
Package ‘SSLR’
July 20, 2020

Type Package

Title Semi-Supervised Classification and Regression Methods

Version 0.9.2

Maintainer Francisco Jesús Palomares Alabarce <fpalomares@correo.ugr.es>

URL https://dicits.ugr.es/software/SSLR/

Description Providing a collection of techniques for semi-supervised
classification and regression. In semi-supervised problem, both labeled and unlabeled
data are used to train a classifier. The package includes a collection of
semi-supervised learning techniques: self-training, co-training, democratic,
decision tree, random forest, 'S3VM' ... etc, with a fairly intuitive interface
that is easy to use.

License GPL-3

ByteCompile true

Depends R (>= 2.10)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

Imports stats, parsnip, plyr, dplyr (>= 0.8.0.1), magrittr, purrr,
rlang (>= 0.3.1), proxy, methods, generics, utils, RANN,
foreach, RSSL

LinkingTo Rcpp, RcppArmadillo

Suggests caret, tidymodels, e1071, C50, kernlab, testthat, doParallel,
tidyverse, survival, xgboost, covr, kknn, randomForest, ranger,
MASS, nlme, knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation yes

Author Francisco Jesús Palomares Alabarce [aut, cre]
(<https://orcid.org/0000-0002-0499-7034>),
José Manuel Benítez [ctb] (<https://orcid.org/0000-0002-2346-0793>),
Isaac Triguero [ctb] (<https://orcid.org/0000-0002-0150-0651>),
Christoph Bergmeir [ctb] (<https://orcid.org/0000-0002-3665-9021>),
Mabel González [ctb] (<https://orcid.org/0000-0003-0152-444X>)

1

https://dicits.ugr.es/software/SSLR/

2 R topics documented:

Repository CRAN

Date/Publication 2020-07-20 11:10:02 UTC

R topics documented:
abalone . 4
best_split . 4
best_split,DecisionTreeClassifier-method . 5
breast . 5
calculate_gini . 6
check_value . 6
check_xy_interface . 7
coBC . 7
coBCCombine . 9
coBCG . 10
coBCReg . 12
coBCRegG . 13
coffee . 15
COREG . 15
DecisionTreeClassifier-class . 16
democratic . 16
democraticCombine . 18
democraticG . 19
EMLeastSquaresClassifierSSLR . 20
EMNearestMeanClassifierSSLR . 22
EntropyRegularizedLogisticRegressionSSLR . 23
fit.model_sslr . 24
fit_decision_tree . 25
fit_decision_tree,DecisionTreeClassifier-method . 25
fit_random_forest,RandomForestSemisupervised-method 26
fit_xy.model_sslr . 27
fit_x_u . 28
fit_x_u.model_sslr . 28
get_class_max_prob . 29
get_class_mean_prob . 29
get_function . 30
get_function_generic . 30
get_levels_categoric . 31
get_most_frequented . 31
get_value_mean . 31
get_x_y . 32
gini_or_variance . 32
gini_prob . 33
grow_tree . 33
grow_tree,DecisionTreeClassifier-method . 34
knn_regression . 34
LaplacianSVMSSLR . 35

R topics documented: 3

LinearTSVMSSLR . 36
load_parsnip . 37
load_RANN . 38
load_RSSL . 38
MCNearestMeanClassifierSSLR . 38
newDecisionTree . 40
Node-class . 40
nullOrNumericOrCharacter-class . 40
oneNN . 41
predict,DecisionTreeClassifier-method . 41
predict,RandomForestSemisupervised-method . 42
predict.coBC . 42
predict.COREG . 43
predict.democratic . 44
predict.EMLeastSquaresClassifierSSLR . 44
predict.EMNearestMeanClassifierSSLR . 45
predict.EntropyRegularizedLogisticRegressionSSLR 45
predict.LaplacianSVMSSLR . 46
predict.LinearTSVMSSLR . 46
predict.MCNearestMeanClassifierSSLR . 47
predict.model_sslr_fitted . 47
predict.OneNN . 48
predict.RandomForestSemisupervised_fitted . 48
predict.selfTraining . 49
predict.setred . 50
predict.snnrce . 50
predict.snnrceG . 51
predict.SSLRDecisionTree_fitted . 52
predict.triTraining . 52
predict.TSVMSSLR . 53
predict.USMLeastSquaresClassifierSSLR . 53
predict.WellSVMSSLR . 54
predict_inputs . 54
predict_inputs,DecisionTreeClassifier-method . 55
print.model_sslr . 55
RandomForestSemisupervised-class . 55
selfTraining . 56
selfTrainingG . 58
setred . 61
setredG . 63
snnrce . 66
SSLRDecisionTree . 68
SSLRRandomForest . 69
train_generic . 71
triTraining . 72
triTrainingCombine . 73
triTrainingG . 74
TSVMSSLR . 77

4 best_split

USMLeastSquaresClassifierSSLR . 78
WellSVMSSLR . 80
wine . 81

Index 83

abalone Abalone

Description

Abalone

Usage

data(abalone)

Format

Predict the age of abalone from physical measurements

Source

https://archive.ics.uci.edu/ml/datasets/Abalone

best_split An S4 method to best split

Description

An S4 method to best split

Usage

best_split(object, ...)

Arguments

object DecisionTree object

... This parameter is included for compatibility reasons.

https://archive.ics.uci.edu/ml/datasets/Abalone

best_split,DecisionTreeClassifier-method 5

best_split,DecisionTreeClassifier-method

Best Split function

Description

Function to get best split in Decision Tree. Find the best split for node. "Beast" means that the mean
of impurity is the least possible. To find the best division. Let’s iterate through all the features. All
threshold / feature pairs will be computed in the numerical features. In the features that are not
numerical, We get the best group of possible values will be obtained based on an algorithm with the
function get_levels_categoric

Usage

S4 method for signature 'DecisionTreeClassifier'
best_split(object, X, y, parms)

Arguments

object DecisionTree object
X is data
y is class values
parms parms in function

Value

A list with: best_idx name of the feature with the best split or Null if it not be found best_thr:
threshold found in the best split, or Null if it not be found

breast Breast

Description

Breast

Usage

data(breast)

Format

: Diagnostic Wisconsin Breast Cancer Database

Source

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

6 check_value

calculate_gini Function calculate gini

Description

Function to calculate gini index. Formula is: 1 - n:num_classes sum probabilitie_class ^ 2

Usage

calculate_gini(column_factor)

Arguments

column_factor class values

check_value Check value in leaf

Description

Function to check value in leaf from numeric until character

Usage

check_value(value, threshold)

Arguments

value is the value in leaf node

threshold in leaf node

Value

TRUE if <= in numeric or %in% in factor

check_xy_interface 7

check_xy_interface Ceck interface x y

Description

Check interface

Usage

check_xy_interface(x, y)

Arguments

x data without class labels

y values class

coBC General Interface for CoBC model

Description

Co-Training by Committee (CoBC) is a semi-supervised learning algorithm with a co-training style.
This algorithm trains N classifiers with the learning scheme defined in the learner argument using
a reduced set of labeled examples. For each iteration, an unlabeled example is labeled for a classi-
fier if the most confident classifications assigned by the other N-1 classifiers agree on the labeling
proposed. The unlabeled examples candidates are selected randomly from a pool of size u. The
final prediction is the average of the estimates of the N regressors.

Usage

coBC(learner, N = 3, perc.full = 0.7, u = 100, max.iter = 50)

Arguments

learner model from parsnip package for training a supervised base classifier using a set
of instances. This model need to have probability predictions in classification
mode

N The number of classifiers used as committee members. All these classifiers are
trained using the gen.learner function. Default is 3.

perc.full A number between 0 and 1. If the percentage of new labeled examples reaches
this value the self-labeling process is stopped. Default is 0.7.

u Number of unlabeled instances in the pool. Default is 100.

max.iter Maximum number of iterations to execute in the self-labeling process. Default
is 50.

