they are expressed with respect to the reference spike
time.

nbRefSpikes the total number of reference spikes used.

nbTestSpikes the total number of test spikes occurring during the same observation period.

laglim the value of laglim used.
acquisitionWindow

the value of the acquisitionWindow used.

obsTime the total observation time used (in s).

call the matched call.

plot.lockedTrain and print.lockedTrain are used for their side effects: a plot is generated.
print.lockedTrain calls plot.lockedTrain.

Note

plot.lockedTrain displays essentially the "raw data" from which a cross-intensity histogram is
built.
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Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

van Stokkum, I. H., Johannesma, P. I. and Eggermont, J. J. (1986) Representation of time-dependent
correlation and recurrence time functions. A new method to analyse non-stationary point processes.
Biol Cybern 55: 17–24.

Brillinger, David R. (1992) Nerve Cell Spike Train Data Analysis: A Progression of Technique.
JASA 87: 260–271.

See Also

as.spikeTrain, as.repeatedTrain, raster

Examples

## Not run:
## load spontaneous data of 4 putative projection neurons
## simultaneously recorded from the cockroach (Periplaneta
## americana) antennal lobe
data(CAL1S)
## convert data into spikeTrain objects
CAL1S <- lapply(CAL1S,as.spikeTrain)
## look at the individual trains
## first the "raw" data
CAL1S[["neuron 1"]]
## contruct the lockedTrain of each neuron with itself and look at
## it using a lag of +/- 25 ms
lockedTrain(CAL1S[["neuron 1"]],laglim=c(-1,1)*0.025)
lockedTrain(CAL1S[["neuron 2"]],laglim=c(-1,1)*0.025)
lockedTrain(CAL1S[["neuron 3"]],laglim=c(-1,1)*0.025)
lockedTrain(CAL1S[["neuron 4"]],laglim=c(-1,1)*0.025)

## Look at the Vanillin responses
## Get the data
data(CAL1V)
## convert them into repeatedTrain objects
## The stimulus command is on between 4.49 s and 4.99s
CAL1V <- lapply(CAL1V,as.repeatedTrain)
## look at the individual raster plots
plot(CAL1V[["neuron 1"]],stimTimeCourse=c(4.49,4.99),main="N1")
plot(CAL1V[["neuron 2"]],stimTimeCourse=c(4.49,4.99),main="N2")
plot(CAL1V[["neuron 3"]],stimTimeCourse=c(4.49,4.99),main="N3")
plot(CAL1V[["neuron 4"]],stimTimeCourse=c(4.49,4.99),main="N4")
## construct the locked train for the 3 pairs with neuron 1 as a
## reference
plot(lockedTrain(CAL1V[["neuron 1"]],CAL1V[["neuron 3"]],

laglim=0.01*c(-1,1)),stimTimeCourse=c(4.49,4.99),pch="*")
plot(lockedTrain(CAL1V[["neuron 1"]],CAL1V[["neuron 2"]],

laglim=0.01*c(-1,1)),stimTimeCourse=c(4.49,4.99),pch="*")
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plot(lockedTrain(CAL1V[["neuron 1"]],CAL1V[["neuron 4"]],
laglim=0.01*c(-1,1)),stimTimeCourse=c(4.49,4.99),pch="*")

## End(Not run)

mkAR Generate a Data Frame With Variables Suitable For an AR Like Model

Description

The variables added to the data frame corresponding to the first argument of the function are the
former inter spike intervals. These variables are moreover transformed with mkM2U so that they have
an approximately uniform distribution on their definition domain.

Usage

mkAR(df, low, high, max.order, selfName = "lN.1",...)

Arguments

df a data frame. This data frame should contain a variable time like data frames
returned by mkGLMdf.

low a numeric, the smallest value of variable time from which the transformation is
looked for. If missing defaults to the smallest time.

high a numeric, the largest value of variable time up to which the transformation is
looked for. If missing defaults to the largest time.

max.order a postive integer, the maximal order of the AR model. How many previous
inter spike intervals should be used in order to predict the duration of the next
interval?

selfName a character string or an integer specifying the variable of df containing the
elapsed time since the last spike of the considered neuron.

... additional arguments passed to mkM2U.

Details

When max.order > 1 the previous inter spike intervals are all transformed using the "map to uni-
form" function estimated from the inter spike intervals at lag 1.

Value

A data frame is returned. In addition to the variables of df the returned data frame contains
a variable est with the transformed elapsed time since the last spike of the neuron and i1t,
i2t,. . . ,i max.order t, the transformed previous inter spike intervals. The returned data frame
has also four attributes:

fmla a formula suitable for a first argument of, say, gssanova.
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m2uL the function returned by mkM2U transforming the elasped time since the last
spike of the neuron.

m2uI the function returned by mkM2U transforming the first former inter spike inter-
val.

call the matched call.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

mkM2U, gssanova

Examples

## Not run:
require(STAR)
data(e060824spont)
DFA <- subset(mkGLMdf(e060824spont,0.004,0,59),neuron==1)
DFA <- mkAR(DFA, 0, 29, 5, maxiter=200)
head(DFA)
tail(DFA)
ar.fit <- gssanova(attr(DFA,"fmla"), data=DFA,family="binomial",seed=20061001)
plot(ar.fit %qp% "est")
plot(ar.fit %qp% "i1t")
plot(ar.fit %qp% "i2t")
plot(ar.fit %qp% "i3t")
plot(ar.fit %qp% "i4t")
plot(ar.fit %qp% "i5t")

## End(Not run)

mkCPSP Counting Process Sample Paths

Description

Functions to create and explore CountingProcessSamplePath objects. These objects are comple-
mentary to the spikeTrain objects, the latter being in fact point processes representations.

Usage

mkCPSP(st, from = floor(min(st)), to = ceiling(max(st)))
as.CPSP(x)
## S3 method for class 'CountingProcessSamplePath'
print(x, digits = 5, ...)
## S3 method for class 'CountingProcessSamplePath'
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plot(x, y, col, lwd, xlim, ylim,
xlab, ylab, xaxs, yaxs, main, ...)

## S3 method for class 'CountingProcessSamplePath'
lines(x, ...)

Arguments

st A numeric vector with strictly increasing elements.

from A numeric, the time at which the counting process obeservation started.

to A numeric, the time at which the counting process obeservation ended.

x A numeric or a spikeTrain object for as.CPSP, a CountingProcessSamplePath
object for print, plot and lines.

digits An integer, the number of digits to be used while printing summaries. See
round.

y Not used but required by the plot method definition.
col,lwd,xlim,ylim,xlab,ylab,main,xaxs,yaxs

See plot.

... Not used in print (but included for compatibility with the method definition)
otherwise used like in plot and lines.

Details

CountingProcessSamplePath objects are complementary to spikeTrain objects. They are also
used to represente slightly more general properties of these objects and are directed towards model
testing.

More formaly, if we observe n events at times {t1, . . . , tn} such that, from < t1 < . . . < tn ≤ to,
the counting process sample path is the right continuous function defined by:

N(t) = ]{tj with from < tj ≤ t}

where ] stands for the number of elements of a set.

Value

mkCPSP returns an object of class CountingProcessSamplePath. This object is a list with the
following components:

cpspFct a right continuous function of t returning the number of events whose occur-
rence time is strictly larger than from and smaller of equal than t. t can be a
vector. If missing the cumulative number of events at the events occurrence
time is returned.

ppspFct a function that does not take any argument and that returns the sequence of
events times, that is, the "point process sample path".

spikeTrainFct a function that does not take any argument and that returns the spikeTrain
object associated with the CountingProcessSamplePath object.

from argument from of mkCPSP.
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to argument to of mkCPSP

call the matched call.

Functions plot and lines are used for their side effects, function print returns a short descrip-
tion of the object corresponding to the summary returned by function summary.spikeTrain for
spikeTrain objects. Function as.CPSP returns a CountingProcessSamplePath.

Note

This functions are directed towards model testing, don’t be surprised if they look redundant with the
corresponding functions for spikeTrain objects. An apparent difference of detail with the latter
is that no scale (like seconds) is assumed by default for CountingProcessSamplePath objects.
This is to cope in a natural way with the time transformation / rescaling procedures used to test
conditional intensity models.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

D. R. Cox and P. A. W. Lewis (1966) The Statistical Analysis of Series of Events. John Wiley and
Sons.

Brillinger, D. R. (1988) Maximum likelihood analysis of spike trains of interacting nerve cells. Biol.
Cybern. 59: 189–200.

Johnson, D.H. (1996) Point process models of single-neuron discharges. J. Computational Neuro-
science 3: 275–299.

See Also

summary.CountingProcessSamplePath, print.CountingProcessSamplePath.summary, plot.CountingProcessSamplePath.summary,
summary.spikeTrain, print.spikeTrain, plot.spikeTrain, as.spikeTrain

Examples

## A simple illustration with Ogata's hearthquakes data set
data(ShallowShocks)
plot(mkCPSP(ShallowShocks$Date),

xlab="Time (days)",
main="Shallow Shocks Counting Process of Ogata 1988")

## An illustration with on of STAR's data neuroanl dicharge data set
data(e060824spont)
## Create the object from a spikeTrain
n1spt.cp <- as.CPSP(e060824spont[["neuron 1"]])
## print it
n1spt.cp
## plot it
plot(n1spt.cp)
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mkDummy Generates a Data Frame of Dummy Variables for Use in gam

Description

Using argument by in s or te of gam requires dummy variables to be set up. This is the job of this
function.

Usage

mkDummy(x)

Arguments

x a factor.

Value

A data.frame with as many variables as there are levels in x and as many rows as elements in x.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

mkGLMdf, gam, s, te

Examples

## coming soon

mkGLMdf Formats (lists of) spikeTrain and repeatedTrain Objects into Data
Frame for use in glm, mgcv and gam

Description

Given a spikeTrain or a repeatedTrain objects or a list of any of those two, mkGLMdf generates
a data.frame, by discretizing time, allowing glm, gss and gam to be used with the poisson or
binomial family to fit the spike trains.

Usage

mkGLMdf(obj, delta, lwr, upr)
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Arguments

obj a spikeTrain or a repeatedTrain objects or a list of any of those two.
delta the bin size used for time discretization (in s).
lwr the time (in s) at which the recording window starts. If missing a value is

obtained using the floor of the smallest spike time.
upr the time (in s) at which the recording window ends. If missing a value is ob-

tained using the ceiling of the largest spike time.

Details

The construction of the returned list is very clearly explained in Jim Lindsey’s paper (1995). The
idea has been used several time in the field: Brillinger (1988), Kass and Ventura (2001), Truccolo
et al (2005).

Value

A data.frame with the following variables:

event an integer presence (1) or absence (0) of an event from a given neuron in the
given bin.

time time at bin center.
neuron a factor giving the neuron to which this row of the data frame refers.
lN.x a numeric. x takes value 1, 2, ..., number of neurons present in obj. The time

to the last event of the corresponding neuron.

The list has also few attributes: lwr, the start of the recording window; upr, the end of the recording
window; delta, the bin width; call, the call used to generate the list.

Note

See the example bellow to get an idea of what to do with the returned list.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Lindsey, J. K. (1995) Fitting Parametric Counting Processes by Using Log-Linear Models Applied
Statistics 44: 201–212.

Brillinger, D. R. (1988) Maximum likelihood analysis of spike trains of interacting nerve cells Biol
Cybern 59: 189–200.

Kass, Robert E. and Ventura, Val\’erie (2001) A spike-train probability model Neural Comput. 13:
1713–1720.

Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P. and Brown, E. N. (2005) A Point
Process Framework for Relating Neural Spiking Activity to Spiking History, Neural Ensemble and
Extrinsic Covariate Effects J Neurophysiol 93: 1074–1089. http://jn.physiology.org/cgi/
content/abstract/93/2/1074

http://jn.physiology.org/cgi/content/abstract/93/2/1074
http://jn.physiology.org/cgi/content/abstract/93/2/1074
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See Also

data.frame, glm, gssanova, mgcv, as.spikeTrain, as.repeatedTrain

Examples

## Not run:
## Analysis of a "simple" spontaneous train
## load the data
data(e060824spont)
## create a data frame using the 1st neuron
DFA <- subset(mkGLMdf(e060824spont,0.004,0,59),neuron==1)
## Add the previous ISI to the data frame
DFA <- within(DFA,i1 <- isi(DFA,lag=1))
DFA <- DFA[complete.cases(DFA),]
## estimate the "map to uniform" functions for 2 variables:
## 1) the elapsed time since the last spike (lN.1)
## 2) the previous insterspike interval
## Do this estimation on the first half of the set
m2u1 <- mkM2U(DFA,"lN.1",0,29)
m2ui <- mkM2U(DFA,"i1",0,29,maxiter=200)
## create "mapped" variables
DFA <- within(DFA,e1t <- m2u1(lN.1))
DFA <- within(DFA,i1t <- m2ui(i1))
## split the data in 2 parts, one for the fit, the other for the test
DFAe <- subset(DFA, time <= 29)
DFAl <- subset(DFA, time > 29)
## fit an additive model with gssanova
m1.fit <- gssanova(event ~ e1t + i1t,

data = DFAe,
family="binomial",
seed=20061001)

## test the model by "time transforming" the late part
tt.l <- m1.fit %tt% DFAl
tt.l.summary <- summary(tt.l)
tt.l.summary
plot(tt.l.summary,which=c(1,2,4,6))

## Start with simulatd data #####
## Use thinning method and for that define a couple
## of functions

## expDecay gives an exponentially decaying
## synaptic effect followin a presynpatic spike.
## All the pre-synaptic spikes between "now" (argument
## t) and the previous spike of the post-synaptic
## neuron have an effect (and the summation is linear)
expDecay <- function(t,preT,last,

delay=0.002,tau=0.015) {

if (missing(last)) good <- (preT+delay) < t
else good <- last < preT & (preT+delay) < t
if (sum(good) == 0) return(0)
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preS <- preT[good]
preS <- t-preS-delay
sum(exp(-preS/tau))

}

## Same as expDecay except that the effect is pusle like
pulseFF <- function(t,preT,last,

delay=0.005,duration=0.01) {
if (missing(last)) good <- t-duration < (preT+delay) & (preT+delay) < t
else good <- t-duration < (preT+delay) & last < preT & (preT+delay) < t
sum(good)

}

## The work horse. Given a pre-synaptic train (preT),
## a duration, lognormal parameters and a presynaptic
## effect fucntion, mkPostTrain simulates a log-linear
## post-synaptic train using the thinning method
mkPostTrain <- function(preT,

duration=60,
meanlog=-2.4,
sdlog=0.4,
preFF=expDecay,
beta=log(5),
maxCI=30,
...) {

nuRest <- exp(-meanlog-0.5*sdlog^2)
poissonRest <- nuRest*ifelse(beta>0,exp(beta),1)
ciRest <- function(t) nuRest*exp(beta*preFF(t,preT,...))

poissonNext <- maxCI*ifelse(beta>0,exp(beta),1)
ci <- function(t,tLast) hlnorm(t-tLast,meanlog,sdlog)*exp(beta*preFF(t,preT,tLast,...))

vLength <- poissonRest*300
result <- numeric(vLength)
currentTime <- 0
lastTime <- 0
eventIdx <- 1

nextTime <- function(currentTime,lastTime) {
if (currentTime > 0) {

currentTime <- currentTime + rexp(1,poissonNext)
ciRatio <- ci(currentTime,lastTime)/poissonNext
if (ciRatio > 1) stop("Problem with thinning.")
while (runif(1) > ciRatio) {

currentTime <- currentTime + rexp(1,poissonNext)
ciRatio <- ci(currentTime,lastTime)/poissonNext
if (ciRatio > 1) stop("Problem with thinning.")

}
} else {

currentTime <- currentTime + rexp(1,poissonRest)
ciRatio <- ciRest(currentTime)/poissonRest
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if (ciRatio > 1) stop("Problem with thinning.")
while (runif(1) > ciRatio) {

currentTime <- currentTime + rexp(1,poissonRest)
ciRatio <- ciRest(currentTime)/poissonRest
if (ciRatio > 1) stop("Problem with thinning.")

}
}
currentTime

}

while(currentTime <= duration) {
currentTime <- nextTime(currentTime,lastTime)
result[eventIdx] <- currentTime
lastTime <- currentTime
eventIdx <- eventIdx+1
if (eventIdx > vLength) {

result <- c(result,numeric(vLength))
vLength <- length(result)

}
}
result[result > 0]

}

## set the rng seed
set.seed(11006,"Mersenne-Twister")
## generate a log-normal pre train
preTrain <- cumsum(rlnorm(1000,-2.4,0.4))
preTrain <- preTrain[preTrain < 60]
## generate a post synaptic train with an
## exponentially decaying pre-synaptic excitation
post1 <- mkPostTrain(preTrain)
## generate a post synaptic train with a
## pulse-like pre-synaptic excitation
post2 <- mkPostTrain(preTrain,preFF=pulseFF)
## generate a post synaptic train with a
## pulse-like pre-synaptic inhibition
post3 <- mkPostTrain(preTrain,preFF=pulseFF,beta=-log(5))
## make a list of spikeTrain objects out of that
interData <- list(pre=as.spikeTrain(preTrain),

post1=as.spikeTrain(post1),
post2=as.spikeTrain(post2),
post3=as.spikeTrain(post3))

## remove the trains
rm(preTrain,post1,post2,post3)
## look at them
interData[["pre"]]
interData[["post1"]]
interData[["post2"]]
interData[["post3"]]
## compute cross-correlograms
interData.lt1 <- lockedTrain(interData[["pre"]],interData[["post1"]],laglim=c(-0.03,0.05),c(0,60))
interData.lt2 <- lockedTrain(interData[["pre"]],interData[["post2"]],laglim=c(-0.03,0.05),c(0,60))
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interData.lt3 <- lockedTrain(interData[["pre"]],interData[["post3"]],laglim=c(-0.03,0.05),c(0,60))
## look at the cross-raster plots
interData.lt1
interData.lt2
interData.lt3
## look at the corresponding histograms
hist(interData.lt1,bw=0.0025)
hist(interData.lt2,bw=0.0025)
hist(interData.lt3,bw=0.0025)
## check out what goes on between post2 and post1
interData.lt1v2 <- lockedTrain(interData[["post2"]],interData[["post1"]],laglim=c(-0.03,0.05),c(0,60))
interData.lt1v2
hist(interData.lt1v2,bw=0.0025)

## fine
## create a GLM data frame using a 1 ms bin width
dfAll <- mkGLMdf(interData,delta=0.001,lwr=0,upr=60)
## build the sub-list relating to neuron 2
dfN2 <- dfAll[dfAll$neuron=="2",]
## fit dfN2 with a smooth effect for the elasped time since the last
## event of neuron 2 and another one with the elasped time since the
## last event from neuron 1. Use moroever only the events for which the
## the last event from neuron 1 occurred at most 100 ms ago.
dfN2.fit0 <- gam(event ~ s(lN.1,bs="cr") + s(lN.2,bs="cr"), data=dfN2, family=poisson, subset=(dfN2$lN.1 <=0.1))
## look at the summary
summary(dfN2.fit0)
## plot the smooth term of neuron 1
plot(dfN2.fit0,select=1,rug=FALSE,ylim=c(-0.8,0.8))
## Can you see the exponential presynatic effect with
## a 15 ms decay time appearing?
## Now check the dependence on lN.2
xx <- seq(0.001,0.3,0.001)
## plot the estimated conditional intensity when the last spike
## from neuron 1 came a long time ago (100 ms)
plot(xx,exp(predict(dfN2.fit0,data.frame(lN.1=rep(100,300)*0.001,lN.2=(1:300)*0.001))),type="l")
## add a line for the true conditional intensity
lines(xx,hlnorm(xx,-2.4,0.4)*0.001,col=2)
## do the same thing for the survival function
plot(xx,exp(-cumsum(exp(predict(dfN2.fit0,data.frame(lN.1=rep(100,300)*0.001,lN.2=(1:300)*0.001))))),type="l")
lines(xx,plnorm(xx,-2.4,0.4,lower.tail=FALSE),col=2)