8 coBC

Details

For regression tasks, labeling data is very expensive computationally. Its so slow. This method
trains an ensemble of diverse classifiers. To promote the initial diversity the classifiers are trained
from the reduced set of labeled examples by Bagging. The stopping criterion is defined through the
fulfillment of one of the following criteria: the algorithm reaches the number of iterations defined
in the max.iter parameter or the portion of unlabeled set, defined in the perc.full parameter, is
moved to the enlarged labeled set of the classifiers.

Value

(When model fit) A list object of class "coBC" containing:

model The final N base classifiers trained using the enlarged labeled set.

model.index List of N vectors of indexes related to the training instances used per each classifier.
These indexes are relative to the y argument.

instances.index The indexes of all training instances used to train the N models. These indexes
include the initial labeled instances and the newly labeled instances. These indexes are relative
to the y argument.

model.index.map List of three vectors with the same information in model.index but the indexes
are relative to instances.index vector.

classes The levels of y factor in classification.

pred The function provided in the pred argument.

pred.pars The list provided in the pred.pars argument.

References

Avrim Blum and Tom Mitchell.
Combining labeled and unlabeled data with co-training.
In Eleventh Annual Conference on Computational Learning Theory, COLT’ 98, pages 92-100, New
York, NY, USA, 1998. ACM. ISBN 1-58113-057-0. doi: 10.1145/279943.279962.

Mohamed Farouk Abdel-Hady, Mohamed Farouk Abdel-Hady and Günther Palm.
Semi-supervised Learning for Regression with Cotraining by Committee
Institute of Neural Information Processing University of Ulm D-89069 Ulm, Germany

Examples

library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)

data(wine)

set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[train.index,]
test <- wine[-train.index,]

coBCCombine 9

cls <- which(colnames(wine) == "Wine")

#% LABELED
labeled.index <- createDataPartition(wine$Wine, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

#We need a model with probability predictions from parsnip
#https://tidymodels.github.io/parsnip/articles/articles/Models.html
#It should be with mode = classification

#For example, with Random Forest
rf <- rand_forest(trees = 100, mode = "classification") %>%

set_engine("randomForest")

m <- coBC(learner = rf,N = 3,
perc.full = 0.7,
u = 100,
max.iter = 3) %>% fit(Wine ~ ., data = train)

#Accuracy
predict(m,test) %>%

bind_cols(test) %>%
metrics(truth = "Wine", estimate = .pred_class)

coBCCombine Combining the hypothesis

Description

This function combines the probabilities predicted by the committee of classifiers.

Usage

coBCCombine(h.prob, classes)

Arguments

h.prob A list of probability matrices.

classes The classes in the same order that appear in the columns of each matrix in
h.prob.

Value

A probability matrix

10 coBCG

coBCG CoBC generic method

Description

CoBC is a semi-supervised learning algorithm with a co-training style. This algorithm trains N clas-
sifiers with the learning scheme defined in gen.learner using a reduced set of labeled examples.
For each iteration, an unlabeled example is labeled for a classifier if the most confident classifica-
tions assigned by the other N-1 classifiers agree on the labeling proposed. The unlabeled examples
candidates are selected randomly from a pool of size u.

Usage

coBCG(y, gen.learner, gen.pred, N = 3, perc.full = 0.7, u = 100, max.iter = 50)

Arguments

y A vector with the labels of training instances. In this vector the unlabeled in-
stances are specified with the value NA.

gen.learner A function for training N supervised base classifiers. This function needs two
parameters, indexes and cls, where indexes indicates the instances to use and cls
specifies the classes of those instances.

gen.pred A function for predicting the probabilities per classes. This function must be
two parameters, model and indexes, where the model is a classifier trained with
gen.learner function and indexes indicates the instances to predict.

N The number of classifiers used as committee members. All these classifiers are
trained using the gen.learner function. Default is 3.

perc.full A number between 0 and 1. If the percentage of new labeled examples reaches
this value the self-labeling process is stopped. Default is 0.7.

u Number of unlabeled instances in the pool. Default is 100.

max.iter Maximum number of iterations to execute in the self-labeling process. Default
is 50.

Details

coBCG can be helpful in those cases where the method selected as base classifier needs a learner
and pred functions with other specifications. For more information about the general coBC method,
please see coBC function. Essentially, coBC function is a wrapper of coBCG function.

Value

A list object of class "coBCG" containing:

model The final N base classifiers trained using the enlarged labeled set.

model.index List of N vectors of indexes related to the training instances used per each classifier.
These indexes are relative to the y argument.

coBCG 11

instances.index The indexes of all training instances used to train the N models. These indexes
include the initial labeled instances and the newly labeled instances. These indexes are relative
to the y argument.

model.index.map List of three vectors with the same information in model.index but the indexes
are relative to instances.index vector.

classes The levels of y factor.

Examples

library(SSLR)
library(caret)
Load Wine data set
data(wine)

cls <- which(colnames(wine) == "Wine")
x <- wine[, - cls] # instances without classes
y <- wine[, cls] # the classes
x <- scale(x) # scale the attributes

Prepare data
set.seed(20)
Use 50% of instances for training
tra.idx <- sample(x = length(y), size = ceiling(length(y) * 0.5))
xtrain <- x[tra.idx,] # training instances
ytrain <- y[tra.idx] # classes of training instances
Use 70% of train instances as unlabeled set
tra.na.idx <- sample(x = length(tra.idx), size = ceiling(length(tra.idx) * 0.7))
ytrain[tra.na.idx] <- NA # remove class information of unlabeled instances

Use the other 50% of instances for inductive testing
tst.idx <- setdiff(1:length(y), tra.idx)
xitest <- x[tst.idx,] # testing instances
yitest <- y[tst.idx] # classes of testing instances

Example: Training from a set of instances with 1-NN (knn3) as base classifier.
gen.learner1 <- function(indexes, cls)

caret::knn3(x = xtrain[indexes,], y = cls, k = 1)
gen.pred1 <- function(model, indexes)

predict(model, xtrain[indexes,])

set.seed(1)

trControl_coBCG <- list(gen.learner = gen.learner1, gen.pred = gen.pred1)
md1 <- train_generic(ytrain, method = "coBCG", trControl = trControl_coBCG)

Predict probabilities per instances using each model
h.prob <- lapply(

X = md1$model,
FUN = function(m) predict(m, xitest)

)
Combine the predictions

12 coBCReg

cls1 <- coBCCombine(h.prob, md1$classes)
table(cls1, yitest)

confusionMatrix(cls1, yitest)$overall[1]

Example: Training from a distance matrix with 1-NN (oneNN) as base classifier.
dtrain <- as.matrix(proxy::dist(x = xtrain, method = "euclidean", by_rows = TRUE))
gen.learner2 <- function(indexes, cls) {

m <- SSLR::oneNN(y = cls)
attr(m, "tra.idxs") <- indexes
m

}

gen.pred2 <- function(model, indexes) {
tra.idxs <- attr(model, "tra.idxs")
d <- dtrain[indexes, tra.idxs]
prob <- predict(model, d, distance.weighting = "none")
prob

}

set.seed(1)

trControl_coBCG2 <- list(gen.learner = gen.learner2, gen.pred = gen.pred2)
md2 <- train_generic(ytrain, method = "coBCG", trControl = trControl_coBCG2)

Predict probabilities per instances using each model
ditest <- proxy::dist(x = xitest, y = xtrain[md2$instances.index,],

method = "euclidean", by_rows = TRUE)

h.prob <- list()
ninstances <- nrow(dtrain)
for (i in 1:length(md2$model)) {

m <- md2$model[[i]]
D <- ditest[, md2$model.index.map[[i]]]
h.prob[[i]] <- predict(m, D)

}
Combine the predictions
cls2 <- coBCCombine(h.prob, md2$classes)
table(cls2, yitest)

confusionMatrix(cls2, yitest)$overall[1]

coBCReg General Interface coBCReg model

coBCRegG 13

Description

coBCReg is based on an ensemble of N diverse regressors. At each iteration and for each regressor,
the companion committee labels the unlabeled examples then the regressor select the most infor-
mative newly-labeled examples for itself, where the selection confidence is based on estimating the
validation error. The final prediction is the average of the estimates of the N regressors.