## use gssanova
## split the data set in 2 parts, one for the fit, the other for the
## test
dfN2e <- dfN2[dfN2$time <= 20,]
dfN2l <- dfN2[dfN2$time > 20,]
## fit the same model as before with gssanova
dfN2.fit1 <- gssanova(event ~ lN.1 + lN.2, data=dfN2e, family="poisson", seed=20061001)
## plot the effect of neuron 1
pred1 <- predict(dfN2.fit1,data.frame(lN.1=seq(0.001,0.220,0.001),

lN.2=rep(median(dfN2e$lN.2),220)),
se=TRUE)

plot(seq(0.001,0.220,0.001),
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pred1$fit,type="l",
ylim=c(min(pred1$fit-1.96*pred1$se.fit),max(pred1$fit+1.96*pred1$se.fit))
)

lines(seq(0.001,0.220,0.001),pred1$fit-1.96*pred1$se.fit,lty=2)
lines(seq(0.001,0.220,0.001),pred1$fit+1.96*pred1$se.fit,lty=2)
## transform the time of the late part of the train
## first make sure than lN.1 and lN.2 are within the right bounds
m1 <- max(dfN2e$lN.1)
m2 <- max(dfN2e$lN.2)
dfN2l$lN.1 <- sapply(dfN2l$lN.1, function(x) min(m1,x))
dfN2l$lN.2 <- sapply(dfN2l$lN.2, function(x) min(m2,x))
predl <- predict(dfN2.fit1,dfN2l)
Lambda <- cumsum(exp(predl))
ttl <- mkCPSP(Lambda[dfN2l$event==1])
ttl
plot(summary(ttl))
## see what happens without time transformation
rtl <- mkCPSP(dfN2l$time[dfN2l$event==1])
plot(summary(rtl))

## Now repeat the fit including a possible contribution from neuron 3
dfN2.fit1 <- gam(event ~ s(lN.1,bs="cr") + s(lN.2,bs="cr") + s(lN.3,bs="cr"), data=dfN2, family=poisson, subset=(dfN2$lN.1 <=0.1) & (dfN2$lN.3 <= 0.1))
## Use the summary to see if the new element brings something
summary(dfN2.fit1)
## It does not!
## Now look at neurons 3 and 4 (ie, post2 and post3)
dfN3 <- dfAll[dfAll$neuron=="3",]
dfN3.fit0 <- gam(event ~ s(lN.1,k=20,bs="cr") + s(lN.3,k=15,bs="cr"),data=dfN3,family=poisson, subset=(dfN3$lN.1 <=0.1))
summary(dfN3.fit0)
plot(dfN3.fit0,select=1,ylim=c(-1.5,1.8),rug=FALSE)
dfN4 <- dfAll[dfAll$neuron=="4",]
dfN4.fit0 <- gam(event ~ s(lN.1,k=20,bs="cr") + s(lN.4,k=15,bs="cr"),data=dfN4,family=poisson, subset=(dfN4$lN.1 <=0.1))
summary(dfN4.fit0)
plot(dfN4.fit0,select=1,ylim=c(-1.8,1.5),rug=FALSE)

## End(Not run)

mkM2U Makes a Smooth Function Mapping a Data Frame Variable Onto a
Variable Uniform on Its Definition Domain

Description

The smooth transformation function is a smooth version of the ecdf. A smooth density estimate as
well as the inverse transformation (the quantile function) are also returned as attributes.

Usage

mkM2U(df, vN, low, high, delta, alpha=2, ...)
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Arguments

df a data frame. This data frame should contain a variable time like data frames
returned by mkGLMdf.

vN a character string corresponding to the name of one of the variables of df or an
integer, its index. Variable vN is the one for which the mapping to uniform is
looked for.

low a numeric, the smallest value of variable time from which the transformation is
looked for. If missing defaults to the smallest time.

high a numeric, the largest value of variable time up to which the transformation is
looked for. If missing defaults to the largest time.

delta a numeric, the bin width used to build the variable values histogram. This his-
togram is subsequently smoothed. Default provided if missing.

alpha see ssden.

... additional arguments passed to ssden called internally by the function

Details

The smooth mapping to uniform function returned by mkM2U is obtained by first selecting a subset
of the variable values for which the variable time of df is between low and high. The values are
then binned between the min and the max of the (complete) variable values with a bin width delta.
Function ssden is then called on the histogram and the result is stored in object ii.fit (This object
is stored in the closure of the returned function). The returned function is the result of a call of
pssden on ii.fit and the argument.

A function inverting the "mapping to uniform function", that is, a quantile function, is also re-
turned as attributes qFct. This inverse function is obtained by numerical inversion, calling uniroot
internally. Additional arguments can be passed to uniroot via the . . . argument of the function.

A function returning the smooth density estimate is returned as attributes dFct.

Value

A function returning the probability for vN random variable to have a value smaller or equal to its
first argument. The returned function calls internally integrate. Additional arguments can be
passed to the latter via the . . . argument of the returned function.

As explained in the details section, the returned function has the smooth density function, dFct,
as well as the inverse function, qFct, as attributes. Attribute call contains the matched call and
range contains the full range of the mapped variable.

Note

Since the density returned by dssden can sometime integrate to a value slightly different from 1 on
its definition domain, the actual integral is evaluated with integrate and the returned density is
renormalised. A look-up table of 101 regularly spaced quantiles and the corresponding probabilities
is also created and stored in the returned function closure. This look-up table is used to speed up
the computations performed by the returned function which uses integrate and not pssden. It is
also used to speed up the computations of the inverse function (returned as attribute qFct) which
uses uniroot and not qssden.
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Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

ssden, dssden, integrate, uniroot, mkGLMdf

Examples

## Not run:
require(STAR)
data(e060824spont)
DFA <- subset(mkGLMdf(e060824spont,0.004,0,59),neuron==1)
DFA <- within(DFA,i1 <- isi(DFA,lag=1))
DFA <- DFA[complete.cases(DFA),]
m2u1 <- mkM2U(DFA,"lN.1",0,29)
m2ui <- mkM2U(DFA,"i1",0,29,maxiter=200)
DFA <- within(DFA,e1t <- m2u1(lN.1))
DFA <- within(DFA,i1t <- m2ui(i1))
with(DFA,plot(ecdf(e1t[time>29]),pch="."))
abline(a=0,b=1,col=2,lty=2)
with(DFA,plot(ecdf(i1t[time>29]),pch="."))
abline(a=0,b=1,col=2,lty=2)
## End(Not run)

mkREdf Evaluates RateEvolutions for spikeTrain Lists and Returns Data
Frame

Description

Given a list of spikeTrain or repeatedTrain objects mkREdf evaluates the rate evolution of each
train and returns a data frame suitable for use with coplot, xyplot and qplot.

Usage

mkREdf(x, longitudinal, across, bw,
kernel=c("gaussian", "epanechnikov", "rectangular",

"triangular", "biweight", "cosine", "optcosine"),
n=512, from, to, na.rm=FALSE, minusMean=FALSE)

Arguments

x a named list of spikeTrain or repeatedTrain objects.

longitudinal a character vector with the names of the different "conditions" applied to each
neuron like "ctl", "bicu" or "stim. 1", "stim. 2", ..., "stim. 20". Default provided.

across a character vector with the names of the different neurons. Default provided.

bw see rateEvolution. This can be a vector.
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kernel see rateEvolution.

n see rateEvolution.

from see rateEvolution.

to see rateEvolution.

na.rm see rateEvolution.

minusMean should the mean of the rate evolution along the across "dimension" be subtracted
from each individual rate evolution along this dimension?

Details

mkREdf calls rateEvolution on every spikeTrain in x. If from and to are missing, they are
internally set to the floor of the global minimal spike time contained in x and to the ceiling of
the global maximal time.

Value

A data frame with the following variables:

time The time (in s) at which the rate was evaluated.

rate The rate (in 1/s).

longitudinal A factor corresponding to the argument with the same name.

across A factor corresponding to the argument with the same name.

Note

argument minusMean is now here as an "experimental" feature. The idea is that it could be used to
detect non-stationarities of the reponses (in a repeated stimulation context) which would be corre-
lated across different neurons. I’m not sure yet if this will be useful or not.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

as.spikeTrain, as.repeatedTrain, data.frame, factor, rateEvolution,

Examples

## load Purkinje cell data recorded in cell-attached mode
data(sPK)
## coerce sPK to a spikeTrain object
sPK <- lapply(sPK, as.spikeTrain)
## get a rate evolution data frame
sPKreDF <- mkREdf(sPK)
## display result using coplot
coplot(rate ~ time | longitudinal,data=sPKreDF,panel=lines,show.given=FALSE)
## Not run:
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## make it prettier with with xyplot of package lattice
library(lattice)
xyplot(rate ~ time | longitudinal, data=sPKreDF,panel=panel.lines)
## if ggplot2 is installed, try it out
library(ggplot2)
qplot(time,rate,data=sPKreDF,geom="line",colour=longitudinal)

## End(Not run)

## load Purkinje cell data recorded with the NeuroNexus probes
data(mPK)
mPK <- lapply(mPK, as.repeatedTrain)
## get a rate evolution data frame
mPKreDF <- mkREdf(mPK)
## use coplot to display result
coplot(rate ~ time | longitudinal * across,data = mPKreDF,panel=lines)
## Not run:
## make it prettier with with xyplot of package lattice
library(lattice)
xyplot(rate ~ time | across,data = mPKreDF,groups=longitudinal,panel=panel.lines)
xyplot(rate ~ time | across * longitudinal,data = mPKreDF, panel=panel.lines)
## if ggplot2 is installed, try it out
library(ggplot2)
qplot(time,rate,data=mPKreDF,geom="line",colour=longitudinal,facets=across ~ .)

## End(Not run)

## another example with the CAL1V data set
data(CAL1V)
CAL1V <- lapply(CAL1V,as.repeatedTrain)
## generate the data frame specifying the longitudinal argument
## to end up with a clearer display
CAL1VreDF <- mkREdf(CAL1V,longitudinal=paste(1:20))
coplot(rate ~ time | across * longitudinal,data=CAL1VreDF,panel=lines,show.given=FALSE)
## Not run:
## if ggplot2 is installed, try it out
library(ggplot2)
qplot(time,rate,data=CAL1VreDF,geom="line",facets=longitudinal ~ across)

## End(Not run)

## another example with the CAL2C data set
data(CAL2C)
CAL2C <- lapply(CAL2C,as.repeatedTrain)
## generate the data frame specifying the longitudinal argument
## to end up with a clearer display
CAL2CreDF <- mkREdf(CAL2C,longitudinal=paste(1:20))
coplot(rate ~ time | across * longitudinal,data=CAL2CreDF,panel=lines,show.given=FALSE)
## Not run:
## if ggplot2 is installed, try it out
library(ggplot2)
qplot(time,rate,data=CAL2CreDF,geom="line",facets=longitudinal ~ across)



plot.frt 99

## End(Not run)

plot.frt Plots and Summarizes frt Objects.

Description

plot.frt generates interactively (by default) 2 plots, the survivor function with confidence inter-
vals and the Berman’s test with confidence bands. summary.frt generates a concise summary of
frt objects. It is mostly intended for use in batch processing situations where a decision to stop
with the current model or go on with a more complicated one must be made automatically.

Usage

## S3 method for class 'frt'
plot(x, which = 1:2, main,

caption = c("Log Survivor Function", "Berman's Test"),
ask = TRUE, ...)

## S3 method for class 'frt'
summary(object, ...)

Arguments

x a transformedTrain object.

object a transformedTrain object.

which if a subset of the plots is required, specify a subset of the numbers 1:2.

main title to appear above the plots, if missing the corresponding element of caption
will be used.

caption Default caption to appear above the plots or, if main is given, bellow it

ask logical; if TRUE, the user is asked before each plot, see par(ask=.).

... additional arguments passed to plot.

Details

If the reference and test (transformed) spike trains used in the frt call which generated x (or
object) are not correlated (and if the transformed test train is indeed homogeneous Poisson with
rate 1), the elements of x (or object) should be iid realizations of an exponential with rate 1. Two
test plots are generated by plot.frt in the same way as the corresponding ones (testing the same
thing) of plot.transformedTrain.

The same correspondence holds between summary.frt and summary.transformedTrain.

Value

summary.frt returns a vector with named elements stating if the Berman’s test is passed with a
95% and a 99% confidence.
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Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

transformedTrain, frt, mkGLMdf

Examples

## Not run:
## Let us consider neuron 1 of the CAL2S data set
data(CAL2S)
CAL2S <- lapply(CAL2S,as.spikeTrain)
CAL2S[["neuron 1"]]
renewalTestPlot(CAL2S[["neuron 1"]])
summary(CAL2S[["neuron 1"]])
## Make a data frame with a 4 ms time resolution
cal2Sdf <- mkGLMdf(CAL2S,0.004,0,60)
## keep the part relative to neuron 1, 2 and 3 separately
n1.cal2sDF <- cal2Sdf[cal2Sdf$neuron=="1",]
n2.cal2sDF <- cal2Sdf[cal2Sdf$neuron=="2",]
n3.cal2sDF <- cal2Sdf[cal2Sdf$neuron=="3",]
## remove unnecessary data
rm(cal2Sdf)
## Extract the elapsed time since the second to last and
## third to last for neuron 1. Normalise the result.
n1.cal2sDF[c("rlN.1","rsN.1","rtN.1")] <- brt4df(n1.cal2sDF,"lN.1",2,c("rlN.1","rsN.1","rtN.1"))
## load mgcv library
library(mgcv)
## fit a model with a tensorial product involving the last
## three spikes and using a cubic spline basis for the last two
## To gain time use a fixed df regression spline
n1S.fitA <- gam(event ~ te(rlN.1,rsN.1,bs="cr",fx=TRUE) + rtN.1,data=n1.cal2sDF,family=binomial(link="logit"))
## transform time
N1.Lambda <- transformedTrain(n1S.fitA)
## check out the resulting spike train using the fact
## that transformedTrain objects inherit from spikeTrain
## objects
N1.Lambda
## Use more formal checks
summary(N1.Lambda)
plot(N1.Lambda,which=c(1,2,4,5),ask=FALSE)
## Transform spike trains of neuron 2 and 3
N2.Lambda <- transformedTrain(n1S.fitA,n2.cal2sDF$event)
N3.Lambda <- transformedTrain(n1S.fitA,n3.cal2sDF$event)
## Check interactions
summary(N2.Lambda %frt% N1.Lambda)
summary(N3.Lambda %frt% N1.Lambda)
plot(N2.Lambda %frt% N1.Lambda,ask=FALSE)
plot(N3.Lambda %frt% N1.Lambda,ask=FALSE)

## End(Not run)
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plot.quickPredict Graphical Methods for quickPredict Objects

Description

plot, lines, image, contour and persp methods for quickPredict objects.

Usage

## S3 method for class 'quickPredict'
plot(x, y, xFct = function(x) x, style = c("band",

"simple"), ylim, meanCol = 2, meanWD = 2, bandCol = "grey50", xlab,
ylab, ...)

## S3 method for class 'quickPredict'
lines(x, what = c("mean", "upr", "lwr"),

xFct = function(x) x, ...)
## S3 method for class 'quickPredict'
image(x, main, xlab, ylab, ...)
## S3 method for class 'quickPredict'
contour(x, what = c("mean", "sd"), main, xlab, ylab, add,

...)
## S3 method for class 'quickPredict'
persp(x, what = c("mean", "sd"), main, xlab, ylab, zlab, ...)

Arguments

x a quickPredict object.

y Not used but required by the plot method definition.

xFct a function applied to the xx component of argument x which is itself a quickPredict
object. Useful to get a plot with the "native" scale of the variable.

style a character string, either "band" or "simple". Controls the way confidence
intervals are displayed. If "band" is selected they are shown as a ribbon. Their
boundaries appear as dashed lines otherwise.

ylim see plot (default provided if missing).

meanCol the color used to display the estimated mean of the term (see argument col in
plot).

meanWD the width used to display the estimated mean of the term (see argument lwd in
plot).

bandCol the color of the confidence interval ribbon when one is is drawn.
xlab, ylab, zlab

see plot and persp (default provided if any is missing).

main see image, contour and persp (default provided if missing).
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what for lines.quickPredict, one of the following character strings: "mean", "upr",
"lwr". Controls the line drawn: the estimated mean, upper bound of the 95%
CI or lower bound. For contour.quickPredict and persp.quickPredict, a
character string specifying if the mean or the sd contours or surface should be
drawn.

add see contour.

... additional arguments to plot, lines, image, contour and persp.

Value

Nothing returned, these functions are used for their side effects: plots are generated or modified.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

quickPredict, plot, lines image, contour, persp, plot.ssanova

Examples

## Not run:
## Follow up of ssanova example of gss
data(nox)
nox.fit <- ssanova(log10(nox)~comp*equi,data=nox)
## get prediction for the first term, comp
comp.pred <- quickPredict(nox.fit)
## plot result with method plot for quickPredict objects
plot(comp.pred)
## get prediction for the second term, equi using the binary version
equi.pred <- nox.fit
plot(equi.pred)
## get prediction for the interaction term, comp:equi
comp.equi.pred <- nox.fit
## use image method image
image(comp.equi.pred)
## use contour method
contour(comp.equi.pred,col=2,lwd=2,labcex=1.5)
contour(comp.equi.pred,what="sd",lty=3,labcex=1.2,add=TRUE)
## use persp method
persp(comp.equi.pred,theta=-10,phi=20)

## End(Not run)
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plot.spikeTrain Display Counting Process Associated with Single Spike Train

Description

Adds a counting process display to the classical raster plot of single spike trains.

Usage

## S3 method for class 'spikeTrain'
plot(x, xlab = "Time (s)", ylab = "Cumulative Number of Events",

main = paste("Counting Process of",deparse(substitute(x))),
xlim = c(floor(x[1]), ceiling(x[length(x)])),
ylim = c(0, length(x) + 1),
do.points = ifelse(length(x) < 100, TRUE, FALSE),
addMeanRate = TRUE, addRug = TRUE, ...)

Arguments

x a spikeTrain object or a vector which can be coerced to such an object.

xlab a character. The x label.

ylab a character. The y label.

main a character. The title.

xlim a numeric. See plot.

ylim a numeric. See plot.

do.points see plot.stepfun.

addMeanRate should the expected counting process for a Poisson process with the same rate
be added to the plot?

addRug should a rug representation be added at teh bottom of the plot? See rug.

... additional arguments passed to plot, see plot and plot.stepfun.

Details

The counting process is obtained by a call to stepfun. When xlab, ylab, main, xlim or ylim is
(are) missing, default values are used.

Value

Nothing is returned, plot.spikeTrain is used for its side effect, a plot is generated on the current
graphic device.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>
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References

D. R. Cox and P. A. W. Lewis (1966) The Statistical Analysis of Series of Events. John Wiley and
Sons.

Brillinger, D. R. (1988) Maximum likelihood analysis of spike trains of interacting nerve cells. Biol.
Cybern. 59: 189–200.

Johnson, D.H. (1996) Point process models of single-neuron discharges. J. Computational Neuro-
science 3: 275–299.