Usage

coBCReg(learner, N = 3, perc.full = 0.7, u = 100, max.iter = 50)

Arguments

learner model from parsnip package for training a supervised base classifier using a set
of instances. This model need to have probability predictions

N The number of classifiers used as committee members. All these classifiers are
trained using the gen.learner function. Default is 3.

perc.full A number between 0 and 1. If the percentage of new labeled examples reaches
this value the self-labeling process is stopped. Default is 0.7.

u Number of unlabeled instances in the pool. Default is 100.

max.iter Maximum number of iterations to execute in the self-labeling process. Default
is 50.

Details

For regression tasks, labeling data is very expensive computationally. Its so slow.

References

Mohamed Farouk Abdel-Hady, Mohamed Farouk Abdel-Hady and Günther Palm.
Semi-supervised Learning for Regression with Cotraining by Committee
Institute of Neural Information Processing University of Ulm D-89069 Ulm, Germany

coBCRegG Generic Interface coBCReg model

Description

coBCReg is based on an ensemble of N diverse regressors. At each iteration and for each regressor,
the companion committee labels the unlabeled examples then the regressor select the most infor-
mative newly-labeled examples for itself, where the selection confidence is based on estimating the
validation error. The final prediction is the average of the estimates of the N regressors.

14 coBCRegG

Usage

coBCRegG(
y,
gen.learner,
gen.pred,
N = 3,
perc.full = 0.7,
u = 100,
max.iter = 50,
gr = 1

)

Arguments

y A vector with the labels of training instances. In this vector the unlabeled in-
stances are specified with the value NA.

gen.learner A function for training N supervised base classifiers. This function needs two
parameters, indexes and cls, where indexes indicates the instances to use and cls
specifies the classes of those instances.

gen.pred A function for predicting the probabilities per classes. This function must be
two parameters, model and indexes, where the model is a classifier trained with
gen.learner function and indexes indicates the instances to predict.

N The number of classifiers used as committee members. All these classifiers are
trained using the gen.learner function. Default is 3.

perc.full A number between 0 and 1. If the percentage of new labeled examples reaches
this value the self-labeling process is stopped. Default is 0.7.

u Number of unlabeled instances in the pool. Default is 100.

max.iter Maximum number of iterations to execute in the self-labeling process. Default
is 50.

gr growing rate

Details

For regression tasks, labeling data is very expensive computationally. Its so slow.

References

Mohamed Farouk Abdel-Hady, Mohamed Farouk Abdel-Hady and Günther Palm.
Semi-supervised Learning for Regression with Cotraining by Committee
Institute of Neural Information Processing University of Ulm D-89069 Ulm, Germany

coffee 15

coffee Time series data set

Description

A dataset containing 56 times series z-normalized. Time series length is 286.

Usage

data(coffee)

Format

A data frame with 56 rows and 287 variables including the class.

Source

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

COREG General Interface for COREG model

Description

COREG is a semi-supervised learning for regression with a co-training style. This technique uses
two kNN regressors with different distance metrics. For each iteration, each regressor labels the
unlabeled example which can be most confidently labeled for the other learner, where the label-
ing confidence is estimated through considering the consistency of the regressor with the labeled
example set. The final prediction is made by averaging the predictions of both the refined kNN
regressors

Usage

COREG(max.iter = 50, k1 = 3, k2 = 5, p1 = 3, p2 = 5, u = 100)

Arguments

max.iter maximum number of iterations to execute the self-labeling process. Default is
50.

k1 parameter in first KNN

k2 parameter in second KNN

p1 distance order 1. Default is 3

p2 distance order 1. Default is 5

u Number of unlabeled instances in the pool. Default is 100.

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

16 democratic

Details

labeling data is very expensive computationally. Its so slow. For executing this model, we need
RANN installed.

References

Zhi-Hua Zhou and Ming Li.
Semi-Supervised Regression with Co-Training.
National Laboratory for Novel Software Technology Nanjing University, Nanjing 210093, China

Examples

library(SSLR)

m <- COREG(max.iter = 1)

DecisionTreeClassifier-class

Class DecisionTreeClassifier

Description

Class DecisionTreeClassifier Slots: max_depth, n_classes_, n_features_, tree_, classes, min_samples_split,
min_samples_leaf

democratic General Interface for Democratic model

Description

Democratic Co-Learning is a semi-supervised learning algorithm with a co-training style. This
algorithm trains N classifiers with different learning schemes defined in list gen.learners. During
the iterative process, the multiple classifiers with different inductive biases label data for each other.

Usage

democratic(learners, schemes = NULL)

Arguments

learners List of models from parsnip package for training a supervised base classifier
using a set of instances. This model need to have probability predictions

schemes List of schemes (col x names in each learner). Default is null, it means that
learner uses all x columns

democratic 17

Details

This method trains an ensemble of diverse classifiers. To promote the initial diversity the classifiers
must represent different learning schemes. When x.inst is FALSE all learners defined must be
able to learn a classifier from the precomputed matrix in x. The iteration process of the algorithm
ends when no changes occurs in any model during a complete iteration. The generation of the final
hypothesis is produced via a weigthed majority voting.

Value

(When model fit) A list object of class "democratic" containing:

W A vector with the confidence-weighted vote assigned to each classifier.

model A list with the final N base classifiers trained using the enlarged labeled set.

model.index List of N vectors of indexes related to the training instances used per each classifier.
These indexes are relative to the y argument.

instances.index The indexes of all training instances used to train the N models. These indexes
include the initial labeled instances and the newly labeled instances. These indexes are relative
to the y argument.

model.index.map List of three vectors with the same information in model.index but the indexes
are relative to instances.index vector.

classes The levels of y factor.

preds The functions provided in the preds argument.

preds.pars The set of lists provided in the preds.pars argument.

x.inst The value provided in the x.inst argument.

Examples

library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)

data(wine)

set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[train.index,]
test <- wine[-train.index,]

cls <- which(colnames(wine) == "Wine")

#% LABELED
labeled.index <- createDataPartition(wine$Wine, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

#We need a model with probability predictions from parsnip
#https://tidymodels.github.io/parsnip/articles/articles/Models.html
#It should be with mode = classification

18 democraticCombine

rf <- rand_forest(trees = 100, mode = "classification") %>%
set_engine("randomForest")

bt <- boost_tree(trees = 100, mode = "classification") %>%
set_engine("xgboost")

m <- democratic(learners = list(rf,bt)) %>% fit(Wine ~ ., data = train)

#' \donttest{
#Accuracy
predict(m,test) %>%

bind_cols(test) %>%
metrics(truth = "Wine", estimate = .pred_class)

#With schemes
set.seed(1)
m <- democratic(learners = list(rf,bt),

schemes = list(c("Malic.Acid","Ash"), c("Magnesium","Proline"))) %>%
fit(Wine ~ ., data = train)

#Accuracy
predict(m,test) %>%

bind_cols(test) %>%
metrics(truth = "Wine", estimate = .pred_class)

#'}

democraticCombine Combining the hypothesis of the classifiers

Description

This function combines the probabilities predicted by the set of classifiers.

Usage

democraticCombine(pred, W, classes)

Arguments

pred A list with the prediction for each classifier.

W A vector with the confidence-weighted vote assigned to each classifier during
the training process.

classes the classes.

democraticG 19

Value

The classification proposed.

democraticG Democratic generic method

Description

Democratic is a semi-supervised learning algorithm with a co-training style. This algorithm trains
N classifiers with different learning schemes defined in list gen.learners. During the iterative
process, the multiple classifiers with different inductive biases label data for each other.