See Also

as.spikeTrain, is.spikeTrain, print.spikeTrain, summary.spikeTrain, renewalTestPlot,
varianceTime, stepfun, plot.stepfun, rug

Examples

## Not run:
data(ShallowShocks)
plot(as.spikeTrain(ShallowShocks$Date),

xlab="Time (days)",
main="Shallow Shocks Counting Process of Ogata 1988")

## End(Not run)

plot.ssanova A Plot Method for ssanova and ssanvoa0 Objects Tailored to Their
Use in STAR

Description

Plot a ssanova or a ssanova0 object.

Usage

## S3 method for class 'ssanova'
plot(x, y, include, ask = FALSE, ncol = 2, nrow = 3, ...)
## S3 method for class 'ssanova0'
plot(x, y, include, ask = FALSE, ncol = 2, nrow = 3, ...)

Arguments

x a ssanova or a ssanova0 object.

y not used, only included for compatibility with generic method.

include a character string with the model terms one wants to plot. If missing all terms
are plotted.



plot.ssanova 105

ask a logical. If TRUE terms are plotted (on a common y scale) one after the other
and the user is invited to hit the enter key to generate the next plot. If FALSE
(default) all terms are drawn on a suitable number of X11 devices. The number
of terms on each device is controlled by arguments ncol and nrow.

ncol the number of columns of the display matrix used on each device when ask is
set to FALSE.

nrow the number of rows of the display matrix used on each device when ask is set to
FALSE.

... not used only there for method definition compatibility.

Value

Nothing returned. The method is used for its side effect, plots are generated.

Note

The designed is inspired by the plot method for gam objects in package mgcv.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

quickPredict, plot.quickPredict

Examples

## Not run:
data(e060824spont)
DFA <- subset(mkGLMdf(e060824spont,0.004,0,59),neuron==1)
DFA <- within(DFA,i1 <- isi(DFA,lag=1))
DFA <- DFA[complete.cases(DFA),]
m2u1 <- mkM2U(DFA,"lN.1",0,29)
m2ui <- mkM2U(DFA,"i1",0,29,maxiter=200)
DFA <- within(DFA,e1t <- m2u1(lN.1))
DFA <- within(DFA,i1t <- m2ui(i1))
with(DFA,plot(ecdf(e1t[time>29]),pch="."))
abline(a=0,b=1,col=2,lty=2)
with(DFA,plot(ecdf(i1t[time>29]),pch="."))
abline(a=0,b=1,col=2,lty=2)
m1.fit <- gssanova(event~e1t*i1t, data=subset(DFA,time>29), family="binomial", seed=20061001)
inter.pred <- m1.fit %qp% "e1t:i1t"
contour(inter.pred,what="mean",nlevels=10,col=2,lwd=2)
contour(inter.pred,what="sd",nlevels=5,col=1,lwd=1,lty=2,add=TRUE)
inter.predN <- changeScale(inter.pred,attr(m2u1,"qFct"),attr(m2ui,"qFct"))
contour(inter.predN,what="mean",nlevels=5,col=2,lwd=1)
contour(inter.predN,what="sd",nlevels=3,col=1,lwd=1,lty=2,add=TRUE)
plot(m1.fit,nr=3,nc=1)

## End(Not run)
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plot.transformedTrain Plot Diagnostics for an transformedTrain Object

Description

Six plots (selectable by which) are currently available: the first 5 of which correspond to Fig. 9 to
13 of Ogata (1988). The sixth one is new (as far as I know) and is still "experimental". They are all
testing the first argument of plot.transformedTrain against the Poisson process hypothesis..

Usage

## S3 method for class 'transformedTrain'
plot(x, which = 1:5, main,

caption = c("Uniform on Trans. Obs. Time Test",
"Berman's Test",
"Log Survivor Function",
"Lag 1 Transformed Intervals",
"Variance vs Mean",
"Martingale vs Trans. Time"),

ask = TRUE,
...)

Arguments

x a transformedTrain object.

which if a subset of the plots is required, specify a subset of the numbers 1:6.

main title to appear above the plots, if missing the corresponding element of caption
will be used.

caption Default caption to appear above the plots or, if main is given, bellow it

ask logical; if TRUE, the user is asked before each plot, see par(ask=.).

... not used only there for compatibility with plot generic method.

Details

If the transformedTrain object x is a the realization of a homogeneous Poisson process then,
conditioned on the number of events observed, the location of the events is uniform on the (time
transformed) period of observation. This is a basic property of the homogeneous Poisson process
derived in Chap. 2 of Cox and Lewis (1966) and Daley and Vere-Jones (2003). This is what the first
plot generated (by default) tests with a Kolmogorov-Smirnov Test. The two dotted lines on both
sides of the diagonal correspond to 95 and 99% confidence intervals. This is the plot shown on Fig.
9 (p 19) of Ogata (1988).

If we write xi the elements of the transformedTrain object x and if the latter is the realization of
a homogeneous Poisson process then the intervals:

yi = xi+1 − xi
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are iid rv from an exponential distribution with rate 1 and the:

ui = 1− exp(−yi

are iid rv from a uniform distribution on [0,1). The second plot generated (by default) tests this
uniform distribution hypotheses with a Kolmogorov-Smirnov Test. This is the plot shown on Fig.
10 (p 19) of Ogata (1988) which was suggested by Berman. This is also the plot proposed by
Brown et al (2002). The two dotted lines on both sides of the diagonal correspond to 95 and 99%
confidence intervals.

Following the line of the previous paragraph, if the distribution of the yi is an exponential distribu-
tion with rate 1, then their survivor function is: exp(−y). This is what’s shown on the third plot
generated (by default) using a log scale for the ordinate. The point wise CI at 95 and 99% are also
drawn (dotted lines). This is the plot shown on Fig. 12 (p 20) of Ogata (1988)

If the ui of the second paragraph are iid uniform rv on [0,1) then a plot of ui+1 vs ui should fill
uniformly the unit square [0,1) x [0,1). This is the fourth generated plot (by default). This is the
plot shown on Fig. 11 (p 20) of Ogata (1988)

If the xi are realization of a homogeneous Poisson process observed between 0 and T (on the
transformed time scale), then the number of events observed on non-overlapping windows of length
t should be iid Poisson rv with mean t (and variance t). The observation period is chopped into non-
overlapping windows of increasing length and the empirical variance of the event count is plotted
versus the empirical mean, together with 95 and 99% CI (using a normal approximation). This is
done by calling internally varianceTime. That’s what’s generated by the fifth plot (by default).
This is the plot shown on Fig. 13 (p 20) of Ogata (1988)

The last plot is experimental and irrelevant for spike trains transformed after a gam or a glm fit. It
should be useful for parametric models fitted with the maximum likelihood method.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Cox, D. R. and Lewis, P. A. W. (1966) The Statistical Analysis of Series of Events. John Wiley and
Sons.

Daley, D. J. and Vere-Jones D. (2003) An Introduction to the Theory of Point Processes. Vol. 1.
Springer.

Ogata, Yosihiko (1988) Statistical Models for Earthquake Occurrences and Residual Analysis for
Point Processes. Journal of the American Statistical Association 83: 9-27.

Brown, E. N., Barbieri, R., Ventura, V., Kass, R. E. and Frank, L. M. (2002) The time-rescaling
theorem and its application to neural spike train data analysis. Neural Computation 14: 325-346.

See Also

transformedTrain, summary.transformedTrain, mkGLMdf
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Examples

## Not run:
## Let us consider neuron 1 of the CAL2S data set
data(CAL2S)
CAL2S <- lapply(CAL2S,as.spikeTrain)
CAL2S[["neuron 1"]]
renewalTestPlot(CAL2S[["neuron 1"]])
summary(CAL2S[["neuron 1"]])
## Make a data frame with a 4 ms time resolution
cal2Sdf <- mkGLMdf(CAL2S,0.004,0,60)
## keep the part relative to neuron 1, 2 and 3 separately
n1.cal2sDF <- cal2Sdf[cal2Sdf$neuron=="1",]
n2.cal2sDF <- cal2Sdf[cal2Sdf$neuron=="2",]
n3.cal2sDF <- cal2Sdf[cal2Sdf$neuron=="3",]
## remove unnecessary data
rm(cal2Sdf)
## Extract the elapsed time since the second to last and
## third to last for neuron 1. Normalise the result.
n1.cal2sDF[c("rlN.1","rsN.1","rtN.1")] <- brt4df(n1.cal2sDF,"lN.1",2,c("rlN.1","rsN.1","rtN.1"))
## load mgcv library
library(mgcv)
## fit a model with a tensorial product involving the last
## three spikes and using a cubic spline basis for the last two
## To gain time use a fixed df regression spline
n1S.fitA <- gam(event ~ te(rlN.1,rsN.1,bs="cr",fx=TRUE) + rtN.1,data=n1.cal2sDF,family=binomial(link="logit"))
## transform time
N1.Lambda <- transformedTrain(n1S.fitA)
## check out the resulting spike train using the fact
## that transformedTrain objects inherit from spikeTrain
## objects
N1.Lambda
## Use more formal checks
summary(N1.Lambda)
plot(N1.Lambda,which=c(1,2,4,5),ask=FALSE)
## Transform spike trains of neuron 2 and 3
N2.Lambda <- transformedTrain(n1S.fitA,n2.cal2sDF$event)
N3.Lambda <- transformedTrain(n1S.fitA,n3.cal2sDF$event)
## Check interactions
summary(N2.Lambda %frt% N1.Lambda)
summary(N3.Lambda %frt% N1.Lambda)
plot(N2.Lambda %frt% N1.Lambda,ask=FALSE)
plot(N3.Lambda %frt% N1.Lambda,ask=FALSE)

## End(Not run)

predictLogProb Compute the Log Probability of a "New" Data Set Using a Fitted
Model Prediction
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Description

This function is designed to select models by cross-validation. If two models A and B managed
to pass the Ogata’s tests, one should split the data set in two parts, part1 and part2 fit each model
on each part to get four fitted model objects: A1, A2, B1, B2. The chosen model should then be
the one giving the largest of: predictLogProb(A1,part2) + predictLogProb(A2,part1) and
predictLogProb(B1,part2) + predictLogProb(B2,part1).

Usage

predictLogProb(object, newdata)

Arguments

object an object inheriting from ssanova and ssanova0 (gssanova and gssanova0
objects are therefore suitable).

newdata a data frame containing the required variables. This data frame must be different
from the one used to obtain object.

Details

If eta[i] is the prediction of the fitted model for element i of newdata the log probability is given by
:

event[i] * eta[i] - log(1 + exp(eta[i]))

Where event[i] is 0 or 1 depending on the absence or presence of a spike at the considered time.
A binomial regression is assumed here.

Value

A numeric, the sum over the index i above, the log probability of the data contained in newdata
assuming that the model contained in object is correct.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

mkGLMdf, quickPredict gssanova

Examples

## Not run:
data(e060824spont)
summary(e060824spont[["neuron 1"]])
reportHTML(e060824spont[["neuron 1"]],filename="e060824spont_1",otherST=e060824spont[c(2)],maxiter=100)
acf(diff(e060824spont[["neuron 1"]]),type="partial")
DFA <- subset(mkGLMdf(e060824spont,0.004,0,59),neuron==1)
DFA <- within(DFA,i1 <- isi(DFA,lag=1))
DFA <- DFA[complete.cases(DFA),]
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m2u1 <- mkM2U(DFA,"lN.1",0,29,seed=20061001)
m2ui <- mkM2U(DFA,"i1",0,29,maxiter=200,seed=20061001)
DFA <- within(DFA,e1t <- m2u1(lN.1))
DFA <- within(DFA,i1t <- m2ui(i1))
with(DFA,plot(ecdf(e1t),pch="."))
with(DFA,plot(ecdf(i1t),pch="."))
DFAts <- as.ts(apply(DFA[,c("e1t","i1t")],2,qnorm))
plot(filter(DFAts,rep(1/125,125)))
system.time(GF1 <- gssanova(event ~ e1t+i1t, data=subset(DFA,time<=29),family="binomial",seed=20061001))
tt.1 <- GF1 %tt% subset(DFA,time>29)
tt.1.summary <- summary(tt.1)
tt.1.summary
plot(tt.1.summary,which=c(1,2,4,6))
renewalTestPlot(tt.1$ppspFct())
plot(GF1,nc=1,nr=2)
system.time(GF2 <- gssanova(event ~ e1t+i1t, data=subset(DFA,time>29),family="binomial",seed=20061001))
tt.2 <- GF2 %tt% subset(DFA,time<=29)
tt.2.summary <- summary(tt.2)
tt.2.summary
plot(tt.2.summary,which=c(1,2,4,6))
renewalTestPlot(tt.2$ppspFct())
plot(GF2,nc=1,nr=2)
system.time(GF3 <- gssanova(event ~ e1t*i1t, data=subset(DFA,time<=29),family="binomial",seed=20061001))
tt.3 <- GF3 %tt% subset(DFA,time>29)
(tt.3.summary <- summary(tt.3))
plot(tt.3.summary,which=c(1,2,4,6))
renewalTestPlot(tt.3$ppspFct())
plot(GF3,nc=1,nr=3)
system.time(GF4 <- gssanova(event ~ e1t*i1t, data=subset(DFA,time>29),family="binomial",seed=20061001))
tt.4 <- GF4 %tt% subset(DFA,time<=29)
(tt.4.summary <- summary(tt.4))
plot(tt.4.summary,which=c(1,2,4,6))
renewalTestPlot(tt.4$ppspFct())
plot(GF4,nc=1,nr=3)
## Get the log probability of the data with the additive model
predictLogProb(GF1,newdata=subset(DFA,time>29))+predictLogProb(GF2,newdata=subset(DFA,time<=29))
## Get the log probability of the data with the non-additive model
predictLogProb(GF3,newdata=subset(DFA,time>29))+predictLogProb(GF4,newdata=subset(DFA,time<=29))
## The non additive model is the "best" so refit it to the whole data set
system.time(GF5 <- gssanova(event ~ e1t*i1t, data=DFA,family="binomial",seed=20061001))
plot(GF5,nr=3,nc=1)

## End(Not run)

print.repeatedTrain Print and Summary Methods for repeatedTrain Objects

Description

Print and summary methods for repeatedTrain objects.
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Usage

## S3 method for class 'repeatedTrain'
print(x,...)
## S3 method for class 'repeatedTrain'
summary(object,

responseWindow, acquisitionWindow,...)
## S3 method for class 'summary.repeatedTrain'
print(x,...)

Arguments

x a repeatedTrain or a summary.repeatedTrain object.

object a repeatedTrain object

responseWindow a 2 elements vector specifying the begining and the end of the neuron response.
acquisitionWindow

a 2 elements vector specifying the begining and the end of the acquisition. If
missing values are obtained using the floor of the smallest spike time and the
ceiling of the largest one.

... additional arguments passed to function chisq.test or print.

Details

print.repeatedTrain calls plot.repeatedTrain

Value

summary.repeatedTrain returns a LIST of class summary.repeatedTrain with the following
components:

nbRepeates The number of repetitions.
acquisitionWindow

The acquisition window.

stats A matrix with as many rows as repetitions. The first column contains the total
number of spikes generated by the neuron during a given repeat (this column
appears under the heading "nb" when the object is printed). The second column
contains the corresponding average discharge rate (this column appears under
the heading "nu" when the object is printed). If a responseWindow was spec-
ified, the third column contains the number of spikes generated by the neuron
during the response period and the fourth column contains the corresponding
rate (these column appear under the headings "nbR" and "nuR", respectively
when the object is printed).

globalPval The p value of the chi square test for homogeneity of the total number of spikes
generated accross repetitions. Thats a rough stationarity test.

responsePval If a responseWindow was specified, the p value of the chi square test for homo-
geneity of the number of spikes generated within the "response window" accross
repetitions.



112 print.spikeTrain

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

as.repeatedTrain, is.repeatedTrain, plot.repeatedTrain, raster, psth

Examples

## Load the Vanillin responses of the first
## cockroach data set
data(CAL1V)
## convert them into repeatedTrain objects
## The stimulus command is on between 4.49 s and 4.99s
CAL1V <- lapply(CAL1V,as.repeatedTrain)
## Generate raster plot for the neurons
raster(CAL1V[["neuron 1"]],c(4.49,4.99))
plot(CAL1V[["neuron 2"]],c(4.49,4.99))
plot(CAL1V[["neuron 3"]],c(4.49,4.99))
## Basic summary of neuron 1
summary(CAL1V[["neuron 1"]])
## Enhanced summary giving a response window between 5 and 5.5s
summary(CAL1V[["neuron 1"]],c(5,5.5))

print.spikeTrain Print and Summary Methods for spikeTrain Objects

Description

Print and summary methods for spikeTrain objects.

Usage

## S3 method for class 'spikeTrain'
print(x,...)
## S3 method for class 'spikeTrain'
summary(object, timeUnit = "s", digits = 3, ...)

Arguments

x, object A spikeTrain object.

timeUnit The unit with which the occurrence times were measured.

digits The number of digits used to print the summary (see round).

... see print and summary.

Details

print.spikeTrain does in fact call the plot method for spikeTrain objects.
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Value

print.spikeTrain generates a plot as a side effect.

summary.spikeTrain returns the number of spikes, the times of the first and last spikes, the mean
inter-spike interval (ISI) and its sd as well as the mean and sd of the log(ISI) together with the
shortest and longest ISIs.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

as.spikeTrain, is.spikeTrain, renewalTestPlot, varianceTime, stepfun

Examples

## load spontaneous data of 4 putative projection neurons
## simultaneously recorded from the cockroach (Periplaneta
## americana) antennal lobe
data(CAL1S)
## convert data into spikeTrain objects
CAL1S <- lapply(CAL1S,as.spikeTrain)
## look at the individual trains
## first the "raw" data
CAL1S[["neuron 1"]]
## next some summary information
summary(CAL1S[["neuron 1"]])

psth Compute and Plot Peri-Stimulus Time Histogram

Description

psth computes and plot.psth plots a peri-stimulus time histogram (called PST, post-stimulus time
histogram by Gerstein and Kiang (1960)) from repeated presentations of a stimulation. Confidence
bands can be obtained using the Poisson approximation.

Usage

psth(repeatedTrain, breaks = 20, include.lowest = TRUE,
right = TRUE, plot = TRUE, CI = 0.95, ...)

## S3 method for class 'psth'
plot(x, stimTimeCourse = NULL, colStim = "grey80",

colCI = NULL, xlab, ylab, main, xlim, ylim, lwd = 2,
col = 1, ...)
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Arguments

repeatedTrain a repeatedTrain object or a list which can be coerced to such an object.

x a psth object.

stimTimeCourse NULL (default) or a two elements vector specifying the time boundaries (in s) of
a stimulus presentation.

colStim the background color used for the stimulus.

breaks a numeric. A single number is interpreted has the number of bins; a vector of
length 2 is interpreted as the bin width and the step to use (see details); otherwise
interpreted as the position of the "breaks" between bins.

include.lowest corresponding argument of hist.

right corresponding argument of hist.

plot corresponding argument of hist.

CI The coverage probability of the confidence intervals.

colCI if not NULL (default) a confidence band is plotted with the specified color; two
dashed lines are plotted otherwise.

xlim a numeric (default value supplied). See plot.

ylim a numeric (default value supplied). See plot.

xlab a character (default value supplied). See plot.

ylab a character (default value supplied). See plot.

main a character (default value supplied). See plot.

lwd line width used to plot the estimated density. See plot.

col color used to plot the estimated density. See plot.

... see plot.

Details

When confidence bands are requested they are obtained from the qunatiles of the Poisson distribu-
tion.

When a 2 elements vector is used as breaks argument it is interpreted as specifying a bin width (first
element if elements are unnamed, "bw" element otherwise) and a step (second element if elements
are unnamed, "step" element otherwise). The idea is then to obtain a smoother looking PSTH
by counting spikes within overlapping bins. That is if the center of the ith bin is xi the one of the
(i+1)th bin will be xi + step.

Value

When plot is set to FALSE in psth, a list of class psth is returned and no plot is generated. This
list has the following components:

freq a vector containing the instantaneous firing rate.

ciUp a vector with the upper limit of the confidence band.

ciLow a vector with the lower limit of the confidence band.
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breaks a numeric vector with the breaks in between which spikes were counted. Similar
to the component of the same name returned by hist.

mids a numeric vector with the mid points of breaks. Similar to the component of
the same name returned by hist.

counts a matrix with as many rows as components in repeatedTrain and as many
columns as bins. Each element of the matrix contains the number of spikes
falling in a given trial in a given bin.

nbTrials the number of stimulations.

call the matched call.

When plot is set to TRUE nothing is returned and a plot is generated as a side effect. Of course the
same occurs upon calling plot.psth with a psth object argument.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Gerstein, George L. and Kiang, Nelson Y.-S. (1960) An Approach to the Quantitative Analysis
of Electrophysiological Data from Single Neurons. Biophysical Journal 1: 15–28. http://www.
pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=13704760

Kalbfleisch, J. G. (1985) Probability and Statistical Inference. Volume 2: Statistical Inference.
Springer-Verlag.

See Also

as.repeatedTrain, is.repeatedTrain, print.repeatedTrain, summary.repeatedTrain, raster

Examples

## Load Vanillin responses data (first cockroach data set)
data(CAL1V)
## convert them into repeatedTrain objects
## The stimulus command is on between 4.49 s and 4.99s
CAL1V <- lapply(CAL1V,as.repeatedTrain)
## look at the individual raster plots
plot(CAL1V[["neuron 1"]],stimTimeCourse=c(4.49,4.99),main="N1")
## Create a simple black and white PSTH for neuron 1
psth(CAL1V[["neuron 1"]],stimTimeCourse=c(4.49,4.99),breaks=20)
## Rebuilt the same PSTH but with red confidence bands
psth(CAL1V[["neuron 1"]],stimTimeCourse=c(4.49,4.99),breaks=20,colCI=2)
## Make the PSTH smoother
psth(CAL1V[["neuron 1"]],stimTimeCourse=c(4.49,4.99),breaks=c(bw=0.5,step=0.05),colCI=2)
## Make a plot with PSTHs from 4 neurons superposed
## First get lists containing PSTHs from each neuron
psth1 <- psth(CAL1V[["neuron 1"]],breaks=c(bw=0.5,step=0.05),plot=FALSE)
psth2 <- psth(CAL1V[["neuron 2"]],breaks=c(bw=1,step=0.1),plot=FALSE)
psth3 <- psth(CAL1V[["neuron 3"]],breaks=c(bw=0.5,step=0.05),plot=FALSE)
psth4 <- psth(CAL1V[["neuron 4"]],breaks=c(bw=2,step=0.2),plot=FALSE)

http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=13704760
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=13704760
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## Get the maximal frequency to display
maxFreq <- max(max(psth1$ciUp),max(psth2$ciUp),max(psth3$ciUp),max(psth4$ciUp))
## Build plot
plot(c(0,10),c(0,75),type="n",

xaxs="i",yaxs="i",xlab="Time (s)",
ylab="Freq. (Hz)",
main="PSTHs from 4 simultaneously recorded neurons",
sub="20 stimulations with vanillin were used.")

## Add rectangle corresponding to stimulation command
rect(4.49,0,4.99,75,col="grey80",lty=0)
## Add the neurons PSTHs as confidence bands
polygon(c(psth1$mids,rev(psth1$mids)),c(psth1$ciLow,rev(psth1$ciUp)),col=1,border=NA)
polygon(c(psth2$mids,rev(psth2$mids)),c(psth2$ciLow,rev(psth2$ciUp)),col=2,border=NA)
polygon(c(psth3$mids,rev(psth3$mids)),c(psth3$ciLow,rev(psth3$ciUp)),col=3,border=NA)
polygon(c(psth4$mids,rev(psth4$mids)),c(psth4$ciLow,rev(psth4$ciUp)),col=4,border=NA)
legend(0.1,maxFreq,legend=paste("neuron",1:4),lty=1,col=1:4,bty="n")

purkinjeCellData Spike Trains of a Purkinje Cells (PC) Recorded in Control Conditions
and With Bath Applied Bicuculline

Description

An object of class "SpikeTrain". Spontaneous discharge of a single PC recorded during 300 s in
normal saline conditions and during 300 s in the presence of 25 µM bath applied bicuculline.

Usage

data(sPK)
data(mPK)

Format

sPK is a named list with 2 components ("ctl", "bicu". Each component contains the spike train (ie,
action potentials occurrence times) of one Purkinje cell recorded during 300 s of spontaneous ac-
tivity in control ("ctl") condition and with bath applied bicuculline ("bicu"). Times are expressed
in seconds.

mPK is a named list with 8 components ("neuron 1", "neuron 2", ..., "neuron 8". Each compo-
nent is itself a list with the spike train (ie, action potentials occurrence times) of one Purkinje cell
recorded during 300 s of spontaneous activity in control ("ctl") condition and with bath applied
bicuculline ("bicu"). Times are expressed in seconds.

Details

The recording contained in sPK was done in cell-attached mode. The one in mPK was done with a
NeuroNexus silicon probe.

Bicuculline is a GABAA receptor antagonist. It blocks all GABAA inhibition.



qqDuration 117

Source

Recording and spike sorting performed by Matthieu Delescluse at the Cerebral Physiology Lab,
CNRS UMR 8118: http://www.biomedicale.univ-paris5.fr/physcerv/physiologie_cerebrale.
htm.

Examples

## Not run:
## load spontaneous data of 1 Purkinje cell
## recorded in cell attached mode from a cerebellar
## slice in control and bath applied bicuculline conditions
data(sPK)
## coerce data to spikeTrain objects
sPK <- lapply(sPK,as.spikeTrain)
## Get a summary of the ctl data
summary(sPK[["ctl"]])
## Look at the control train
## Don't show the rug plot for clarity
plot(sPK[["ctl"]],addRug=FALSE)
## Generate the renewal test plot taking into account
## the size of the data set (a lot of spikes!).
renewalTestPlot(sPK[["ctl"]],d=10,orderPlotPch=".",lag.max=250)
## Get a summary of the bicu data
summary(sPK[["bicu"]])
## Look at the control train
## Don't show the rug plot for clarity
plot(sPK[["bicu"]],addRug=FALSE)
## Generate the renewal test plot taking into account
## the size of the data set (a lot of spikes!).
renewalTestPlot(sPK[["bicu"]],d=10,orderPlotPch=".",lag.max=250);par(oldpar)
## This time the data are NOT stationary. This is seen clearly on a acf
## plot with very large lag.max
acf.spikeTrain(sPK[["bicu"]],lag.max=2000)

## End(Not run)

qqDuration Quantile-Quantile Plot For Fitted Duration Distributions

Description

Produces a QQ plot of empirical against theoretical quantiles of one of the following duration dis-
tributions: inverse Gaussian, log normal, log logistic, refractory exponential, gamma, weibull.

Usage

qqDuration(durationFit, CI = c(0.95, 0.99),
type = "l", xlab, ylab, main, sub,
ylim, dataLwd = 2, ablineCol = 2, ...)

http://www.biomedicale.univ-paris5.fr/physcerv/physiologie_cerebrale.htm
http://www.biomedicale.univ-paris5.fr/physcerv/physiologie_cerebrale.htm
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Arguments

durationFit a durationFit object, that is, a list returned by one of these functions: invgaussMLE,
lnormMLE, llogisMLE, rexpMLE, gammaMLE, weibullMLE.

CI a numeric vector with at most tow components, the confidence intervals to be
drawn. If NULL, intervals are not drawn.

type, xlab, ylab, main, sub, ylim

see plot, default values are provided if arguments are missing.

dataLwd non negative integer, the width of the line used to draw the data.

ablineCol color of the diagonal.

... additional arguments passed to plot.

Details

If the data to which the model was fitted have censored events, the latter are not used to build the
empirical quantiles.

Value

Nothing is returned, the function is used for its side effect, a plot is generated.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

compModels, invgaussMLE, lnormMLE, llogisMLE, rexpMLE, gammaMLE, weibullMLE

Examples

## Not run:
## Simulate a sample with 100 events from an inverse Gaussian
set.seed(1102006,"Mersenne-Twister")
mu.true <- 0.075
sigma2.true <- 3
sampleSize <- 100
sampIG <- rinvgauss(sampleSize,mu=mu.true,sigma2=sigma2.true)
## Fit it with an inverse Gaussian Model
sampIGmleIG <- invgaussMLE(sampIG)
## draw the QQ plot on a log scale
qqDuration(sampIGmleIG,log="xy")
## Fit it with a log normal Model
sampIGmleLN <- lnormMLE(sampIG)
## draw the QQ plot on a log scale
qqDuration(sampIGmleLN,log="xy")
## Fit it with a gamma Model
sampIGmleGA <- gammaMLE(sampIG)
## draw the QQ plot on a log scale
qqDuration(sampIGmleGA,log="xy")
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## Fit it with a Weibull Model
sampIGmleWB <- weibullMLE(sampIG)
## draw the QQ plot on a log scale
qqDuration(sampIGmleWB,log="xy")
## Fit it with a refractory exponential Model
sampIGmleRE <- rexpMLE(sampIG)
## draw the QQ plot on a log scale
qqDuration(sampIGmleRE,log="xy")
## Fit it with a log logisitc Model
sampIGmleLL <- llogisMLE(sampIG)
## draw the QQ plot on a log scale
qqDuration(sampIGmleLL,log="xy")

## End(Not run)

quickPredict A Simple Interface to predict method for ssanova and ssanova0 objects

Description

Designed to quickly compute the effect of a single model term. This term can correspond to a single
variable effect or to the interaction of two variables.

Usage

quickPredict(object, include = object$terms$labels[2], se.fit = TRUE,
length.out, otherTermsFct = median)

object %qp% include

Arguments

object an object inheriting from ssanova and ssanova0 (gssanova and gssanova0 ob-
jects are therefore suitable).

include a character string corresponding to a single model term. See predict.ssanova
and predict.ssanova.

se.fit logical flag indicating if standard errors are required. See predict.ssanova
and predict.ssanova.

length.out a positive integer, the number of points at which the prediction should be per-
formed. These points are uniformly spread on the definition domain of the vari-
able(s) implicitely specified by argument include. If missing a default of 501
for terms involving a single variable and of 101 for interaction terms involving
two variables is provided.

otherTermsFct a function applied to the other variables required for model specification.

Details

%qp% is the binary version of quickPredict.



120 quickPredict

Value

A quickPredict object. This object is a list with the following components:

xx a numeric vector with the values of the variable specified by the model term se-
lected by argument include. When an interaction term was selected the values
of the first variable are stored here.

yy a numeric vector with the values of the second variable specified by the in-
teraction term selected by argument include. When selected term is not an
interaction term, this component is NULL.

include the value of the argument with this name.

call the matched call.

est.mean a numeric vector or matrix, for intercation terms, containing the estimated mean
of the term.

est.sd a numeric vector or matrix, for intercation terms, containing the estimated SD
of the term. Is NULL is argument se.fit was FALSE.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

predict.ssanova, predict.ssanova, plot.quickPredict, image.quickPredict, contour.quickPredict,
persp.quickPredict, plot.ssanova

Examples

## Follow up of ssanova example of gss
data(nox)
nox.fit <- ssanova(log10(nox)~comp*equi,data=nox)
## get prediction for the first term, comp
comp.pred <- quickPredict(nox.fit)
## plot result with method plot for quickPredict objects
plot(comp.pred)
## get prediction for the second term, equi using the binary version
equi.pred <- nox.fit %qp% "equi"
plot(equi.pred)
## get prediction for the interaction term, comp:equi
comp.equi.pred <- nox.fit %qp% "comp:equi"
## use image method image
image(comp.equi.pred)
## use contour method
contour(comp.equi.pred,col=2,lwd=2,labcex=1.5)
contour(comp.equi.pred,what="sd",lty=3,labcex=1.2,add=TRUE)
## use persp method
persp(comp.equi.pred,theta=-10,phi=20)
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raster Generate a Raster Plot

Description

Given a list of spike trains (or a repeatedTrain object) where each train was acquired during,
say, one presentation of a given stimulus, a raster plot is generated. If stimulus time properties are
specified, the stimulus application time also appears on the plot.

Usage

## S3 method for class 'repeatedTrain'
plot(x, stimTimeCourse = NULL,

colStim = "grey80", xlim, pch, xlab, ylab, main, ...)
raster(x, stimTimeCourse = NULL, colStim = "grey80",

xlim, pch, xlab, ylab, main, ...)

Arguments

x a repeatedTrain object or a list which can be coerced to such an object.

stimTimeCourse NULL (default) or a two elements vector specifying the time boundaries (in s) of
a stimulus presentation.

colStim the background color used for the stimulus.

xlim a numeric (default value supplied). See plot.

pch data symbol used for the spikes. See plot.

xlab a character (default value supplied). See plot.

ylab a character (default value supplied). See plot.

main a character (default value supplied). See plot.

... see plot.

Details

Basic raster plot stuff.

Value

Nothing is returned raster is used for its side effect, a plot is generated on the current graphical
device.

Note

Brillinger (1992) calls these plots "rastor" instead of raster...

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>
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References

Brillinger, David R. (1992) Nerve Cell Spike Train Data Analysis: A Progression of Technique.
JASA 87: 260–271.

See Also

as.repeatedTrain, is.repeatedTrain, print.repeatedTrain, summary.repeatedTrain, psth

Examples

## Load Vanillin responses data (first cockroach data set)
data(CAL1V)
## convert them into repeatedTrain objects
## The stimulus command is on between 4.49 s and 4.99s
CAL1V <- lapply(CAL1V,as.repeatedTrain)
## look at the individual raster plots
raster(CAL1V[["neuron 1"]],stimTimeCourse=c(4.49,4.99),main="N1")
plot(CAL1V[["neuron 2"]],stimTimeCourse=c(4.49,4.99),main="N2")
plot(CAL1V[["neuron 3"]],stimTimeCourse=c(4.49,4.99),main="N3")
plot(CAL1V[["neuron 4"]],stimTimeCourse=c(4.49,4.99),main="N4")

rateEvolution Evaluates and Plots a Spike Train Firing Rate’s Evolution

Description

rateEvolution evaluates and plot.rateEvolution plots the firing rate evolution of a spikeTrain
object. The evaluation is done by convolving the spike train with a kernel like in density estima-
tion.

Usage

rateEvolution(x, bw, kernel = c("gaussian", "epanechnikov",
"rectangular", "triangular",
"biweight", "cosine", "optcosine"),

n = 512, from, to, na.rm = FALSE, ...)
## S3 method for class 'rateEvolution'
plot(x, main = NULL, xlab = NULL, ylab = "Rate (Hz)",

type = "l", zero.line = TRUE, ...)

Arguments

x a spikeTrain object or an object which can be coerced to it for rateEvolution
or a rateEvolution object for plot.rateEvolution.

bw the kernel bin width in seconds. If missing it is set to 10 times the median
inter-spike interval of x.

kernel see density.
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n see density.

from see density.

to see density.

na.rm see density.

main see plot.density.

xlab see plot.density.

ylab see plot.density.

type see plot.density.

zero.line see plot.density.

... see density and plot.density.

Details

rateEvolution is mainly a wrapper for density which also adjusts the result of the latter such that
the y component of the returned list is an instantaneous firing rate. If the length of x is smaller or
equal to 1 and if from or to is (are) missing the returned object has then each of its components set
to NA except data.name (see below). If the length of x is smaller or equal to 1 and if both from and
to are specified a missing bw is then set to 3 times the spacing between the points of the regular
grid on which the density is evaluated.

plot.rateEvolution is also a wrapper for plot.density which only adjust the default value of
some arguments.

Value

rateEvolution returns a LIST of class rateEvolution which inherits from class density.

x the n coordinates of the points where the density is estimated. See density.

y the estimated rate (in 1/s). These will be non-negative, but can be zero.

bw the bandwidth used.

n the sample size after elimination of missing values.

call the call which produced the result.

data.name the deparsed name of the x argument.

has.na logical, for compatibility (always FALSE).

plot.rateEvolution is called for its side effect: a plot is generated.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

as.spikeTrain, density, plot.density, mkREdf
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Examples

## load Purkinje cell data recorded in cell-attached mode
data(sPK)
## coerce sPK to a spikeTrain object
sPK <- lapply(sPK, as.spikeTrain)
## get the rate evolution in ctl condition
sPKreCTL <- rateEvolution(sPK[["ctl"]])
## plot the result
plot(sPKreCTL)
## check the bin width which was actually used
sPKreCTL$bw
## look at the effect of a 10 times larger bw
plot(rateEvolution(sPK[["ctl"]],bw=10*sPKreCTL$bw))
## look at the effect of a 10 times smaller one
plot(rateEvolution(sPK[["ctl"]],bw=sPKreCTL$bw/10))
## get the rate evolution in bicuculline conditions
sPKreBICU <- rateEvolution(sPK[["bicu"]])
## plot results
plot(sPKreBICU,col=2)
## add the ctl rate evolution
lines(sPKreCTL)

renewalTestPlot Non-Parametric Tests for Renewal Processes

Description

Performs and displays rank based tests checking if a spike train is a renewal process

Usage

renewalTestPlot(spikeTrain, lag.max = NULL,
d=max(c(2,sqrt(length(spikeTrain)) %/% 5)),
orderPlotPch=ifelse(length(spikeTrain)<=600,1,"."),
...)

Arguments

spikeTrain a spikeTrain object or a vector which can be coerced to such an object.

lag.max argument passed to acf.spikeTrain.

d an integer >= 2, the number of divisions used for the Chi 2 test. The default
value is such that under the null hypothesis at least 25 events should fall in each
division.

orderPlotPch pch argument for the order plots.

... additional arguments passed to function chisq.test.
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Details

renewalTestPlot generates a 4 panel plot. The 2 graphs making the top row are qualitative and
display the rank of inter-spike interval (ISI) k+1 versus the rank of ISI k (left graph) and the rank
of ISI k+2 versus the one of ISI k (right graph). The bottom left graph displays the autocorrelation
function of the ISIs and is generated by a call to acf.spikeTrain. The bottom right graph display
the result of a Chi square test performed on the ranks at different lags. More precisely, for each
considered lag j (from 1 to lag.max) the square within which the rank of ISI k+1 vs the one of ISI
k is found is splited in d2 cells. This decomposition into cells is shown on the two graphs of the top
row. Under the renewal process hypothesis the points should be uniformly distributed with a density
N
d2 , where N is the number of ISIs. The sum other rows and other columns is moreover exactly
N
d . The upper graphs are therefore graphical displays of two-dimensional contingency tables. A

chi square test for two-dimensional contingency tables (function chisq.test) is performed on the
table generated at each lag j. The resulting Chi 2 value is displayed vs the lag. The 95% confidence
region appears as a clear grey rectangle, the value falling within this region appear as black dots and
the ones falling out appear as dark grey triangles.

Value

Nothing is returned, the function is used for its side effect: a plot is generated.