Usage

democraticG(y, gen.learners, gen.preds)

Arguments

y A vector with the labels of training instances. In this vector the unlabeled in-
stances are specified with the value NA.

gen.learners A list of functions for training N different supervised base classifiers. Each
function needs two parameters, indexes and cls, where indexes indicates the
instances to use and cls specifies the classes of those instances.

gen.preds A list of functions for predicting the probabilities per classes. Each function
must be two parameters, model and indexes, where the model is a classifier
trained with gen.learner function and indexes indicates the instances to pre-
dict.

Details

democraticG can be helpful in those cases where the method selected as base classifier needs a
learner and pred functions with other specifications. For more information about the general
democratic method, please see democratic function. Essentially, democratic function is a wrap-
per of democraticG function.

Value

A list object of class "democraticG" containing:

W A vector with the confidence-weighted vote assigned to each classifier.

model A list with the final N base classifiers trained using the enlarged labeled set.

model.index List of N vectors of indexes related to the training instances used per each classifier.
These indexes are relative to the y argument.

instances.index The indexes of all training instances used to train the N models. These indexes
include the initial labeled instances and the newly labeled instances. These indexes are relative
to the y argument.

20 EMLeastSquaresClassifierSSLR

model.index.map List of three vectors with the same information in model.index but the indexes
are relative to instances.index vector.

classes The levels of y factor.

References

Yan Zhou and Sally Goldman.
Democratic co-learning.
In IEEE 16th International Conference on Tools with Artificial Intelligence (ICTAI), pages 594-602.
IEEE, Nov 2004. doi: 10.1109/ICTAI.2004.48.

EMLeastSquaresClassifierSSLR

General Interface for EMLeastSquaresClassifier model

Description

model from RSSL package

An Expectation Maximization like approach to Semi-Supervised Least Squares Classification

As studied in Krijthe & Loog (2016), minimizes the total loss of the labeled and unlabeled objects
by finding the weight vector and labels that minimize the total loss. The algorithm proceeds similar
to EM, by subsequently applying a weight update and a soft labeling of the unlabeled objects. This
is repeated until convergence.

By default (method="block") the weights of the classifier are updated, after which the unknown la-
bels are updated. method="simple" uses LBFGS to do this update simultaneously. Objective="responsibility"
corresponds to the responsibility based, instead of the label based, objective function in Krijthe &
Loog (2016), which is equivalent to hard-label self-learning.

Usage

EMLeastSquaresClassifierSSLR(
x_center = FALSE,
scale = FALSE,
verbose = FALSE,
intercept = TRUE,
lambda = 0,
eps = 1e-09,
y_scale = FALSE,
alpha = 1,
beta = 1,
init = "supervised",
method = "block",
objective = "label",
save_all = FALSE,
max_iter = 1000

)

EMLeastSquaresClassifierSSLR 21

Arguments

x_center logical; Should the features be centered?

scale Should the features be normalized? (default: FALSE)

verbose logical; Controls the verbosity of the output

intercept logical; Whether an intercept should be included

lambda numeric; L2 regularization parameter

eps Stopping criterion for the minimization

y_scale logical; whether the target vector should be centered

alpha numeric; the mixture of the new responsibilities and the old in each iteration of
the algorithm (default: 1)

beta numeric; value between 0 and 1 that determines how much to move to the new
solution from the old solution at each step of the block gradient descent

init objective character; "random" for random initialization of labels, "supervised"
to use supervised solution as initialization or a numeric vector with a coefficient
vector to use to calculate the initialization

method character; one of "block", for block gradient descent or "simple" for LBFGS
optimization (default="block")

objective character; "responsibility" for hard label self-learning or "label" for soft-label
self-learning

save_all logical; saves all classifiers trained during block gradient descent

max_iter integer; maximum number of iterations

References

Krijthe, J.H. & Loog, M., 2016. Optimistic Semi-supervised Least Squares Classification. In Inter-
national Conference on Pattern Recognition (To Appear).

Examples

library(tidyverse)
#' \donttest{
library(tidymodels)
library(caret)
library(SSLR)

data(breast)

set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]
test <- breast[-train.index,]

cls <- which(colnames(breast) == "Class")

#% LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)

22 EMNearestMeanClassifierSSLR

train[-labeled.index,cls] <- NA

m <- EMLeastSquaresClassifierSSLR() %>% fit(Class ~ ., data = train)

#Accuracy
predict(m,test) %>%

bind_cols(test) %>%
metrics(truth = "Class", estimate = .pred_class)

#' }

EMNearestMeanClassifierSSLR

General Interface for EMNearestMeanClassifier model

Description

model from RSSL package Semi-Supervised Nearest Mean Classifier using Expectation Maximiza-
tion

Expectation Maximization applied to the nearest mean classifier assuming Gaussian classes with a
spherical covariance matrix.

Starting from the supervised solution, uses the Expectation Maximization algorithm (see Dempster
et al. (1977)) to iteratively update the means and shared covariance of the classes (Maximization
step) and updates the responsibilities for the unlabeled objects (Expectation step).

Usage

EMNearestMeanClassifierSSLR(method = "EM", scale = FALSE, eps = 1e-04)

Arguments

method character; Currently only "EM"

scale Should the features be normalized? (default: FALSE)

eps Stopping criterion for the maximinimization

References

Dempster, A., Laird, N. & Rubin, D., 1977. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society. Series B, 39(1), pp.1-38.

Examples

library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)

EntropyRegularizedLogisticRegressionSSLR 23

data(breast)

set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]
test <- breast[-train.index,]

cls <- which(colnames(breast) == "Class")

#% LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- EMNearestMeanClassifierSSLR() %>% fit(Class ~ ., data = train)

#Accuracy
predict(m,test) %>%

bind_cols(test) %>%
metrics(truth = "Class", estimate = .pred_class)

EntropyRegularizedLogisticRegressionSSLR

General Interface for EntropyRegularizedLogisticRegression model

Description

model from RSSL package R Implementation of entropy regularized logistic regression implemen-
tation as proposed by Grandvalet & Bengio (2005). An extra term is added to the objective function
of logistic regression that penalizes the entropy of the posterior measured on the unlabeled exam-
ples.

Usage

EntropyRegularizedLogisticRegressionSSLR(
lambda = 0,
lambda_entropy = 1,
intercept = TRUE,
init = NA,
scale = FALSE,
x_center = FALSE

)

Arguments

lambda l2 Regularization

lambda_entropy Weight of the labeled observations compared to the unlabeled observations

intercept logical; Whether an intercept should be included

24 fit.model_sslr

init Initial parameters for the gradient descent
scale logical; Should the features be normalized? (default: FALSE)
x_center logical; Should the features be centered?

References

Grandvalet, Y. & Bengio, Y., 2005. Semi-supervised learning by entropy minimization. In L.
K. Saul, Y. Weiss, & L. Bottou, eds. Advances in Neural Information Processing Systems 17.
Cambridge, MA: MIT Press, pp. 529-536.

Examples

library(tidyverse)
library(caret)
library(tidymodels)
library(SSLR)

data(breast)

set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]
test <- breast[-train.index,]

cls <- which(colnames(breast) == "Class")

#% LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- EntropyRegularizedLogisticRegressionSSLR() %>% fit(Class ~ ., data = train)

#Accuracy
predict(m,test) %>%

bind_cols(test) %>%
metrics(truth = "Class", estimate = .pred_class)

fit.model_sslr Fit with formula and data

Description

Funtion to fit through the formula

Usage

S3 method for class 'model_sslr'
fit(object, formula = NULL, data = NULL, ...)

fit_decision_tree 25

Arguments

object is the model

formula is the formula

data is the total data train

... unused in this case

fit_decision_tree An S4 method to fit decision tree.

Description

An S4 method to fit decision tree.

Usage

fit_decision_tree(object, ...)

Arguments

object DecisionTree object

... This parameter is included for compatibility reasons.

fit_decision_tree,DecisionTreeClassifier-method

Fit decision tree

Description

method in class DecisionTreeClassifier used to build a Decision Tree

Usage

S4 method for signature 'DecisionTreeClassifier'
fit_decision_tree(
object,
X,
y,
min_samples_split = 20,
min_samples_leaf = ceiling(min_samples_split/3),
w = 0.5

)

26 fit_random_forest,RandomForestSemisupervised-method

Arguments

object A DecisionTreeClassifier object

X A object that can be coerced as data.frame. Training instances

y A vector with the labels of the training instances. In this vector the unlabeled
instances are specified with the value NA.

min_samples_split

the minimum number of observations to do split
min_samples_leaf

the minimum number of any terminal leaf node

w weight parameter ranging from 0 to 1

fit_random_forest,RandomForestSemisupervised-method

Fit Random Forest

Description

method in classRandomForestSemisupervised used to build a Decision Tree

Usage

S4 method for signature 'RandomForestSemisupervised'
fit_random_forest(
object,
X,
y,
mtry = 2,
trees = 500,
min_n = 2,
w = 0.5,
replace = TRUE,
tree_max_depth = Inf,
sampsize = if (replace) nrow(X) else ceiling(0.632 * nrow(X)),
min_samples_leaf = if (!is.null(y) && !is.factor(y)) 5 else 1,
allowParallel = TRUE

)

Arguments

object A RandomForestSemisupervised object

X A object that can be coerced as data.frame. Training instances

y A vector with the labels of the training instances. In this vector the unlabeled
instances are specified with the value NA.

mtry number of features in each decision tree

fit_xy.model_sslr 27

trees number of trees. Default is 5

min_n number of minimum samples in each tree

w weight parameter ranging from 0 to 1

replace replacing type in sampling

tree_max_depth maximum tree depth. Default is Inf

sampsize Size of sample. Default if (replace) nrow(x) else ceiling(.632*nrow(x))

min_samples_leaf

the minimum number of any terminal leaf node

allowParallel Execute Random Forest in parallel if doParallel is loaded. Default is TRUE

Value

list of decision trees

fit_xy.model_sslr Fit with x and y

Description

Funtion to fit with x and y

Usage

S3 method for class 'model_sslr'
fit_xy(object, x = NULL, y = NULL, ...)

Arguments

object is the model

x is a data frame or matrix with train dataset without objective feature. X have
labeled and unlabeled data

y is objective feature with labeled values and NA values in unlabeled data

... unused in this case

28 fit_x_u.model_sslr

fit_x_u fit_x_u object

Description

fit_x_u

Usage

fit_x_u(object, ...)

Arguments

object object

... other parameters to be passed

fit_x_u.model_sslr Fit with x , y (labeled data) and unlabeled data (x_U)

Description

Funtion to fit with x and y and x_U. Function calcule y with NA values and append in y param

Usage

S3 method for class 'model_sslr'
fit_x_u(object, x = NULL, y = NULL, x_U = NULL, ...)

Arguments

object is the model

x is a data frame or matrix with train dataset without objective feature. X only
have labeled data

y is objective feature with labeled values

x_U train unlabeled data without objective feature

... This parameter is included for compatibility reasons.

get_class_max_prob 29

get_class_max_prob Get most frequented

Description

Get value most frequented in vector Used in predictions. It calls a predict with type = "prob" in
Decision Tree

Usage

get_class_max_prob(trees, input)

Arguments

trees trees list

input is input to be predicted

get_class_mean_prob Get mean probability over all trees as prob vector

Description

Get mean probability over all trees as prob vector. It calls a predict with type = "prob" in Decision
Tree

Usage

get_class_mean_prob(trees, input)

Arguments

trees trees list

input is input to be predicted

30 get_function_generic

get_function FUNCTION TO GET FUNCTION METHOD

Description

FUNCTION TO GET FUNCTION METHOD SPECIFIC

Usage

get_function(met)

Arguments

met character

Value

method_train (function)

get_function_generic FUNCTION TO GET FUNCTION METHOD

Description

FUNCTION TO GET FUNCTION METHOD GENERIC

Usage

get_function_generic(met)

Arguments

met character

Value

method_train (function)

get_levels_categoric 31

get_levels_categoric Function to get gtoup from gini index

Description

Function to get group from gini index. Used in categorical variable From: https://freakonometrics.hypotheses.org/20736

Usage

get_levels_categoric(column, Y)

Arguments

column is the column
Y values

get_most_frequented Get most frequented

Description

Get value most frequented in vector Used in predictions

Usage

get_most_frequented(elements)

Arguments

elements vector with values

get_value_mean Get value mean

Description

Get value most frequented in vector Used in predictions. It calls a predict with type = "numeric" in
Decision Tree

Usage

get_value_mean(trees, input)

Arguments

trees trees list
input is input to be predicted

32 gini_or_variance

get_x_y FUNCTION TO GET REAL X AND Y WITH FORMULA AND DATA

Description

FUNCTION TO GET REAL X AND Y WITH FORMULA AND DATA

Usage

get_x_y(form, data)

Arguments

form formula

data data values, matrix, dataframe..

Value

x (matrix,dataframe...) and y(factor)

gini_or_variance Gini or Variance by column

Description

function used to calculate the gini coefficient or variance according to the type of the column. This
function is called for the creation of the decision tree

Usage

gini_or_variance(X)

Arguments

X column to calculate variance or gini

gini_prob 33

gini_prob Function to compute Gini index

Description

Function to compute Gini index From: https://freakonometrics.hypotheses.org/20736

Usage

gini_prob(y, classe)

Arguments

y values

classe classes

grow_tree An S4 method to grow tree.

Description

An S4 method to grow tree.

Usage

grow_tree(object, ...)

Arguments

object DecisionTree object

... This parameter is included for compatibility reasons.

34 knn_regression

grow_tree,DecisionTreeClassifier-method

Function grow tree

Description

Function to grow tree in Decision Tree

Usage

S4 method for signature 'DecisionTreeClassifier'
grow_tree(object, X, y, parms, depth = 0)

Arguments

object DecisionTree instance

X data values

y classes

parms parameters for grow tree

depth depth in tree

knn_regression knn_regression

Description

create model knn

Usage

knn_regression(k, x, y, p)

Arguments

k parameter in KNN model

x data

y vector labeled data

p distance order

LaplacianSVMSSLR 35

LaplacianSVMSSLR General Interface for LaplacianSVM model

Description

model from RSSL package Manifold regularization applied to the support vector machine as pro-
posed in Belkin et al. (2006). As an adjacency matrix, we use the k nearest neighbour graph based
on a chosen distance (default: euclidean).

Usage

LaplacianSVMSSLR(
lambda = 1,
gamma = 1,
scale = TRUE,
kernel = kernlab::vanilladot(),
adjacency_distance = "euclidean",
adjacency_k = 6,
normalized_laplacian = FALSE,
eps = 1e-09

)

Arguments

lambda numeric; L2 regularization parameter

gamma numeric; Weight of the unlabeled data

scale logical; Should the features be normalized? (default: FALSE)

kernel kernlab::kernel to use
adjacency_distance

character; distance metric used to construct adjacency graph from the dist func-
tion. Default: "euclidean"

adjacency_k integer; Number of of neighbours used to construct adjacency graph.

normalized_laplacian

logical; If TRUE use the normalized Laplacian, otherwise, the Laplacian is used

eps numeric; Small value to ensure positive definiteness of the matrix in the QP
formulation

References

Belkin, M., Niyogi, P. & Sindhwani, V., 2006. Manifold regularization: A geometric framework for
learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7, pp.2399-
2434.