Note

You should not use a too large value for d otherwise the Chi 2 values will be too approximative and
warnings will be printed. If your process is a renewal process you should have on average 5% of
the points on the bottom right graph appearing as dark triangles.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

acf, varianceTime, acf.spikeTrain

Examples

## Not run:
## Apply the test of Ogata (1988) shallow shock data
data(ShallowShocks)
renewalTestPlot(ShallowShocks$Date,d=3)

## Apply the test to the second and third neurons of the cockroachAlSpont
## data set
## load spontaneous data of 4 putative projection neurons
## simultaneously recorded from the cockroach (Periplaneta
## americana) antennal lobe
data(CAL1S)
## convert data into spikeTrain objects
CAL1S <- lapply(CAL1S,as.spikeTrain)
## look at the individual trains
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## first the "raw" data
CAL1S[["neuron 1"]]
## next some summary information
summary(CAL1S[["neuron 1"]])
## next the renewal tests
renewalTestPlot(CAL1S[["neuron 1"]])

## Simulate a renewal log normal train with 500 isi
isi.nb <- 500
train1 <- c(cumsum(rlnorm(isi.nb+1,log(0.01),0.25)))
## make the test
renewalTestPlot(train1)

## Simulate a (non renewal) 2 states train
myTransition <- matrix(c(0.9,0.1,0.1,0.9),2,2,byrow=TRUE)
states2 <- numeric(isi.nb+1) + 1
for (i in 1:isi.nb) states2[i+1] <- rbinom(1,1,prob=1-myTransition[states2[i],])+1
myLnormPara2 <- matrix(c(log(0.01),0.25,log(0.05),0.25),2,2,byrow=TRUE)
train2 <-
cumsum(rlnorm(isi.nb+1,myLnormPara2[states2,1],myLnormPara2[states2,2]))
## make the test
renewalTestPlot(train2)
## End(Not run)

reportHTML Generic Function for Automatic HTML Report Generation

Description

When a standard analysis is applied to some object it is useful to keep all the plots and summaries
related to that analysis in a single place where they can be easily accessed and visualized. An
html file containing the report of this analysis is ideally suited for that. The methods reportHTML
generate such reports.

Usage

reportHTML(object, filename, extension, directory, Title, ...)

Arguments

object an object from which the report is going to be generated, perhaps following
some standard analysis procedure.

filename a character string. The generic name of all the files (html, png as well as R data
files which will be generated. See also HTMLInitFile.

extension see HTMLInitFile.

directory the full or relative path to the directory where the results are going to be stored.
See also HTMLInitFile.

Title See HTMLInitFile. If missing a default value baed on filename is provided.
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... additional parameters passed to the functions internally called by the actual
methods.

Value

Nothing is returned, an html file and figures in png format are written to disk together with the R
variables generated during the analysis , if an analysis was performed.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

reportHTML.spikeTrain, reportHTML.repeatedTrain, reportHTML.gam

Examples

##

reportHTML.gam Generates a Report in HTML Format from a STAR gam Object

Description

Writes the result of a gam fit in an html file.

Usage

## S3 method for class 'gam'
reportHTML(object, filename, extension = "html",

directory = getwd(), Title,
neuron, neuronEvts, ...)

Arguments

object an object returned by gam.

filename a character string. The generic name of all the files (html, png as well as R data
files which will be generated. See also HTMLInitFile.

extension see HTMLInitFile.

directory the full or relative path to the directory where the results are going to be stored.
See also HTMLInitFile.

Title See HTMLInitFile. If missing a default value baed on filename is provided.

neuron a character string describing to which the analysis refers and used for the titles
of the interaction plots (see plot.frt).
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neuronEvts a named list with the event variable from the data frame returned by mkGLMdf
and corresponding to the other neurons recorded simultaneously. One list ele-
ment per neuron.

... Not used, only there for compatibilty with the generic method definition.

Details

A summary (summary.gam) of object is added to the report. A plot of the spike train after time
transformation transformedTrain comes next followed by a renewal test plot (renewalTestPlot)
of the spike train on the time transformed scale. The "usual" Ogata’s tests plots (plot.transformedTrain)
are added. Then if other trains are provided as a named list via argument neuronEvts, interactions
plots (plot.frt) are built showing both the survivor function and the Berman’s test. The report
ends with the call which generated object.

Value

Nothing is returned, an html file and figures in png format are written to disk.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

mkGLMdf, gam, gam.check, frt, transformedTrain, plot.transformedTrain, summary.transformedTrain

Examples

## Not run:
## load e070528spont data set
data(e070528spont)
## make a data frame for gam using a 2 ms bin width
spontDF <- mkGLMdf(e070528spont,0.002,0,60)
## make data frames specific of each neuron
n1.spontDF <- spontDF[spontDF$neuron=="1",]
n2.spontDF <- spontDF[spontDF$neuron=="2",]
n3.spontDF <- spontDF[spontDF$neuron=="3",]
n4.spontDF <- spontDF[spontDF$neuron=="4",]
## save space by removing the now redundant spontDF
rm(spontDF)
## fit neuron 1 using the gam representation of a
## renewal process and a binomial model
n1.spontFit1 <- gam(event ~ s(lN.1,k=25,bs="cr"),data=n1.spontDF,family=binomial())
## create a list with the discretized spike times of the 3 other neurons
preN1 <- list(n2=with(n2.spontDF,event),n3=with(n3.spontDF,event),n4=with(n4.spontDF,event))
## generate the report
reportHTML(n1.spontFit1,"e070528spontN1gFit",neuron="1",neuronEvts=preN1)

## End(Not run)
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reportHTML.repeatedTrain

Performs Basic Spike Train Analysis and Generates a Report in HTML
Format from a repeatedTrain Object

Description

Performs a "standard" analysis on a repatedTrain object, writes results to disk and generates a
report in html format.

Usage

## S3 method for class 'repeatedTrain'
reportHTML(object, filename, extension = "html",

directory = getwd(), Title, binSize = 0.025,
method = c("gsspsth0", "gsspsth", "gampsth"),
stimTimeCourse = NULL, colCI = 2,
doTimeTransformation = TRUE, k = 100, bs = "tp",
doGamCheck = FALSE, ...)

Arguments

object a repeatedTrain object.

filename a character string. The generic name of all the files (html, png as well as R data
files which will be generated. See also HTMLInitFile.

extension see HTMLInitFile.

directory the full or relative path to the directory where the results are going to be stored.
See also HTMLInitFile.

Title See HTMLInitFile. If missing a default value baed on filename is provided.

binSize See gsspsth, gsspsth0, gampsth.

method A character string, the name of the function used to generate the smooth psth,
one of: gsspsth, gsspsth0, gampsth.

stimTimeCourse See plot.repeatedTrain and plot.gsspsth, plot.gsspsth0, plot.gampsth.

colCI See plot.gsspsth, plot.gsspsth0, plot.gampsth.

doGamCheck Should function gam.check be used on the inhomogenous Poisson fit performed
to obtain the smooth PSTH if method was set to gampsth?

doTimeTransformation

Should the estimated integrated intensity be used to perform a time transforma-
tion and generate Ogata’s test plots?

k, bs See gampsth.

... Passed to gsspsth, gsspsth0, gampsth.
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Details

A raster plot is added first to the report (plot.transformedTrain) with a smooth PSTH (gsspsth,
gsspsth0, gampsth.) superposed. The summary of the inhomogenous Poisson fit leading the
smooth PSTH is added next together with a short summary describing how accurate the hypothesis
of constant intensity/rate made during the pre-processing of the repeatedTrain was in view of
the estimated rate. Check gsspsth, gsspsth0, gampsth for details. A plot of the smooth PSTH
with 95% CI (approximate in the case of gampsth) is added. If doGamCheck is set to TRUE and if
method is set to gampsth a diagnostic plot for the fitted inhomogenous Poisson model is added. If
doTimeTransformation is set to TRUE the estimated integrated intensity is used to perform a time
transformation and Ogata’s test plots are generated.

A R data file (filename.rda) is also generated with the following objects:

• PoissonF: the gssanova, gssanova0 or gamObject object containing the result of the gssanova,
gssanova0 or gam fit with the inhomogenous Poisson model.

• Lambda: the integrated intensity of repeatedTrain under the inhomogenous Poisson model
hypothesis. If doTimeTransformation was set to TRUE.

• fct: the matched call.

Value

Nothing is returned, an html file and figures in png format are written to disk together with the R
variables generated during the analysis.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

as.repeatedTrain, plot.repeatedTrain, summary.repeatedTrain, gsspsth, gsspsth0, gampsth,
transformedTrain, plot.transformedTrain, summary.transformedTrain, gssanova, gssanova0,
gam, gam.check, frt

Examples

## Not run:
## load e070528citronellal data set
data(e070528citronellal)
## make a standard analysis on the first neuron
reportHTML(e070528citronellal[["neuron 1"]],"e070528citronellalN1",stim=c(6.14,6.64))

## End(Not run)
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reportHTML.spikeTrain Performs Basic Spike Train Analysis and Generates a Report in HTML
Format from a spikeTrain Object

Description

Performs a "standard" analysis on a spikeTrain object, computing some cross-correlation statistics
if additional spikeTrain objects are provided, writes results to disk and generates a report in html
format.

Usage

## S3 method for class 'spikeTrain'
reportHTML(object, filename, extension = "html",

directory = getwd(), Title, forceTT = TRUE,
digits = 3, timeUnit = "s", otherST,
laglim = c(-0.1, 0.1),
cch = c("both", "scch", "cch"),
method = c("gsslockedTrain0", "gsslockedTrain", "gamlockedTrain"),
doGamCheck = FALSE, k = 100, bs = "tp",
nbEvtPerBin = 10, ...)

Arguments

object a spikeTrain object.

filename a character string. The generic name of all the files (html, png as well as R data
files which will be generated. See also HTMLInitFile.

extension see HTMLInitFile.

directory the full or relative path to the directory where the results are going to be stored.
See also HTMLInitFile.

Title See HTMLInitFile. If missing a default value baed on filename is provided.

forceTT Should a time transformation be performed and the compModels plots be gener-
ated even if none of the six renewal models fits the data?

timeUnit, digits

see summary.spikeTrain.

otherST a named list of spikeTrain objects from simultaneously recorded neurons or
nothing.

laglim see lockedTrain.

cch if otherST is given (ie, not missing) cross-intensity plots will be made using
the neuron of spikeTrain as a reference. Should smooth version of the cross-
intensity be computed ("scch"), a "classical" one ("cch") or both ("both").
Only the first element of cch is used.

method A character string, the name of the function used to generate the smooth cross-
correlation histograms, one of: gsslockedTrain, gsslockedTrain0, gamlockedTrain.
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doGamCheck if smooth estimates are requested and method is set to gamlockedTrain, should
function gam.check be used on them?

k see gamlockedTrain.
bs see gamlockedTrain.
nbEvtPerBin a number of event per bin used in a way similar to the argument with the same

name in jpsth when a bining is used for pre-processing.
... Passed to gsslockedTrain, gsslockedTrain0, gamlockedTrain.

Details

A spike train plot (plot.spikeTrain) is performed first. The summary (summary.spikeTrain) is
computed next and part of its output is written to the html file. The renewal tests are then carried out
and their results added (renewalTestPlot). The six duration distributions are fitted (compModels
with argument plot set to FALSE) and the best one is used to apply a time transformation to
spikeTrain. The Ogata’s tests are applied (summary.transformedTrain) and if they are all within
the 99% confidence interval, the result of the transformation is plotted (plot.transformedTrain)
as well as all the Q-Q plots of compModels. If forceTT is set to TRUE (default), then these last two
plots are added even if the best model does not pass the tests.

If other spikeTrain objects are provided as a named list via argument otherST, then cross-correlation/cross-
intensity functions are estimated; Two estimations methods are available, the classical histogram
and a smooth version of it. Argument cch controls if a single estimation is performed or if both are
performed. If the smooth version is requested a summary of the gssanova, gssanova0 or gam fit is
printed (depending on the chosen value for argument method). Moreover if argument doGamCheck
is set to TRUE (and if method is set to gamlockedTrain) then check plots (gam.check) are added to
the report.

A R data file (filename.rda) is also generated with the following objects:

• cm: the result of compModels.
• bestFit: the durationDistribution object returned obtained by fitting the best model

among the 6.
• Lambda: the integrated intensity of spikeTrain with the best model.
• fct: the matched call.
• cchL: if other trains were provided and if argument cch was set to "both" or to "cch". A list

with as many components as the otherST argument. Each component is the a hist.lockedTrain
object.

• scchL: if other trains were provided and if argument cch was set to "both" or to "scch". A list
with as many components as the otherST argument. Each component is the a gsslockedTrain,
gsslockedTrain0 or gamlockedTrain object.

Value

Nothing is returned, an html file and figures in png format are written to disk together with the R
variables generated during the analysis.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>
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See Also

as.spikeTrain, plot.spikeTrain, summary.spikeTrain, renewalTestPlot, plot.spikeTrain,
compModels, transformedTrain, plot.transformedTrain, summary.transformedTrain, gssanova,
gssanova0, gam, gam.check, lockedTrain, gsslockedTrain, gsslockedTrain0, gamlockedTrain

Examples

## Not run:
## load e070528spont data set
data(e070528spont)
## perform a standard analysis on neuron 1, looking for cross-correlations
## with the 3 other neurons up to lag +/- 250 ms.
## Store the results under the generic name: e070528spontN1
reportHTML(e070528spont[["neuron 1"]],"e070528spontN1",otherST=e070528spont[-1],laglim=c(-1,1)*0.25,forceTT=FALSE)
## Neuron 1 of e070528spont is exceptional in that it can be well
## described by a renewal process...
## End(Not run)

rexpMLE Maximum Likelihood Parameter Estimation of a Refractory Exponen-
tial Model with Possibly Censored Data

Description

Estimate refractory exponential model parameters by the maximum likelihood method using possi-
bly censored data.

Usage

rexpMLE(yi, ni = numeric(length(yi)) + 1,
si = numeric(length(yi)) + 1)

Arguments

yi vector of (possibly binned) observations or a spikeTrain object.

ni vector of counts for each value of yi; default: numeric(length(yi))+1.

si vector of counts of uncensored observations for each value of yi; default: numeric(length(yi))+1.

Details

The MLE are available in closed form even in the censored case for this model. The likelihood func-
tion cannot be differentiated with respect to the rp (refractory period) parameter at the maximum.
COnfidence intervals for this parameter are therefore not available.
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Value

A list of class durationFit with the following components:

estimate the estimated parameters, a named vector.

se the standard errors, a named vector.

logLik the log likelihood at maximum.

r a function returning the log of the relative likelihood function.

mll a function returning the opposite of the log likelihood function using the log of
the parameters.

call the matched call.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

See Also

drexp, invgaussMLE, lnormMLE, gammaMLE, weibullMLE

Examples

## Not run:
## Simulate sample of size 100 from a refractory exponential distribution
set.seed(1102006,"Mersenne-Twister")
sampleSize <- 100
rate.true <- 20
rp.true <- 0.01
sampRE <- rrexp(sampleSize,rate=rate.true,rp=rp.true)
sampREmleRE <- rexpMLE(sampRE)
rbind(est = sampREmleRE$estimate,se = sampREmleRE$se,true = c(rate.true,rp.true))

## make a parametric boostrap to check the distribution of the deviance
nbReplicate <- 10000
system.time(

devianceRE100 <- replicate(nbReplicate,{
sampRE <- rrexp(sampleSize,rate=rate.true,rp=rp.true)
sampREmleRE <- rexpMLE(sampRE)
-2*sampREmleRE$r(rate.true,rp.true)

}
)

)[3]

## Get 95 and 99% confidence intervals for the QQ plot
ci <- sapply(1:nbReplicate,

function(idx) qchisq(qbeta(c(0.005,0.025,0.975,0.995),
idx,
nbReplicate-idx+1),

df=2)
)

## make QQ plot
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X <- qchisq(ppoints(nbReplicate),df=2)
Y <- sort(devianceRE100)
X11()
plot(X,Y,type="n",

xlab=expression(paste(chi[2]^2," quantiles")),
ylab="MC quantiles",
main="Deviance with true parameters after ML fit of refractory Poisson data",
sub=paste("sample size:", sampleSize,"MC replicates:", nbReplicate)
)

abline(a=0,b=1)
lines(X,ci[1,],lty=2)
lines(X,ci[2,],lty=2)
lines(X,ci[3,],lty=2)
lines(X,ci[4,],lty=2)
lines(X,Y,col=2)

## End(Not run)

ShallowShocks Shallow Shocks (M >= 6.0) in OFF Tohoku Area for 1885-1980

Description

Earthquakes data used by Yosihiko Ogata in his 1988 JASA paper.

Usage

data(ShallowShocks)

Format

A data.frame with the following variables:

year: year of occurrence.
month: month of occurrence.
day: day of occurrence.
hour: hour of occurrence.
minute: minute of occurrence.
magnitude: magnitude on Richter’s scale.
type: type of earthquake: main (shock), foreshock, aftershock; according to Utsu.
Date: date in days starting from January 1st 1885.
energy.sqrt: square root of the energy expressed in erg.

Details

Quakes 213 and 214 were given exactly the same dates in Ogata (1988). Quake 214 has here been
delayed by 1 minute.
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Source

Ogata (1988) Table 1, pp 14-15.

References

Ogata, Yosihiko (1988) Statistical Models for Earthquake Occurrences and Residual Analysis for
Point Processes. Journal of the American Statistical Association 83: 9-27.

Examples

data(ShallowShocks)
## Reproduce Fig. 2 of Ogata 1988
layout(matrix(1:3, nrow = 3))
plot(ShallowShocks$Date,

cumsum(ShallowShocks$energy.sqrt) / 10^13,
type ="l",
xlab = "",
ylab = "",
main = "Cumulative square root of energy")

plot(ShallowShocks$Date,
cumsum(1+numeric(dim(ShallowShocks)[1])),
type ="l",
xlab = "",
ylab = "",
main = "Cumulative number of shocks")

plot(ShallowShocks$Date,
ShallowShocks$magnitude,
type = "h",
ylim = c(5,9),
xlab = "Time (days)",
ylab = "",
main = "Magnitude vs Occurrence time")

summary.CountingProcessSamplePath

Create and Explore Counting Process Sample Path Summaries

Description

These functions / methods are designed to test a CountingProcessSamplePath object against a
uniform Poisson process with rate 1.

Usage

## S3 method for class 'CountingProcessSamplePath'
summary(object, exact = TRUE,

lag.max = NULL, d = max(c(2, sqrt(length(object$ppspFct()))%/%5)), ...)
## S3 method for class 'CountingProcessSamplePath.summary'
print(x, digits = 5, ...)
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## S3 method for class 'CountingProcessSamplePath.summary'
plot(x, y, which = c(1,2,6,8), main,

caption = c(expression(paste("Uniform on ", Lambda," Test")),
"Berman's Test",
"Log Survivor Function",
expression(paste(U[k+1]," vs ", U[k])),
"Variance vs Mean Test",
"Wiener Process Test",
"Autocorrelation Fct.",
"Renewal Test"),

ask = FALSE, lag.max = NULL,
d = max(c(2, sqrt(length(eval(x$call[[2]])$ppspFct()))%/%5)),
...)

Arguments

object A CountingProcessSamplePath object.

exact Should an exact Kolmogorov test be used? See ks.test.

lag.max See renewalTestPlot.

d See renewalTestPlot.

x A CountingProcessSamplePath.summary object.

digits An integer, the number of digits to be used while printing summaries. See
round.

y Not used but required for compatibility with the plot method.

which If a subset of the test plots is required, specify a subset of the numbers 1:6.

main Title to appear above the plots, if missing the corresponding element of caption
will be used.

caption Default caption to appear above the plots or, if main is given, bellow it

ask A logical; if TRUE, the user is asked to hit the return key before each plot
generation, see par(ask=.).

... Passed to chisq.test used internally by summary, not used in plot and print.

Details

If the CountingProcessSamplePath object x is a the realization of a homogeneous Poisson process
then, conditioned on the number of events observed, the location of the events (jumps in N(t)) is
uniform on the period of observation. This is a basic property of the homogeneous Poisson pro-
cess derived in Chap. 2 of Cox and Lewis (1966) and Daley and Vere-Jones (2003). Component
UniformGivenN of a CountingProcessSamplePath.summary list contains the p.value of the Kol-
mogorov test of this uniform null hypothesis. The first graph generated by the plot method displays
the Kolgorov test graphically (i.e., the empirical cumulative distribution function and the null hyp-
tohesis (the diagonal). The two dotted lines on both sides of the diagonal correspond to 95 and 99%
(asymptotic) confidence intervals. This is the graph shown on Fig. 9 (p 19) of Ogata (1988). Notice
that the summary method allows you to compute the exact p.value.
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If we write xi the jump locations of the CountingProcessSamplePath object x and if the latter is
the realization of a homogeneous Poisson process then the intervals:

yi = xi+1 − xi

are realizations of iid rvs from an exponential distribution with rate 1 and the:

ui = 1− exp(−yi

are realizations of iid rvs from a uniform distribution on [0,1). The second graph generated by the
plot method tests this uniform distribution hypotheses with a Kolmogorov Test. This is the graph
shown on Fig. 10 (p 19) of Ogata (1988) which was suggested by Berman. This is also the one of
the graphs proposed by Brown et al (2002) (the other one is a Q-Q plot for the same quantities). The
two dotted lines on both sides of the diagonal correspond to 95 and 99% (asymptotic) confidence
intervals. Component BermanTest of a CountingProcessSamplePath.summary list contains the
p.value of the Kolmogorov test of this uniform null hypothesis.

Following the line of the previous paragraph, if the distribution of the yi is an exponential distribu-
tion with rate 1, then their survivor function is: exp(−y). This is what’s shown on the third graph
generated by the plot method, using a log scale for the ordinate. The point wise CI at 95 and 99%
are also drawn (dotted lines). This is the graph shown on Fig. 12 (p 20) of Ogata (1988)

If the ui of the second paragraph are realizations of iid uniform rvs on [0,1) then a plot of ui+1 vs ui
should fill uniformly the unit square [0,1) x [0,1). This is the fourth generated graph (the one shown
on Fig. 11 (p 20) of Ogata (1988)) by the plot method while the seventh graph shows the autocorre-
lation function of the uis. Component RenewalTest of a CountingProcessSamplePath.summary
list contains a slightly more elaborated (and quantitative) version of this test summarizing the fourth
graph (bottom right) generated by a call to renewalTestPlot. This list element is itself a list with
elements: chi2.95 (a logical), chi2.99 (a logical) and total (an integer). The bounds re-
sulting from repetitively testing a sequence of what are, under the null hypothesis, iid χ2 rvs are
obtained using Donsker’s Theorem (see bellow). For each lag the number of degrees of freedom
of the χ2 distribution is subtracted from each χ2 value. These centered values are then divided by
their sd (assuming the null hypothesis is correct). The cumulative sum of the centered and scaled
sequence is formed and is divided by the square root of the maximal lag used. This is "plugged-
in" the Donsker’s Theorem. The eighth graph of the plot method displays the resulting Wiener
process. With the tight confidence regions of Kendall et al (2007), see bellow.

If the xi are realization of a homogeneous Poisson process observed between 0 and T, then the
number of events observed on non-overlapping windows of length t should be iid Poisson rv with
mean t (and variance t). The observation period is therefore chopped into non-overlapping windows
of increasing length and the empirical variance of the event count is graphed versus the empiri-
cal mean, together with 95 and 99% CI (using a normal approximation). This is done by calling
internally varianceTime. That’s what’s generated by the fifth graph of the plot method. This
is the graph shown on Fig. 13 (p 20) of Ogata (1988). Component varianceTimeSummary of a
CountingProcessSamplePath.summary list contains a summary of this test, counting the number
of events out of each band.

The last graph generated by the plot method and the companions components, Wiener95 and
Wiener99, of a CountingProcessSamplePath.summary list represent "new" tests (as far as I know).
They are based on the fact that if the yi above are realizations of iid rvs following an exponential
distribution with rate 1, then the wi = yi − 1 are realizations of iid rvs with mean 0 and variance 1.
We can then form the partial sums:

Sn = w1 + · · ·+ wn
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and define the random right continuous with a left-hand limit functions on [0,1]:

1√
n
Sbntc

These functions are realizations of a process which converges (weakly) to a Wiener process on [0,1].
The proof of this statement is a corollary of Donsker’s Theorem and can be found on pp 146-147,
Theorem 14.1, of Billingsley (1999). I thank Vilmos Prokaj for pointing this reference to me.What
is then done is testing if the putative Wiener process is entirely within the tight boundaries defined
by Kendall et al (2007) for a true Wiener process, see crossTight.

Value

summary.CountingProcessSamplePath returns a CountingProcessSamplePath.summary object
which is a list with the following components:

UniformGivenN A numeric, the p.value of the Kolmogorov test of uniformity of the events times
given the number of events.

Wiener95 A logical: is the scaled martingale within the tight 95% confidence band?

Wiener99 A logical: is the scaled martingale within the tight 99% confidence band?

BermanTest A numeric, the p.value of the Kolmogorov test of uniformity of the scaled inter
events intervals.

RenewalTest A list with components: chi2.95, chi2.99 and total. chi2.95 resp. chi2.99
is a logical and is TRUE if the Wiener process obtained as described above is
within the "tight" 95% resp. 99% confidence band of Kendall et al (2007). total
gives the total number of lags. See renewalTestPlot.

varianceTime A varianceTime object.
varianceTimeSummary

A numeric vector with components: total, out95 and out99. total gives the
total number of window sizes explored. out95 gives the number of windows
within which the variance is out of the 95% confidence band. out99 gives the
number of windows within which the variance is out of the 99% confidence
band. See varianceTime.

n An integer, the number of events.

call The matched call.

Acknowledgments
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Warning

If you wan these tests to be meaningful do not apply them to the data you just used to fit your
conditional intensity model.
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Note

These functions / methods are designed to replace the summary.transformedTrain and plot.transformedTrain
ones. The former have a more general design.

Of course to be fully usable, these functions must be coupled to functions allowing users to fit
conditional intensity models.The support for that in STAR is not complete yet but is coming soon.
See for now the example bellow.

The end of the example bellow (not ran by default) shows that the coverage probability of the
Wiener Process confidence bands are really good even for small (50) sample sizes.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Patrick Billingsley (1999) Convergence of Probability Measures. Wiley - Interscience.

Brillinger, D. R. (1988) Maximum likelihood analysis of spike trains of interacting nerve cells. Biol.
Cybern. 59: 189–200.

Brown, E. N., Barbieri, R., Ventura, V., Kass, R. E. and Frank, L. M. (2002) The time-rescaling
theorem and its application to neural spike train data analysis. Neural Computation 14: 325-346.

D. R. Cox and P. A. W. Lewis (1966) The Statistical Analysis of Series of Events. John Wiley and
Sons.

Daley, D. J. and Vere-Jones D. (2003) An Introduction to the Theory of Point Processes. Vol. 1.
Springer.

Ogata, Yosihiko (1988) Statistical Models for Earthquake Occurrences and Residual Analysis for
Point Processes. Journal of the American Statistical Association 83: 9-27.

Johnson, D.H. (1996) Point process models of single-neuron discharges. J. Computational Neuro-
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fr/%7Exian/kmr04.rev.pdf

See Also

mkCPSP, as.CPSP, plot.CountingProcessSamplePath, print.CountingProcessSamplePath, varianceTime,
crossTight, renewalTestPlot, ks.test

Examples

## Not run:
## load one spike train data set of STAR
data(e060824spont)
## Create the CountingProcessSamplePath object
n1spt.cp <- as.CPSP(e060824spont[["neuron 1"]])
## print it
n1spt.cp
## plot it

http://www.ceremade.dauphine.fr/%7Exian/kmr04.rev.pdf
http://www.ceremade.dauphine.fr/%7Exian/kmr04.rev.pdf
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plot(n1spt.cp)
## get the summary
## Notice the warning due to few identical interspike intervals
## leading to an inaccurate Berman's test.
summary(n1spt.cp)

## Simulate data corresponding to a renewal process with
## an inverse Gaussian ISI distribution in the spontaneous
## regime modulated by a multiplicative stimulus whose time
## course is a shifted and scaled chi2 density.
## Define the "stimulus" function
stimulus <- function(t,

df=5,
tonset=5,
timeFactor=5,
peakFactor=10) {

dchisq((t-tonset)*timeFactor,df=df)*peakFactor
}
## Define the conditional intensity / hazard function
hFct <- function(t,

tlast,
df=5,
tonset=5,
timeFactor=5,
peakFactor=10,
mu=0.075,
sigma2=3
) {

hinvgauss(t-tlast,mu=mu,sigma2=sigma2)*exp(stimulus(t,df,tonset,timeFactor,peakFactor))

}
## define the function simulating the train with the thinning method
makeTrain <- function(tstop=10,

peakCI=200,
preTime=5,
df=5,
tonset=5,
timeFactor=5,
peakFactor=10,
mu=0.075,
sigma2=3) {

result <- numeric(500) - preTime - .Machine$double.eps
result.n <- 500
result[1] <- 0
idx <- 1
currentTime <- result[1]
while (currentTime < tstop+preTime) {

currentTime <- currentTime+rexp(1,peakCI)
p <- hFct(currentTime,

result[idx],
df=df,
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tonset=tonset+preTime,
timeFactor=timeFactor,
peakFactor=peakFactor,
mu=mu,
sigma2=sigma2)/peakCI

rthreshold <- runif(1)
if (p>1) stop("Wrong peakCI")
while(p < rthreshold) {

currentTime <- currentTime+rexp(1,peakCI)
p <- hFct(currentTime,

result[idx],
df=df,
tonset=tonset+preTime,
timeFactor=timeFactor,
peakFactor=peakFactor,
mu=mu,
sigma2=sigma2)/peakCI

if (p>1) stop("Wrong peakCI")
rthreshold <- runif(1)

}
idx <- idx+1
if (idx > result.n) {

result <- c(result,numeric(500)) - preTime - .Machine$double.eps
result.n <- result.n + 500

}
result[idx] <- currentTime

}

result[preTime < result & result <= tstop+preTime] - preTime

}
## set the seed
set.seed(20061001)
## "make" the train
t1 <- makeTrain()
## create the corresponding CountingProcessSamplePath
## object
cpsp1 <- mkCPSP(t1)
## print it
cpsp1
## test it
cpsp1.summary <- summary(cpsp1)
cpsp1.summary
plot(cpsp1.summary)
## Define a function returning the conditional intensity function (cif)
ciFct <- function(t,

tlast,
df=5,
tonset=5,
timeFactor=5,
peakFactor=10,
mu=0.075,
sigma2=3
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) {

sapply(t, function(x) {
if (x <= tlast[1]) return(1/mu)
y <- x-max(tlast[tlast<x])
hinvgauss(y,mu=mu,sigma2=sigma2)*exp(stimulus(x,df,tonset,timeFactor,peakFactor))

}
)

}
## Compute the cif of the train
tt <- seq(0,10,0.001)
lambda.true <- ciFct(tt,cpsp1$ppspFct())
## plot it together with the events times
## Notice that the representation is somewhat inaccurate, the cif
## is in fact a left continuous function
plot(tt,lambda.true,type="l",col=2)
rug(cpsp1$ppspFct())
## plot the integrated intensity function and the counting process
plot(tt,cumsum(lambda.true)*0.001,type="l",col=2)
lines(cpsp1)
## define a function doing the time transformation / rescaling
## by integrating the cif and returning another CountingProcessSamplePath
transformCPSP <- function(cpsp,

ciFct,
CIFct,
method=c("integrate","discrete"),
subdivisions=100,
...
) {

if (!inherits(cpsp,"CountingProcessSamplePath"))
stop("cpsp should be a CountingProcessSamplePath objet")

st <- cpsp$ppspFct()
n <- length(st)
from <- cpsp$from
to <- cpsp$to
if (missing(CIFct)) {

if (method[1] == "integrate") {
lwr <- c(from,st)
upr <- c(st,to)
Lambda <- sapply(1:(n+1),

function(idx)
integrate(ciFct,

lower=lwr[idx],
upper=upr[idx],
subdivisions=subdivisions,
...)$value

)
Lambda <- cumsum(Lambda)
st <- Lambda[1:n]
from <- 0
to <- Lambda[n+1]
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} ## End of conditional on method[1] == "integrate"
if (method[1] == "discrete") {

lwr <- c(from,st)
upr <- c(st,to)
xx <- unlist(lapply(1:(n+1),

function(idx) seq(lwr[idx],
upr[idx],
length.out=subdivisions)

)
)

Lambda <- cumsum(ciFct(xx[-length(xx)])*diff(xx))
Lambda <- Lambda - Lambda[1]
st <- Lambda[(1:n)*subdivisions]
from <- 0
to <- Lambda[length(Lambda)]

} ## End of conditional on method[1] == "discrete"
} else {

result <- CIFct(c(from,st,to))
result <- result-result[1]
from <- result[1]
to <- result[n+2]
st <- result[2:(n+1)]

} ## End of conditional on missing(CIFct)
mkCPSP(st,from,to)

}
## transform cpsp1
cpsp1t <- transformCPSP(cpsp1,function(t) ciFct(t,cpsp1$ppspFct()))
## test it
cpsp1t.summary <- summary(cpsp1t)
cpsp1t.summary
plot(cpsp1t.summary)
## compare the finite sample performances of the
## Kolmogorov test (test the uniformity of the
## jump times given the number of events) with the
## ones of the new "Wiener process test"
empiricalCovProb <- function(myRates=c(10,(1:8)*25,(5:10)*50,(6:10)*100),

nbRep=1000,
exact=NULL
) {

b95 <- function(t) 0.299944595870772 + 2.34797018726827*sqrt(t)
b99 <- function(t) 0.313071417065285 + 2.88963206734397*sqrt(t)
result <- matrix(numeric(4*length(myRates)),nrow=4)
colnames(result) <- paste(myRates)
rownames(result) <- c("ks95","ks99","wp95","wp99")
for (i in 1:length(myRates)) {
rate <- myRates[i]
partial <- sapply(1:nbRep,

function(repIdx) {
st <- cumsum(rexp(5*rate,rate))
while(max(st) < 1) st <- c(st,max(st)+cumsum(rexp(5*rate,rate)))
st <- st[st<=1]
ks <- ks.test(st,punif,exact=exact)$p.value
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w <- (st*rate-seq(st))/sqrt(rate)
c(ks95=0.95 < ks,

ks99=0.99 < ks,
wp95=any(w < -b95(st) | b95(st) < w),
wp99=any(w < -b99(st) | b99(st) < w)
)

}
)

result[,i] <- apply(partial,1,sum)
}

attr(result,"nbRep") <- nbRep
attr(result,"myRates") <- myRates
attr(result,"call") <- match.call()
result/nbRep

}

plotCovProb <- function(covprob,ci=0.95) {

nbMax <- max(attr(covprob,"myRates"))
plot(c(0,nbMax),c(0.94,1),

type="n",
xlab="Expected number of Spikes",
ylab="Empirical cov. prob.",xaxs="i",yaxs="i")

nbRep <- attr(covprob,"nbRep")
polygon(c(0,nbMax,nbMax,0),

c(rep(qbinom((1-ci)/2,nbRep,0.95)/nbRep,2),rep(qbinom(1-(1-ci)/2,nbRep,0.95)/nbRep,2)),
col="grey50",border=NA)

polygon(c(0,nbMax,nbMax,0),
c(rep(qbinom((1-ci)/2,nbRep,0.99)/nbRep,2),rep(qbinom(1-(1-ci)/2,nbRep,0.99)/nbRep,2)),

col="grey50",border=NA)
nbS <- attr(covprob,"myRates")
points(nbS,1-covprob[1,],pch=3)
points(nbS,1-covprob[2,],pch=3)
points(nbS,1-covprob[3,],pch=1)
points(nbS,1-covprob[4,],pch=1)

}
system.time(covprobA <- empiricalCovProb())
plotCovProb(covprobA)

## End(Not run)

summary.transformedTrain

Summary of transformedTrain Objects
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Description

Generates a concise summary of transformedTrain objects. It is mostly intended for use in batch
processing situations where a decision to stop with the current model or go on with a more compli-
cated one must be made automatically.

Usage

## S3 method for class 'transformedTrain'
summary(object, ...)

Arguments

object a transformedTrain object.

... additional arguments passed to varianceTime.

Details

summary.transformedTrain computes summary statistics corresponding to plot 1, 2 and 5 of
plot.transformedTrain.

The first plot tests the uniformity of the spikes (transformed) times on the (transformed) observation
window using a KS test. If the ecdf of the (transformed) times is within the 95% band then the
first element of component uniformOnTTime of the returned list is set to TRUE. It is set to FALSE
otherwise. The second component is relative to the 99% band.

The second plot tests the exponential distribution of the intervals between successive spikes trans-
formed times. Again if the empirical curve stays within the 95, respectively 99%, confidence band,
the first, respectively second, element of component BermanTest of the returned list is set to TRUE.
It is set to FALSE otherwise.

The fifth plot tests that the variance is equal to the length of the (transformed) observation time for
object, using point-wise CI. If n different observation times are defined over the whole observation
window, we expect (1 - CI/100)*n points to be out with an approximate binomial distribution. For
each CI defined (95 and 99%, by default), component VarTime of the returned list contains the
probability of observing a number as large as or smaller than the one observed under the binomial
null hypothesis.

Value

A list with the following 3 components:

uniformOnTTime

A two named components vector of boolean.

BermanTest A two named components vector of boolean.

VarTime A named component vector with as many components as passed to varianceTime
via the ... argument with p-values of a binomial distribution.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>
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References

Ogata, Yosihiko (1988) Statistical Models for Earthquake Occurrences and Residual Analysis for
Point Processes. Journal of the American Statistical Association 83: 9-27.
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See Also

transformedTrain, plot.transformedTrain, mkGLMdf

Examples

## Not run:
## Let us consider neuron 1 of the CAL2S data set
data(CAL2S)
CAL2S <- lapply(CAL2S,as.spikeTrain)
CAL2S[["neuron 1"]]
renewalTestPlot(CAL2S[["neuron 1"]])
summary(CAL2S[["neuron 1"]])
## Make a data frame with a 4 ms time resolution
cal2Sdf <- mkGLMdf(CAL2S,0.004,0,60)
## keep the part relative to neuron 1, 2 and 3 separately
n1.cal2sDF <- cal2Sdf[cal2Sdf$neuron=="1",]
n2.cal2sDF <- cal2Sdf[cal2Sdf$neuron=="2",]
n3.cal2sDF <- cal2Sdf[cal2Sdf$neuron=="3",]
## remove unnecessary data
rm(cal2Sdf)
## Extract the elapsed time since the second to last and
## third to last for neuron 1. Normalise the result.
n1.cal2sDF[c("rlN.1","rsN.1","rtN.1")] <- brt4df(n1.cal2sDF,"lN.1",2,c("rlN.1","rsN.1","rtN.1"))
## load mgcv library
library(mgcv)
## fit a model with a tensorial product involving the last
## three spikes and using a cubic spline basis for the last two
## To gain time use a fixed df regression spline
n1S.fitA <- gam(event ~ te(rlN.1,rsN.1,bs="cr",fx=TRUE) + rtN.1,data=n1.cal2sDF,family=binomial(link="logit"))
## transform time
N1.Lambda <- transformedTrain(n1S.fitA)
## check out the resulting spike train using the fact
## that transformedTrain objects inherit from spikeTrain
## objects
N1.Lambda
## Use more formal checks
summary(N1.Lambda)
plot(N1.Lambda,which=c(1,2,4,5),ask=FALSE)
## Transform spike trains of neuron 2 and 3
N2.Lambda <- transformedTrain(n1S.fitA,n2.cal2sDF$event)
N3.Lambda <- transformedTrain(n1S.fitA,n3.cal2sDF$event)
## Check interactions
summary(N2.Lambda %frt% N1.Lambda)
summary(N3.Lambda %frt% N1.Lambda)
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plot(N2.Lambda %frt% N1.Lambda,ask=FALSE)
plot(N3.Lambda %frt% N1.Lambda,ask=FALSE)

## End(Not run)

thinProcess Simulate and Analyse Data From a Model Fitted With gss

Description

Functions thinProcess simulates a spike train and mkSimFct returns a simulating function from
a gssanova fitted model. Ogata’s thinning simulation method is used. Functions maxIntensity,
mkSelf and mkMappedI are utility functions for the first two. Function mkPostSimAnalysis returns
a function analysing a simulated spike train. Functions mkSimFct and mkPostSimAnalysis return
functions which can in principle be safely used in parallel applications, that is, they have everything
they need in their closure.