36 LinearTSVMSSLR

Examples

library(tidyverse)
library(caret)
library(tidymodels)
library(SSLR)

data(breast)

set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]
test <- breast[-train.index,]

cls <- which(colnames(breast) == "Class")

#% LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

library(kernlab)
m <- LaplacianSVMSSLR(kernel=kernlab::vanilladot()) %>%

fit(Class ~ ., data = train)

#Accuracy
predict(m,test) %>%

bind_cols(test) %>%
metrics(truth = "Class", estimate = .pred_class)

LinearTSVMSSLR General Interface for LinearTSVM model

Description

model from RSSL package Implementation of the Linear Support Vector Classifier. Can be solved
in the Dual formulation, which is equivalent to SVM or the Primal formulation.

Usage

LinearTSVMSSLR(
C = 1,
Cstar = 0.1,
s = 0,
x_center = FALSE,
scale = FALSE,
eps = 1e-06,
verbose = FALSE,
init = NULL

)

load_parsnip 37

Arguments

C Cost variable

Cstar numeric; Cost parameter of the unlabeled objects

s numeric; parameter controlling the loss function of the unlabeled objects

x_center logical; Should the features be centered?

scale Whether a z-transform should be applied (default: TRUE)

eps Small value to ensure positive definiteness of the matrix in QP formulation

verbose logical; Controls the verbosity of the output

init numeric; Initial classifier parameters to start the convex concave procedure

Examples

library(tidyverse)
library(caret)
library(tidymodels)
library(SSLR)

data(breast)

set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]
test <- breast[-train.index,]

cls <- which(colnames(breast) == "Class")

#% LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- LinearTSVMSSLR() %>% fit(Class ~ ., data = train)

#Accuracy
predict(m,test) %>%

bind_cols(test) %>%
metrics(truth = "Class", estimate = .pred_class)

load_parsnip Load parsnip

Description

function to load parsnip package

38 MCNearestMeanClassifierSSLR

Usage

load_parsnip()

load_RANN Load parsnip

Description

function to load parsnip package

Usage

load_RANN()

load_RSSL Load RSSL

Description

function to load RSSL package

Usage

load_RSSL()

MCNearestMeanClassifierSSLR

General Interface for MCNearestMeanClassifier (Moment Con-
strained Semi-supervised Nearest Mean Classifier) model

Description

model from RSSL package Update the means based on the moment constraints as defined in Loog
(2010). The means estimated using the labeled data are updated by making sure their weighted
mean corresponds to the overall mean on all (labeled and unlabeled) data. Optionally, the estimated
variance of the classes can be re-estimated after this update is applied by setting update_sigma to
TRUE. To get the true nearest mean classifier, rather than estimate the class priors, set them to equal
priors using, for instance prior=matrix(0.5,2).

MCNearestMeanClassifierSSLR 39

Usage

MCNearestMeanClassifierSSLR(
update_sigma = FALSE,
prior = NULL,
x_center = FALSE,
scale = FALSE

)

Arguments

update_sigma logical; Whether the estimate of the variance should be updated after the means
have been updated using the unlabeled data

prior matrix; Class priors for the classes
x_center logical; Should the features be centered?
scale logical; Should the features be normalized? (default: FALSE)

References

Loog, M., 2010. Constrained Parameter Estimation for Semi-Supervised Learning: The Case of the
Nearest Mean Classifier. In Proceedings of the 2010 European Conference on Machine learning
and Knowledge Discovery in Databases. pp. 291-304.

Examples

library(tidyverse)
library(caret)
library(tidymodels)
library(SSLR)

data(breast)

set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]
test <- breast[-train.index,]

cls <- which(colnames(breast) == "Class")

#% LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- MCNearestMeanClassifierSSLR() %>% fit(Class ~ ., data = train)

#Accuracy
predict(m,test) %>%

bind_cols(test) %>%
metrics(truth = "Class", estimate = .pred_class)

40 nullOrNumericOrCharacter-class

newDecisionTree Function to create DecisionTree

Description

Function to create DecisionTree

Usage

newDecisionTree(max_depth)

Arguments

max_depth max depth in tree

Node-class Class Node for Decision Tree

Description

Class Node for Decision Tree Slots: gini, num_samples, num_samples_per_class, predicted_class_value,
feature_index threshold, left, right, probabilities

nullOrNumericOrCharacter-class

An S4 class to represent a class with more types values: null, numeric
or character

Description

An S4 class to represent a class with more types values: null, numeric or character

oneNN 41

oneNN 1-NN supervised classifier builder

Description

Build a model using the given data to be able to predict the label or the probabilities of other
instances, according to 1-NN algorithm.

Usage

oneNN(x = NULL, y)

Arguments

x This argument is not used, the reason why he gets is to fulfill an agreement

y a vector with the labels of training instances

Value

A model with the data needed to use 1-NN

predict,DecisionTreeClassifier-method

Function to predict inputs in Decision Tree

Description

Function to predict inputs in Decision Tree

Usage

S4 method for signature 'DecisionTreeClassifier'
predict(object, inputs, type = "class")

Arguments

object The Decision Tree object

inputs data to be predicted

type Is param to define the type of predict. It can be "class", to get class labels Or
"prob" to get probabilites for class in each input. Default is "class"

42 predict.coBC

predict,RandomForestSemisupervised-method

Function to predict inputs in Decision Tree

Description

Function to predict inputs in Decision Tree

Usage

S4 method for signature 'RandomForestSemisupervised'
predict(
object,
inputs,
type = "class",
confident = "max_prob",
allowParallel = TRUE

)

Arguments

object The Decision Tree object

inputs data to be predicted

type class raw

confident Is param to define the type of predict. It can be "max_prob", to get class with
sum of probability is the maximum Or "vote" to get the most frequented class in
all trees. Default is "max_prob"

allowParallel Execute Random Forest in parallel if doParallel is loaded.

predict.coBC Predictions of the coBC method

Description

Predicts the label of instances according to the coBC model.

Usage

S3 method for class 'coBC'
predict(object, x, ...)

predict.COREG 43

Arguments

object coBC model built with the coBC function.

x An object that can be coerced to a matrix. Depending on how the model was
built, x is interpreted as a matrix with the distances between the unseen instances
and the selected training instances, or a matrix of instances.

... This parameter is included for compatibility reasons.

Details

For additional help see coBC examples.

Value

Vector with the labels assigned.

predict.COREG Predictions of the COREG method

Description

Predicts the label of instances according to the COREG model.

Usage

S3 method for class 'COREG'
predict(object, x, type = "numeric", ...)

Arguments

object Self-training model built with the COREG function.

x A object that is data

type of predict in principal model (numeric)

... This parameter is included for compatibility reasons.

Details

For additional help see COREG examples.

Value

Vector with the labels assigned (numeric).

44 predict.EMLeastSquaresClassifierSSLR

predict.democratic Predictions of the Democratic method

Description

Predicts the label of instances according to the democratic model.

Usage

S3 method for class 'democratic'
predict(object, x, ...)

Arguments

object Democratic model built with the democratic function.
x A object that can be coerced as matrix. Depending on how was the model built,

x is interpreted as a matrix with the distances between the unseen instances and
the selected training instances, or a matrix of instances.

... This parameter is included for compatibility reasons.

Details

For additional help see democratic examples.

Value

Vector with the labels assigned.

predict.EMLeastSquaresClassifierSSLR

Predict EMLeastSquaresClassifierSSLR

Description

Predict EMLeastSquaresClassifierSSLR

Usage

S3 method for class 'EMLeastSquaresClassifierSSLR'
predict(object, x, ...)

Arguments

object is the object
x is the dataset
... This parameter is included for compatibility reasons.

predict.EMNearestMeanClassifierSSLR 45

predict.EMNearestMeanClassifierSSLR

Predict EMNearestMeanClassifierSSLR

Description

Predict EMNearestMeanClassifierSSLR

Usage

S3 method for class 'EMNearestMeanClassifierSSLR'
predict(object, x, ...)