Usage

thinProcess(object, m2uFctList, trueData, formerSpikes,
intensityMax, ...)

maxIntensity(object, dfWithTime, ...)
mkSelf(m2uSelf)
mkMappedI(m2uI, lag = 1)
mkSimFct(object, m2uFctList, trueData, formerSpikes,

intensityMax, ...)
mkPostSimAnalysis(stList, trainNumber = 1, timeWindow,

objects, dfFct)

Arguments

object A ssanova or a ssanova0 object.

m2uFctList A list of functions. There should be as many functions as there are "internal"
variables in object. An internal variable is a variable whose value is changed
by the occurrence of a spike, like the elapsed time since the last spike of the
simulated neuron, the duration of a former inter spike interval of a given lag,
etc. The names of the components (functions) of the list should be the names of
the variables. Each function should correspond to the map to uniform function
used before fitting the model.

m2uSelf The map to uniform function used to transform the actual elapsed time since the
last spike values before fitting the model.

m2uI The map to uniform function used to transform the actual former ISI durations
before fitting the model.

lag The considered lag (integer > 0).

trueData A data frame containing the "true data" of the simulated epoch. This is to en-
sure that "external" variables such as the elapsed time since the last spike of a
functionally coupled neuron are available.
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formerSpikes A vector of previous spike times. This is to make the computation of former
inter spike intervals possible in every case.

intensityMax The value of the maximal intensity. If missing function maxIntensity is called
to estimate it.

dfWithTime A data frame with one variable named "time". The latter variable is used to
obtain the bin width with which the original spike train was discretized.

stList The list of spikeTrain objects with one of the trains partly simulated. A single
(partly simulated) spikeTrain object can also be used.

trainNumber An integer, the index of the modeled and simulated spike train in stList.

timeWindow A numeric vector of length 1 or 2. This argument specifies the time domain
over which the fits contained in argument objects was performed. It is implic-
itly assumed that the (partial) simulation was performed outside this time do-
main. When a vector of length 1 is used the fitting time domain is taken as
c(0,timeWindow).

objects A list of ssanova or ssanova0 objects. Each element of the list is a "model"
with which analysis will be performed. A single ssanova or ssanova0 object
can also be used.

dfFct A function whose argument is a the same as the first argument of function
mkGLMdf and which returns a data frame suitable for use as argument newdata
in predict.ssanova.

... Additional arguments passed to optim which is called internally with the "BFGS"
method in function maxIntensity. In functions thinProcess and mkSimFct,
additional argument passed to function maxIntensity if necessary.

Details

Function thinProcess simulates a spike train with Ogata’s thinning method (Ogata, 1981). The
latter method required the maximal intensity of the process to be known. If such is not the case, that
is, if argument intensityMax is left missing, a proposed maximal intensity is obtained with func-
tion maxIntensity. If during the simulation an actual intensity larger than the given intensityMax
occurs, the simulation is interrupted and an error message is generated.

Function maxIntensity uses the central point of the variable space as its intial guess. The "BFGS"
method of optim is used to find the maximal intensity.

Function mkPostSimAnalysis uses function findGlobals in order to find among the functions
called by dfFct the ones which are defined in the global environment. These functions are copied
in the environment (Gentleman and Ihaka, 2000) of the function returned by mkPostSimAnalysis.
If the global environment defined function called by dfFct do not call themselves over functions
defined in the global environment, the returned function can be safely used as argument fun of
package snow’s clusterApply function.

Value

thinProcess returns a spikeTrain object.

maxIntensity returns the "proposed" maximal intensity (in Hz).

mkSelf returns a function taking two arguments: self(proposedtime,st).
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mkMappedI returns a function taking two arguments: function(proposedtime,st).

mkSimFct returns a function simulating a spikeTrain object. The simulation is done with function
thinProcess. The returned function takes no argument. The maximal intensity required by the
thinning method is stored in the closure of the returned function.

mkPostSimAnalysis returns a function taking a spikeTrain object as its single argument. This
function returns a list of lists. Each list correspond to one of the models in argument objects. Each
sub list has two components: lpp (the log predictive probability) and ttt (the time transformed
train, a CountingProcessSamplePath object).

Note

These functions are designed to implement a rather specific type of analysis which is exposed in the
"big STAR tutorial" available at: http://sites.google.com/site/spiketrainanalysiswithr/.
The exemple below shows a "complete" analysis, more details and other exemples can be found in
the big tutorial.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Gentleman, R. and Ihaka, R. (2000) Lexical Scope and Statistical Computing. Journal of Compu-
tational and Graphical Statistics 9: 491-508.

Ogata, Y. (1981) On Lewis’ simulation method for point processes. IEEE Transactions on Informa-
tion Theory IT-29: 23-31.

See Also

gssanova, as.spikeTrain, mkGLMdf, mkCPSP,

Examples

## Not run:
## The run times given in the sequel were measured on a laptop
## with a dual core CPU: 2x Intel Core 2 Duo CPU P9500 @ 2.53GHz
## The RAM was 4 GB large. The PC ran Ubuntu 9.04 and R-2.9.2
## compiled with a dynamically link ATLAS version of BLAS.

## Start by loading the data set into the work space.
data(e060824spont)
## Get a summary of neuron 1 spike train.
summary(e060824spont[["neuron 1"]])
## Run an automatic analysis of the train (takes ~ 4.22 s)
reportHTML(e060824spont[["neuron 1"]],filename="e060824spont_1",otherST=e060824spont[c(2)],maxiter=100)
## The renewal tests show that the discharge is not the one of
## a renewal process. The cross-correlogram shows no sign of
## coupling between the two neurons of the data set.

## Compute the partial autocorrelation function to get an idea

http://sites.google.com/site/spiketrainanalysiswithr/
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## of how many previous interspike intervals (ISIs) should be
## included in the model.
acf(diff(e060824spont[["neuron 1"]]),type="partial")
## The pacf plot suggests that the last ISI should be enough.
## Build the data frame.
DFA <- mkGLMdf(e060824spont[["neuron 1"]],0.004,0,59)
DFA <- within(DFA,i1 <- isi(DFA,lag=1))
DFA <- DFA[complete.cases(DFA),]

## look a the ECDF of the elapsed time since the last spike,
## that is, variable lN.1 of the data frame and of the last
## ISI (variable i1 of the data frame).
layout(matrix(1:2,nc=2))
with(DFA,plot(ecdf(lN.1),pch="."))
with(DFA,lines(range(lN.1),c(0,1),col=2,lty=2))
with(DFA,plot(ecdf(i1),pch="."))
with(DFA,lines(range(i1),c(0,1),col=2,lty=2))
## The distributions of these varaibles are clearly (and not
## surprisingly) non-uniform.

## Build emprirical functions mapping the two variables to uniform
## ones
m2u1 <- mkM2U(DFA,"lN.1",0,28.5)
m2ui <- mkM2U(DFA,"i1",0,28.5,maxiter=200)
DFA <- within(DFA,e1t <- m2u1(lN.1))
DFA <- within(DFA,i1t <- m2ui(i1))
## Cehck that the transformations did their job.
with(DFA,plot(ecdf(e1t),pch="."))
with(DFA,lines(range(e1t),c(0,1),col=2,lty=2))
with(DFA,plot(ecdf(i1t),pch="."))
with(DFA,lines(range(i1t),c(0,1),col=2,lty=2))

## The heavy computations to follow will be performed
## in parallel using the snow package.
library(snow)
## Define the number of slaves
nbSlaves <- 2
## Create the cluster.
cl <- makeCluster(rep("localhost",nbSlaves),type="SOCK")
## load STAR on each slave.
clusterEvalQ(cl,library(STAR))

## Define a function making a function performing the
## fit with gssanova and suitable for a parallel implementation.
## The returned function does in addition time transform the
## spike train on the time window not used for the fit.
mkPFct <- function(df=DFA) {

df
PFct <- function(gtime,

fmla=event~e1t*i1t,
seed=20061001) {

GF <- gssanova(fmla,
data=subset(df, time %in% gtime),
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family="binomial",
seed=seed)

tt <- GF %tt% subset(df, !(time %in% gtime))
list(GF=GF,tt=tt)

}
PFct

}

PFct1 <- mkPFct()
## Now PFct1 returns a list with two elements: the "fit object" (GF)
## and the time transformed train (tt)

## Create a list suitable as the second argument for clusterApply
gtList <- list(early=with(DFA,time[time<=29.5]),

late=with(DFA,time[time>29.5])
)

## Fit and test a model with interaction between the (mapped)
## ellasped time since the last spike and the (mapped) last
## ISI. This takes ~ 95 s.
GF1.e060824spont.1 <- clusterApply(cl, gtList, PFct1)

## Look a the test battery
plot(summary(GF1.e060824spont.1[[1]][[2]]),which=c(1,2,4,6))
plot(summary(GF1.e060824spont.1[[2]][[2]]),which=c(1,2,4,6))

## Fit and test a model without interaction between the (mapped)
## ellasped time since the last spike and the (mapped) last
## ISI. This takes ~ 61 s.
GF2.e060824spont.1 <- clusterApply(cl, gtList, PFct1,fmla=event ~ e1t+i1t)

## Look a the test battery
plot(summary(GF2.e060824spont.1[[1]][[2]]),which=c(1,2,4,6))
plot(summary(GF2.e060824spont.1[[2]][[2]]),which=c(1,2,4,6))

## Compute the "predictive log probability" with Model 2
## (without interaction). This takes ~ 1.6 s
(GF2.e060824spont.1.logProb <- predictLogProb(GF2.e060824spont.1[[1]][[1]],subset(DFA,time>29.5))+predictLogProb(GF2.e060824spont.1[[2]][[1]],subset(DFA,time<=29.5)))

## Compute the "predictive log probability" with Model 1
## (with interaction). This takes ~ 3.5 s
(GF1.e060824spont.1.logProb <- predictLogProb(GF1.e060824spont.1[[1]][[1]],subset(DFA,time>29.5))+predictLogProb(GF1.e060824spont.1[[2]][[1]],subset(DFA,time<=29.5)))

## Prepare the simulations using Model 1 and 2
## Define a function initializing a mrg32k3a RNG from
## the rstream package on each slave
initMRG32k3a <- function(cl) {

clusterEvalQ(cl,library(rstream))
invisible(clusterCall(cl,

function() {
cmd <- parse(text=".s <- new(\"rstream.mrg32k3a\")")
eval(cmd,env=globalenv())

}
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)
)

cat(paste(paste(clusterEvalQ(cl,rstream.sample(.s)),collapse=","),"\n"))
invisible(clusterEvalQ(cl,rstream.reset(.s)))

}

## Define a function returning a list of independent and packed
## mrg32k3a rngs.
mkLecuyerList <- function(cl, ## a snow cluster

seed,
...) {

nbWorkers <- length(cl)
lecuyerList <- vector(mode="list",length=nbWorkers)
for (wIdx in 1:nbWorkers) {
if (wIdx == 1) {

if (!missing(seed)) lecuyerList[[1]] <- new("rstream.mrg32k3a",seed=seed)
else lecuyerList[[1]] <- new("rstream.mrg32k3a")

} else lecuyerList[[wIdx]] <- new("rstream.mrg32k3a")
rstream.packed(lecuyerList[[wIdx]]) <- TRUE

}
lecuyerList

}

## Define a function setting the uniform rng of each slave
## to one of the independent mrg32k3a rngs created by
## mkLecuyerList.
clusterSetupRSTREAM <- function(cl, ## a snow cluster

lecuyerList
) {

setLecuyer <- function(packedlecuyer) {
assign("lecuyer",packedlecuyer,env=globalenv())
cmd <- parse(text="rstream.packed(lecuyer)<-FALSE")
eval(cmd,env=globalenv())

}

clusterApply(cl,lecuyerList,setLecuyer)
clusterEvalQ(cl,rstream.RNG(lecuyer))

}

## Load package rstream on master.
library(rstream)
## Initialize mrg32k3a rngs on each slave.
initMRG32k3a(cl)
## Create the list of independent mrg32k3a rngs
## on master.
theList <- mkLecuyerList(cl,seed=rep(20061001,6))
## Set the uniform rng of each slave to one of the
## independent mrg32k3a rngs just created.
clusterSetupRSTREAM(cl,theList)
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## Define a list of map to uniform functions
fList.e060824spont.1 <- list(e1t=mkSelf(m2u1), i1t=mkMappedI(m2ui))
## Define a simulating function from Model 1 fitted on the
## half of the data set.
simF1.e060824spont.1 <- mkSimFct(object=GF1.e060824spont.1[[1]][[1]],

m2uFctList=fList.e060824spont.1,
trueData=subset(DFA,time>29.5),

formerSpikes=with(DFA,time[event==1][time[event==1] <= 29.5])
)

## Define a simulating function from Model 2 fitted on the
## half of the data set.
simF2.e060824spont.1 <- mkSimFct(object=GF2.e060824spont.1[[1]][[1]],

m2uFctList=fList.e060824spont.1,
trueData=subset(DFA,time>29.5),

formerSpikes=with(DFA,time[event==1][time[event==1] <= 29.5])
)

## Define the number of simulations to carry out.
nbRep <- 100
## Simulate spike trains in parallel using Model 1.
## This takes ~ 670 s.
sim1.e060824spont.1 <- clusterApply(cl,

rep(nbRep/nbSlaves,nbSlaves),
function(n,SF) lapply(1:n, function(idx) SF()),
SF=simF1.e060824spont.1)

## Convert the returned list of lists into a single
## big list.
sim1.e060824spont.1 <- c(sim1.e060824spont.1[[1]],

sim1.e060824spont.1[[2]])

## Simulate spike trains in parallel using Model 1.
## This takes ~ 425 s.
sim2.e060824spont.1 <- clusterApply(cl,

rep(nbRep/nbSlaves,nbSlaves),
function(n,SF) lapply(1:n, function(idx) SF()),
SF=simF2.e060824spont.1)

## Convert the returned list of lists into a single
## big list.
sim2.e060824spont.1 <- c(sim2.e060824spont.1[[1]],

sim2.e060824spont.1[[2]])

## Define a function generating automatically the
## proper data frame from the simulated data.
mkDF.e060824spont.1 <- function(stList) {

DF <- mkGLMdf(stList,0.004,0,59)
DF <- within(DF,i1 <- isi(DF,lag=1))
DF <- DF[complete.cases(DF),]
DF <- within(DF,e1t <- m2u1(lN.1))
DF <- within(DF,i1t <- m2ui(i1))
DF
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}

## Define a function analysis the simulated trains with
## both Model 1 and 2.
PSAFct <- mkPostSimAnalysis(e060824spont[[1]],1,29.5,list(GF1.e060824spont.1[[1]][[1]],GF2.e060824spont.1[[1]][[1]]),mkDF.e060824spont.1)

## Analyze the simulations done with Model 1.
## This takes ~ 400 s
sim1.e060824spont.1.psa <- clusterApply(cl,sim1.e060824spont.1,PSAFct)

## Analyze the simulations done with Model 2.
## This takes ~ 400 s
sim2.e060824spont.1.psa <- clusterApply(cl,sim2.e060824spont.1,PSAFct)

## Get the log predictive probability assuming Model 1 for
## simulations done with Model 1.
sim1.e060824spont.1.lpp1 <- sapply(sim1.e060824spont.1.psa, function(l) l[[1]]$lpp)
## Get the log predictive probability assuming Model 2 for
## simulations done with Model 1.
sim1.e060824spont.1.lpp2 <- sapply(sim1.e060824spont.1.psa, function(l) l[[2]]$lpp)
## Get the log predictive probability assuming Model 1 for
## simulations done with Model 2.
sim2.e060824spont.1.lpp1 <- sapply(sim2.e060824spont.1.psa, function(l) l[[1]]$lpp)
## Get the log predictive probability assuming Model 2 for
## simulations done with Model 2.
sim2.e060824spont.1.lpp2 <- sapply(sim2.e060824spont.1.psa, function(l) l[[2]]$lpp)

## Get the observed log predictive probability with each model.
e060824spont.1.lpp1 <- predictLogProb(GF1.e060824spont.1[[1]][[1]],subset(DFA,time>29.5))
e060824spont.1.lpp2 <- predictLogProb(GF2.e060824spont.1[[1]][[1]],subset(DFA,time>29.5))

## Get the difference of observed log predictive probabilities.
e060824spont.1.lppDiff <- e060824spont.1.lpp1 - e060824spont.1.lpp2

## Look at the correlation between the log predictive probabilities
## obtained with Model 1 and 2 with data simulated with Model 1.
plot(sim1.e060824spont.1.lpp1,sim1.e060824spont.1.lpp2,main="log prob with M2 vs log prob with M1 when M1 is true",xlab="log prob with M1",ylab="log prob with M2")

## Plot the ECDF of the log predictive probabilities obtained
## with Model 1 with data simulated with Model 1.
plot(ecdf(sim1.e060824spont.1.lpp1),pch=".",main="log prob with Model 1 when Model 1 is true")
## Show the observed value of this statistic.
segments(e060824spont.1.lpp1,0,e060824spont.1.lpp1,sum(sim1.e060824spont.1.lpp1 <= e060824spont.1.lpp1)/nbRep,col=2,lwd=2)
segments(-1600,sum(sim1.e060824spont.1.lpp1 <= e060824spont.1.lpp1)/nbRep,e060824spont.1.lpp1,sum(sim1.e060824spont.1.lpp1 <= e060824spont.1.lpp1)/nbRep,col=2,lwd=2)
## Plot the ECDF of the log predictive probabilities obtained
## with Model 2 with data simulated with Model 1.
plot(ecdf(sim1.e060824spont.1.lpp2),pch=".",main="log prob with Model 2 when Model 1 is true")
## Show the observed value of this statistic.
segments(e060824spont.1.lpp2,0,e060824spont.1.lpp2,sum(sim1.e060824spont.1.lpp2 <= e060824spont.1.lpp2)/nbRep,col=2,lwd=2)
segments(-1800,sum(sim1.e060824spont.1.lpp2 <= e060824spont.1.lpp2)/nbRep,e060824spont.1.lpp2,sum(sim1.e060824spont.1.lpp2 <= e060824spont.1.lpp2)/nbRep,col=2,lwd=2)

## Plot the ECDF of the difference of the log predictive probabilities
## obtained with data simulated with Model 1.
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plot(ecdf(sim1.e060824spont.1.lpp1-sim1.e060824spont.1.lpp2),pch=".",main="log prob with M1 - log prob with M2 when M1 is true")
## Show the observed value of this statistic.
segments(e060824spont.1.lppDiff,0,e060824spont.1.lppDiff,sum(sim1.e060824spont.1.lpp1-sim1.e060824spont.1.lpp2<=e060824spont.1.lppDiff)/nbRep,col=2,lwd=2)
segments(-10,sum(sim1.e060824spont.1.lpp1-sim1.e060824spont.1.lpp2<=e060824spont.1.lppDiff)/nbRep,e060824spont.1.lppDiff,sum(sim1.e060824spont.1.lpp1-sim1.e060824spont.1.lpp2<=e060824spont.1.lppDiff)/nbRep,col=2,lwd=2)

## Look at the correlation between the log predictive probabilities
## obtained with Model 1 and 2 with data simulated with Model 2.
plot(sim2.e060824spont.1.lpp1,sim2.e060824spont.1.lpp2,main="log prob with M2 vs log prob with M1 when M2 is true",xlab="log prob with M1",ylab="log prob with M2")
## Plot the ECDF of the log predictive probabilities obtained
## with Model 1 with data simulated with Model 2.
plot(ecdf(sim2.e060824spont.1.lpp1),pch=".",main="log prob with Model 1 when Model 2 is true")
## Show the observed value of this statistic.
segments(e060824spont.1.lpp1,0,e060824spont.1.lpp1,sum(sim2.e060824spont.1.lpp1 <= e060824spont.1.lpp1)/nbRep,col=2,lwd=2)
segments(-2000,sum(sim2.e060824spont.1.lpp1 <= e060824spont.1.lpp1)/nbRep,e060824spont.1.lpp1,sum(sim2.e060824spont.1.lpp1 <= e060824spont.1.lpp1)/nbRep,col=2,lwd=2)
## Plot the ECDF of the log predictive probabilities obtained
## with Model 2 with data simulated with Model 2.
plot(ecdf(sim2.e060824spont.1.lpp2),pch=".",main="log prob with Model 2 when Model 2 is true")
## Show the observed value of this statistic.
segments(e060824spont.1.lpp2,0,e060824spont.1.lpp2,sum(sim2.e060824spont.1.lpp2 <= e060824spont.1.lpp2)/nbRep,col=2,lwd=2)
segments(-2000,sum(sim2.e060824spont.1.lpp2 <= e060824spont.1.lpp2)/nbRep,e060824spont.1.lpp2,sum(sim2.e060824spont.1.lpp2 <= e060824spont.1.lpp2)/nbRep,col=2,lwd=2)
## Plot the ECDF of the difference of the log predictive probabilities
## obtained with data simulated with Model 1.
## Make sure that the scale of the x axis is right.
xlim=c(min(c(-e060824spont.1.lppDiff,sim2.e060824spont.1.lpp2-sim2.e060824spont.1.lpp1)),max(sim2.e060824spont.1.lpp2-sim2.e060824spont.1.lpp1))
plot(ecdf(sim2.e060824spont.1.lpp2-sim2.e060824spont.1.lpp1),pch=".",main="log prob with M2 - log prob with M1 when M2 is true",xlim=xlim)
## Show the observed value of this statistic.
points(-e060824spont.1.lppDiff,0,pch=16,col=2)

## Stop the snow cluster.
stopCluster(cl)

## End(Not run)

transformedTrain Performs Time Transformation of Spike Trains Fitted with glm or gam

Description

Transform spike times from a glm or gam fitted model as defined by Ogata (1988) and Brown et al
(2002). If the model structure is "correct" and if the model parameters are properly estimated the
result of the time transformation should be the realization of a Poisson process with rate 1.

Usage

transformedTrain(obj, target = obj$data$event, select)

Arguments

obj An object returned by gam or glm.
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target A binary (0,1) vector of integers with the same length as dim(obj$data)[1]
or a vector of indexes giving the discretized times of events. All these indexes
should then be included in seq(dim(obj$data)[1]).

select A character string defining a condition to be fulfilled by the event in order to be
selected, like: time <= 6. This is evaluated after parsing in the data frame of
obj.

Details

The fitted.values component of obj contains the (estimated) probability to observe a spike in
each time bin where the covariates required by the fitted model were defined. It is then straightfor-
ward to show using the concept of product integral (Kalbfleisch and Prentice, 2002; Andersen et
al, 1993),provided that the time bin width is small enough to have a very small probability in each
bin, that the cumulated sum of these probabilities is the expected number of events observed up to a
given time. This expected number of events which is returned by transformedTrain. It is also the
result of the "time transformation" proposed by Ogata (1988) and brought to the spike train analysis
field under the name "time rescaling (theorem)" by Brown et al (2002).

transformedTrain can also be used to transform the times of the spikes of neurons whose spike
trains were simultaneously recorded and discretized in exactly the same way as the neuron used to
generate obj. This is useful to explore the possibility of functional interactions between a putative
pre-synaptic neuron (whose spike train would correspond to argument target) and a post-synaptic
one used to generate obj.

Value

transformedTrain returns an object of class transformedTrain inheriting from class spikeTrain.
The object is fundamentally a numeric vector with strictly increasing elements containing the trans-
formed times (or the expected number of events).

Note

As mentioned only the spikes for which the covariates of the model are available have their times
transformed. That practically means that the length of the transformedTrain object returned by
function transformedTrain can be shorter than the length of the original spikeTrain object (or
more precisely than the number of spikes defined in target). If one works with a model involving
the elapsed times since the last three spikes then the fourth spike of the train will be the first to be
transformed. You should therefore expect some left truncation of the data at the beginning of each
acquisition epoch.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Ogata, Yosihiko (1988) Statistical Models for Earthquake Occurrences and Residual Analysis for
Point Processes. Journal of the American Statistical Association 83: 9-27.

Brown, E. N., Barbieri, R., Ventura, V., Kass, R. E. and Frank, L. M. (2002) The time-rescaling
theorem and its application to neural spike train data analysis. Neural Computation 14: 325-346.
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Kalbfleisch, John D. and Prentice, Ross L. (2002) The Statistical Analysis of Failure Time Data.
Wiley Interscience.

Andersen, Per Kragh, Borgan, Ornulf, Gill, Richard D. and Keiding, Niels (1993) Statistical Models
Based on Counting Processes. Springer-Verlag.

See Also

plot.transformedTrain, summary.transformedTrain, mkGLMdf, data.frame, glm, mgcv

Examples

## Not run:
## Let us consider neuron 1 of the CAL2S data set
data(CAL2S)
CAL2S <- lapply(CAL2S,as.spikeTrain)
CAL2S[["neuron 1"]]
renewalTestPlot(CAL2S[["neuron 1"]])
summary(CAL2S[["neuron 1"]])
## Make a data frame with a 4 ms time resolution
cal2Sdf <- mkGLMdf(CAL2S,0.004,0,60)
## keep the part relative to neuron 1, 2 and 3 separately
n1.cal2sDF <- cal2Sdf[cal2Sdf$neuron=="1",]
n2.cal2sDF <- cal2Sdf[cal2Sdf$neuron=="2",]
n3.cal2sDF <- cal2Sdf[cal2Sdf$neuron=="3",]
## remove unnecessary data
rm(cal2Sdf)
## Extract the elapsed time since the second to last and
## third to last for neuron 1. Normalise the result.
n1.cal2sDF[c("rlN.1","rsN.1","rtN.1")] <- brt4df(n1.cal2sDF,"lN.1",2,c("rlN.1","rsN.1","rtN.1"))
## load mgcv library
library(mgcv)
## fit a model with a tensorial product involving the last
## three spikes and using a cubic spline basis for the last two
## To gain time use a fixed df regression spline
n1S.fitA <- gam(event ~ te(rlN.1,rsN.1,bs="cr",fx=TRUE) + rtN.1,data=n1.cal2sDF,family=binomial(link="logit"))
## transform time
N1.Lambda <- transformedTrain(n1S.fitA)
## check out the resulting spike train using the fact
## that transformedTrain objects inherit from spikeTrain
## objects
N1.Lambda
## Use more formal checks
summary(N1.Lambda)
plot(N1.Lambda,which=c(1,2,4,5),ask=FALSE)
## Transform spike trains of neuron 2 and 3
N2.Lambda <- transformedTrain(n1S.fitA,n2.cal2sDF$event)
N3.Lambda <- transformedTrain(n1S.fitA,n3.cal2sDF$event)
## Check interactions
summary(N2.Lambda %frt% N1.Lambda)
summary(N3.Lambda %frt% N1.Lambda)
plot(N2.Lambda %frt% N1.Lambda,ask=FALSE)
plot(N3.Lambda %frt% N1.Lambda,ask=FALSE)
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## End(Not run)

varianceTime Variance-Time Analysis for Spike Trains

Description

Performs Variance-Time Analysis for a Spike Train (or any univariate time series) assuming a Pois-
son Process with the same Rate as the Spike Train.

Usage

varianceTime(spikeTrain, CI = c(0.95, 0.99), windowSizes)
is.varianceTime(obj)
## S3 method for class 'varianceTime'
plot(x, style = c("default", "Ogata"),

unit = "s", xlab, ylab, main, sub, xlim, ylim, ...)

Arguments

spikeTrain a spikeTrain object or a vector which can be coerced to such an object.

obj a object to test against a varianceTime object.

x a varianceTime object.

CI a numeric vector with at most two elements. The coverage probability of the
confidence intervals.

windowSizes a numeric increasing vector of positive numbers. The window sizes used to split
the spike train.

style a character. The style of the plot, "default" or "Ogata".

unit a character. The unit in which the spike times are expressed.

xlab a character. The x label.

ylab a character. The y label.

main a character. The title.

sub a character. The subtitle.

xlim a numeric. See plot.

ylim a numeric. See plot.

... see plot.

Details

See Fig. 5 of Ogata (1988) for details. The confidence intervals are obtained with a Normal approx-
imation of the Poisson distribution.
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Value

varianceTime returns a list of class varianceTime with the following elements:

s2 numeric vector of empirical variance.

sigma2 numeric vector of expected variance under the Poisson hypothesis.

ciUp a numeric vector or a 2 rows matrix with the upper limits of the confidence
interval(s).

ciLow a numeric vector or a 2 rows matrix with the lower limits of the confidence
interval(s).

windowSizes numeric vector of window sizes actually used.

CI a numeric vector, the coverage probabilities of the confidence intervals.

call the matched call

plot.varianceTime is used for its side effect: a graph is produced.

is.varianceTime returns TRUE if its argument is a varianceTime object and FALSE otherwise.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com> and Chong Gu <chong@stat.purdue.edu>
for a correction on the sampling variance of the variance of a normal distribution.

References

Ogata, Yosihiko (1988) Statistical Models for Earthquake Occurrences and Residual Analysis for
Point Processes. Journal of the American Statistical Association 83: 9-27.

See Also

acf.spikeTrain, renewalTestPlot

Examples

## Replicate (almost) Fig. 5 of Ogata 1988
data(ShallowShocks)
vtShallow <- varianceTime(ShallowShocks$Date,,c(5,10,20,40,60,80,seq(100,500,by = 25))*10)
is.varianceTime(vtShallow)
plot(vtShallow, style="Ogata")
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weibullMLE Maximum Likelihood Parameter Estimation of a Weibull Model with
Possibly Censored Data

Description

Estimate Weibull model parameters by the maximum likelihood method using possibly censored
data.

Usage

weibullMLE(yi, ni = numeric(length(yi)) + 1,
si = numeric(length(yi)) + 1, shape.min = 0.05, shape.max = 5)

Arguments

yi vector of (possibly binned) observations or a spikeTrain object.

ni vector of counts for each value of yi; default: numeric(length(yi))+1.

si vector of counts of uncensored observations for each value of yi; default: numeric(length(yi))+1.

shape.min numeric, the inital guess of the minimal possible value of the shape parameter,
used by optimise.

shape.max numeric, the inital guess of the maximal possible value of the shape parameter,
used by optimise.

Details

There is no closed form expression for the MLE of a Weibull distribution. The numerical method
implemented here uses the profile likelihood described by Kalbfleisch (1985) pp 56-58.

In order to ensure good behavior of the numerical optimization routines, optimization is performed
on the log of the parameters (shape and scale).

Standard errors are obtained from the inverse of the observed information matrix at the MLE. They
are transformed to go from the log scale used by the optimization routine to the parameterization
requested.

Value

A list of class durationFit with the following components:

estimate the estimated parameters, a named vector.

se the standard errors, a named vector.

logLik the log likelihood at maximum.

r a function returning the log of the relative likelihood function.

mll a function returning the opposite of the log likelihood function using the log of
the parameters.

call the matched call.
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Note

The returned standard errors (component se) are valid in the asymptotic limit. You should plot
contours using function r in the returned list and check that the contours are reasonably close to
ellipses.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Kalbfleisch, J. G. (1985) Probability and Statistical Inference. Volume 2: Statistical Inference.
Springer-Verlag.

Lindsey, J.K. (2004) Introduction to Applied Statistics: A Modelling Approach. OUP.

See Also

Weibull, invgaussMLE, lnormMLE, gammaMLE

Examples

## Not run:
## Simulate sample of size 100 from a weibull distribution
set.seed(1102006,"Mersenne-Twister")
sampleSize <- 100
shape.true <- 2.5
scale.true <- 0.085
sampWB <- rweibull(sampleSize,shape=shape.true,scale=scale.true)
sampWBmleWB <- weibullMLE(sampWB)
rbind(est = sampWBmleWB$estimate,se = sampWBmleWB$se,true = c(shape.true,scale.true))

## Estimate the log relative likelihood on a grid to plot contours
Shape <- seq(sampWBmleWB$estimate[1]-4*sampWBmleWB$se[1],

sampWBmleWB$estimate[1]+4*sampWBmleWB$se[1],
sampWBmleWB$se[1]/10)

Scale <- seq(sampWBmleWB$estimate[2]-4*sampWBmleWB$se[2],
sampWBmleWB$estimate[2]+4*sampWBmleWB$se[2],
sampWBmleWB$se[2]/10)

sampWBmleWBcontour <- sapply(Shape, function(sh) sapply(Scale, function(sc) sampWBmleWB$r(sh,sc)))
## plot contours using a linear scale for the parameters
## draw four contours corresponding to the following likelihood ratios:
## 0.5, 0.1, Chi2 with 2 df and p values of 0.95 and 0.99
X11(width=12,height=6)
layout(matrix(1:2,ncol=2))
contour(Shape,Scale,t(sampWBmleWBcontour),

levels=c(log(c(0.5,0.1)),-0.5*qchisq(c(0.95,0.99),df=2)),
labels=c("log(0.5)",

"log(0.1)",
"-1/2*P(Chi2=0.95)",
"-1/2*P(Chi2=0.99)"),

xlab="shape",ylab="scale",
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main="Log Relative Likelihood Contours"
)

points(sampWBmleWB$estimate[1],sampWBmleWB$estimate[2],pch=3)
points(shape.true,scale.true,pch=16,col=2)
## The contours are not really symmetrical about the MLE we can try to
## replot them using a log scale for the parameters to see if that improves
## the situation
contour(log(Shape),log(Scale),t(sampWBmleWBcontour),

levels=c(log(c(0.5,0.1)),-0.5*qchisq(c(0.95,0.99),df=2)),
labels="",
xlab="log(shape)",ylab="log(scale)",
main="Log Relative Likelihood Contours",
sub="log scale for the parameters")

points(log(sampWBmleWB$estimate[1]),log(sampWBmleWB$estimate[2]),pch=3)
points(log(shape.true),log(scale.true),pch=16,col=2)

## make a parametric boostrap to check the distribution of the deviance
nbReplicate <- 10000
sampleSize <- 100
system.time(

devianceWB100 <- replicate(nbReplicate,{
sampWB <- rweibull(sampleSize,shape=shape.true,scale=scale.true)
sampWBmleWB <- weibullMLE(sampWB)
-2*sampWBmleWB$r(shape.true,scale.true)

}
)

)[3]

## Get 95 and 99% confidence intervals for the QQ plot
ci <- sapply(1:nbReplicate,

function(idx) qchisq(qbeta(c(0.005,0.025,0.975,0.995),
idx,
nbReplicate-idx+1),

df=2)
)

## make QQ plot
X <- qchisq(ppoints(nbReplicate),df=2)
Y <- sort(devianceWB100)
X11()
plot(X,Y,type="n",

xlab=expression(paste(chi[2]^2," quantiles")),
ylab="MC quantiles",
main="Deviance with true parameters after ML fit of gamma data",
sub=paste("sample size:", sampleSize,"MC replicates:", nbReplicate)
)

abline(a=0,b=1)
lines(X,ci[1,],lty=2)
lines(X,ci[2,],lty=2)
lines(X,ci[3,],lty=2)
lines(X,ci[4,],lty=2)
lines(X,Y,col=2)

## End(Not run)
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%tt% Time Transformation Using a gssanova Objet

Description

Performs time transformation using a gssanova fit. If the model is correct, the result of the trans-
formation should be a Poisson process with rate 1.

Usage

gssObj %tt% dataFrame

Arguments

gssObj a gssanova or a gssanova0 object.

dataFrame a data.frame with variables corresponding to the ones used in the gssanova
call giving rise to gssObj.

Details

The binary operator applies predict.ssanova with the left side as the first argument and the right
side as the second argument. The right side (dataFrame) must therefore contain the variables
included in the formula used in the call giving rise to gssObj. The result of the predict method
call is then transformed with an inverse logistic function or with an exponential (depending on the
family argument, "binomial" or "poisson", used in the previous gssanova call). The cumulative
sum is computed, that is, the integrated conditional intensity, and its value at the events times is
returned as a CountingProcessSamplePath object.

Value

A CountingProcessSamplePath object.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Gu C. (2002) Smoothing Spline ANOVA Models. Springer.

Brillinger, D. R. (1988) Maximum likelihood analysis of spike trains of interacting nerve cells. Biol.
Cybern. 59: 189–200.

Brown, E. N., Barbieri, R., Ventura, V., Kass, R. E. and Frank, L. M. (2002) The time-rescaling
theorem and its application to neural spike train data analysis. Neural Computation 14: 325-346.

Ogata, Yosihiko (1988) Statistical Models for Earthquake Occurrences and Residual Analysis for
Point Processes. Journal of the American Statistical Association 83: 9-27.
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See Also

gssanova, predict.ssanova, mkGLMdf, mkCPSP, summary.CountingProcessSamplePath

Examples

## Not run:
## load e060517spont data set
data(e060517spont)
## make a data frame using a 2 ms bin width
e060517spontDF <- mkGLMdf(e060517spont,0.002,0,60)
## Keep data relevant to neuron 3
e060517spontDFn3 <- e060517spontDF[e060517spontDF$neuron == "3",]
## Split data in an "early" and a "late" part
e060517spontDFn3e <- e060517spontDFn3[e060517spontDFn3$time <= 30,]
e060517spontDFn3l <- e060517spontDFn3[e060517spontDFn3$time > 30,]
## fit the late part with a nonparametric renewal model
e060517spontDFn3lGF <- gssanova(event ~ lN.3, data=e060517spontDFn3l,family="binomial")
## transform the time of the early part
e060517spont.n3e.tt <- e060517spontDFn3lGF %tt% e060517spontDFn3e
## Test the goodness of fit
e060517spont.n3e.tt
summary(e060517spont.n3e.tt)
plot(summary(e060517spont.n3e.tt))

## End(Not run)
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