Arguments

object is the object

x is the dataset

... This parameter is included for compatibility reasons.

predict.EntropyRegularizedLogisticRegressionSSLR

Predict EntropyRegularizedLogisticRegressionSSLR

Description

Predict EntropyRegularizedLogisticRegressionSSLR

Usage

S3 method for class 'EntropyRegularizedLogisticRegressionSSLR'
predict(object, x, ...)

Arguments

object is the object

x is the dataset

... This parameter is included for compatibility reasons.

46 predict.LinearTSVMSSLR

predict.LaplacianSVMSSLR

Predict LaplacianSVMSSLR

Description

Predict LaplacianSVMSSLR

Usage

S3 method for class 'LaplacianSVMSSLR'
predict(object, x, ...)

Arguments

object is the object

x is the dataset

... This parameter is included for compatibility reasons.

predict.LinearTSVMSSLR

Predict LinearTSVMSSLR

Description

Predict LinearTSVMSSLR

Usage

S3 method for class 'LinearTSVMSSLR'
predict(object, x, ...)

Arguments

object is the object

x is the dataset

... This parameter is included for compatibility reasons.

predict.MCNearestMeanClassifierSSLR 47

predict.MCNearestMeanClassifierSSLR

Predict MCNearestMeanClassifierSSLR

Description

Predict MCNearestMeanClassifierSSLR

Usage

S3 method for class 'MCNearestMeanClassifierSSLR'
predict(object, x, ...)

Arguments

object is the object
x is the dataset
... This parameter is included for compatibility reasons.

predict.model_sslr_fitted

Predictions of model_sslr_fitted class

Description

Predicts from model. There are different types: class, prob, raw class returns tibble with one column
prob returns tibble with probabilities class columns raw returns factor or numeric values

Usage

S3 method for class 'model_sslr_fitted'
predict(object, x, type = NULL, ...)

Arguments

object model_sslr_fitted model built.
x A object that can be coerced as matrix. Depending on how was the model built,

x is interpreted as a matrix with the distances between the unseen instances and
the selected training instances, or a matrix of instances.

type of predict in principal model: class, raw, prob, vote, max_prob, numeric
... This parameter is included for compatibility reasons.

Value

tibble or vector.

48 predict.RandomForestSemisupervised_fitted

predict.OneNN Model Predictions

Description

This function predicts the class label of instances or its probability of pertaining to each class based
on the distance matrix.

Usage

S3 method for class 'OneNN'
predict(object, dists, type = "prob", ...)

Arguments

object A model of class OneNN built with oneNN

dists A matrix of distances between the instances to classify (by rows) and the in-
stances used to train the model (by column)

type A string that can take two values: "class" for computing the class of the in-
stances or "prob" for computing the probabilities of belonging to each class.

... Currently not used.

Value

If type is equal to "class" a vector of length equal to the rows number of matrix dists, containing
the predicted labels. If type is equal to "prob" it returns a matrix which has nrow(dists) rows
and a column for every class, where each cell represents the probability that the instance belongs to
the class, according to 1NN.

predict.RandomForestSemisupervised_fitted

Predictions of the SSLRDecisionTree_fitted method

Description

Predicts the label of instances according to the RandomForestSemisupervised_fitted model.

Usage

S3 method for class 'RandomForestSemisupervised_fitted'
predict(object, x, type = "class", confident = "max_prob", ...)

predict.selfTraining 49

Arguments

object RandomForestSemisupervised_fitted.

x A object that can be coerced as matrix. Depending on how was the model built,
x is interpreted as a matrix with the distances between the unseen instances and
the selected training instances, or a matrix of instances.

type of predict in principal model

confident Is param to define the type of predict. It can be "max_prob", to get class with
sum of probability is the maximum Or "vote" to get the most frequented class in
all trees. Default is "max_prob"

... This parameter is included for compatibility reasons.

Value

Vector with the labels assigned.

predict.selfTraining Predictions of the Self-training method

Description

Predicts the label of instances according to the selfTraining model.

Usage

S3 method for class 'selfTraining'
predict(object, x, type = "class", ...)

Arguments

object Self-training model built with the selfTraining function.

x A object that can be coerced as matrix. Depending on how was the model built,
x is interpreted as a matrix with the distances between the unseen instances and
the selected training instances, or a matrix of instances.

type of predict in principal model

... This parameter is included for compatibility reasons.

Details

For additional help see selfTraining examples.

Value

Vector with the labels assigned.

50 predict.snnrce

predict.setred Predictions of the SETRED method

Description

Predicts the label of instances according to the setred model.

Usage

S3 method for class 'setred'
predict(object, x, col_name = ".pred_class", ...)

Arguments

object SETRED model built with the setred function.

x A object that can be coerced as matrix. Depending on how was the model built,
x is interpreted as a matrix with the distances between the unseen instances and
the selected training instances, or a matrix of instances.

col_name is the colname from returned tibble in class type. The same from parsnip and
tidymodels Default is .pred_clas

... This parameter is included for compatibility reasons.

Details

For additional help see setred examples.

Value

Vector with the labels assigned.

predict.snnrce Predictions of the SNNRCE method

Description

Predicts the label of instances according to the snnrce model.

Usage

S3 method for class 'snnrce'
predict(object, x, ...)

predict.snnrceG 51

Arguments

object SNNRCE model built with the snnrce function.

x A object that can be coerced as matrix. Depending on how was the model built,
x is interpreted as a matrix with the distances between the unseen instances and
the selected training instances, or a matrix of instances.

... This parameter is included for compatibility reasons.

Details

For additional help see snnrce examples.

Value

Vector with the labels assigned.

predict.snnrceG Predictions of the SNNRCE method

Description

Predicts the label of instances according to the snnrceG model.

Usage

S3 method for class 'snnrceG'
predict(object, D, ...)

Arguments

object model instance

D distance matrix

... This parameter is included for compatibility reasons.

52 predict.triTraining

predict.SSLRDecisionTree_fitted

Predictions of the SSLRDecisionTree_fitted method

Description

Predicts the label of instances SSLRDecisionTree_fitted model.

Usage

S3 method for class 'SSLRDecisionTree_fitted'
predict(object, x, type = "class", ...)

Arguments

object model SSLRDecisionTree_fitted.

x A object that can be coerced as matrix. Depending on how was the model built,
x is interpreted as a matrix with the distances between the unseen instances and
the selected training instances, or a matrix of instances.

type of predict in principal model

... This parameter is included for compatibility reasons.

Value

Vector with the labels assigned.

predict.triTraining Predictions of the Tri-training method

Description

Predicts the label of instances according to the triTraining model.

Usage

S3 method for class 'triTraining'
predict(object, x, ...)

Arguments

object Tri-training model built with the triTraining function.

x A object that can be coerced as matrix. Depending on how was the model built,
x is interpreted as a matrix with the distances between the unseen instances and
the selected training instances, or a matrix of instances.

... This parameter is included for compatibility reasons.

predict.TSVMSSLR 53

Details

For additional help see triTraining examples.

Value

Vector with the labels assigned.

predict.TSVMSSLR Predict TSVMSSLR

Description

Predict TSVMSSLR

Usage

S3 method for class 'TSVMSSLR'
predict(object, x, ...)

Arguments

object is the object

x is the dataset

... This parameter is included for compatibility reasons.

predict.USMLeastSquaresClassifierSSLR

Predict USMLeastSquaresClassifierSSLR

Description

Predict USMLeastSquaresClassifierSSLR

Usage

S3 method for class 'USMLeastSquaresClassifierSSLR'
predict(object, x, ...)

Arguments

object is the object

x is the dataset

... This parameter is included for compatibility reasons.

54 predict_inputs

predict.WellSVMSSLR Predict WellSVMSSLR

Description

Predict WellSVMSSLR

Usage

S3 method for class 'WellSVMSSLR'
predict(object, x, ...)

Arguments

object is the object

x is the dataset

... This parameter is included for compatibility reasons.

predict_inputs An S4 method to predict inputs.

Description

An S4 method to predict inputs.

Usage

predict_inputs(object, ...)

Arguments

object DecisionTree object

... This parameter is included for compatibility reasons.

predict_inputs,DecisionTreeClassifier-method 55

predict_inputs,DecisionTreeClassifier-method

Predict inputs Decision Tree

Description

Function to predict one input in Decision Tree

Usage

S4 method for signature 'DecisionTreeClassifier'
predict_inputs(object, inputs, type = "class")

Arguments

object DecisionTree object

inputs inputs to be predicted

type type prediction, class or prob

print.model_sslr Print model SSLR

Description

Print model SSLR

Usage

S3 method for class 'model_sslr'
print(object)

Arguments

object model_sslr object to print

RandomForestSemisupervised-class

Class Random Forest

Description

Class Random Forest Slots: mtry, trees, min_n, w, classes, mode

56 selfTraining

selfTraining General Interface for Self-training model

Description

Self-training is a simple and effective semi-supervised learning classification method. The self-
training classifier is initially trained with a reduced set of labeled examples. Then it is iteratively
retrained with its own most confident predictions over the unlabeled examples. Self-training follows
a wrapper methodology using a base supervised classifier to establish the possible class of unlabeled
instances.

Usage

selfTraining(learner, max.iter = 50, perc.full = 0.7, thr.conf = 0.5)

Arguments

learner model from parsnip package for training a supervised base classifier using a set
of instances. This model need to have probability predictions (or optionally a
distance matrix) and it’s corresponding classes.

max.iter maximum number of iterations to execute the self-labeling process. Default is
50.

perc.full A number between 0 and 1. If the percentage of new labeled examples reaches
this value the self-training process is stopped. Default is 0.7.

thr.conf A number between 0 and 1 that indicates the confidence threshold. At each
iteration, only the newly labelled examples with a confidence greater than this
value (thr.conf) are added to the training set.

Details

For predicting the most accurate instances per iteration, selfTraining uses the predictions ob-
tained with the learner specified. To train a model using the learner function, it is required a
set of instances (or a precomputed matrix between the instances if x.inst parameter is FALSE) in
conjunction with the corresponding classes. Additionals parameters are provided to the learner
function via the learner.pars argument. The model obtained is a supervised classifier ready to
predict new instances through the pred function. Using a similar idea, the additional parameters
to the pred function are provided using the pred.pars argument. The pred function returns the
probabilities per class for each new instance. The value of the thr.conf argument controls the
confidence of instances selected to enlarge the labeled set for the next iteration.

The stopping criterion is defined through the fulfillment of one of the following criteria: the al-
gorithm reaches the number of iterations defined in the max.iter parameter or the portion of the
unlabeled set, defined in the perc.full parameter, is moved to the labeled set. In some cases, the
process stops and no instances are added to the original labeled set. In this case, the user must
assign a more flexible value to the thr.conf parameter.

selfTraining 57

Value

(When model fit) A list object of class "selfTraining" containing:

model The final base classifier trained using the enlarged labeled set.

instances.index The indexes of the training instances used to train the model. These indexes in-
clude the initial labeled instances and the newly labeled instances. Those indexes are relative
to x argument.

classes The levels of y factor.

pred The function provided in the pred argument.

pred.pars The list provided in the pred.pars argument.

References

David Yarowsky.
Unsupervised word sense disambiguation rivaling supervised methods.
In Proceedings of the 33rd annual meeting on Association for Computational Linguistics, pages
189-196. Association for Computational Linguistics, 1995.

Examples

library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)

data(wine)

set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[train.index,]
test <- wine[-train.index,]

cls <- which(colnames(wine) == "Wine")

#% LABELED
labeled.index <- createDataPartition(train$Wine, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

#We need a model with probability predictions from parsnip
#https://tidymodels.github.io/parsnip/articles/articles/Models.html
#It should be with mode = classification

#For example, with Random Forest
rf <- rand_forest(trees = 100, mode = "classification") %>%

set_engine("randomForest")

m <- selfTraining(learner = rf,
perc.full = 0.7,
thr.conf = 0.5, max.iter = 10) %>% fit(Wine ~ ., data = train)

58 selfTrainingG

#Accuracy
predict(m,test) %>%

bind_cols(test) %>%
metrics(truth = "Wine", estimate = .pred_class)

selfTrainingG Self-training generic method

Description

Self-training is a simple and effective semi-supervised learning classification method. The self-
training classifier is initially trained with a reduced set of labeled examples. Then it is iteratively
retrained with its own most confident predictions over the unlabeled examples. Self-training fol-
lows a wrapper methodology using one base supervised classifier to establish the possible class of
unlabeled instances.

Usage

selfTrainingG(
y,
gen.learner,
gen.pred,
max.iter = 50,
perc.full = 0.7,
thr.conf = 0.5

)

Arguments

y A vector with the labels of training instances. In this vector the unlabeled in-
stances are specified with the value NA.

gen.learner A function for training a supervised base classifier. This function needs two
parameters, indexes and cls, where indexes indicates the instances to use and cls
specifies the classes of those instances.

gen.pred A function for predicting the probabilities per classes. This function must be
two parameters, model and indexes, where the model is a classifier trained with
gen.learner function and indexes indicates the instances to predict.

max.iter Maximum number of iterations to execute the self-labeling process. Default is
50.

perc.full A number between 0 and 1. If the percentage of new labeled examples reaches
this value the self-training process is stopped. Default is 0.7.

thr.conf A number between 0 and 1 that indicates the confidence theshold. At each
iteration, only the newly labelled examples with a confidence greater than this
value (thr.conf) are added to the training set.

selfTrainingG 59

Details

SelfTrainingG can be helpful in those cases where the method selected as base classifier needs
learner and pred functions with other specifications. For more information about the general self-
training method, please see the selfTraining function. Essentially, the selfTraining function is
a wrapper of the selfTrainingG function.

Value

A list object of class "selfTrainingG" containing:

model The final base classifier trained using the enlarged labeled set.

instances.index The indexes of the training instances used to train the model. These indexes in-
clude the initial labeled instances and the newly labeled instances. Those indexes are relative
to the y argument.

Examples

library(SSLR)

Load Wine data set
data(wine)
cls <- which(colnames(wine) == "Wine")
x <- wine[, - cls] # instances without classes
y <- wine[, cls] # the classes
x <- scale(x)

set.seed(20)

Use 50% of instances for training
tra.idx <- sample(x = length(y), size = ceiling(length(y) * 0.5))
xtrain <- x[tra.idx,]
ytrain <- y[tra.idx]

Use 70% of train instances as unlabeled set
tra.na.idx <- sample(x = length(tra.idx), size = ceiling(length(tra.idx) * 0.7))
ytrain[tra.na.idx] <- NA

Use the other 50% of instances for inductive testing
tst.idx <- setdiff(1:length(y), tra.idx)
xitest <- x[tst.idx,] # testing instances
yitest <- y[tst.idx] # classes of instances in xitest
Use the unlabeled examples for transductive testing
xttest <- x[tra.idx[tra.na.idx],] # transductive testing instances
yttest <- y[tra.idx[tra.na.idx]] # classes of instances in xttest

library(caret)

#PREPARE DATA
data <- cbind(xtrain, Class = ytrain)

60 selfTrainingG

dtrain <- as.matrix(proxy::dist(x = xtrain, method = "euclidean", by_rows = TRUE))
ditest <- as.matrix(proxy::dist(x = xitest, y = xtrain, method = "euclidean", by_rows = TRUE))

ddata <- cbind(dtrain, Class = ytrain)
ddata <- as.data.frame(ddata)

ktrain <- as.matrix(exp(-0.048 * dtrain ^ 2))
kdata <- cbind(ktrain, Class = ytrain)
kdata <- as.data.frame(kdata)

ktrain <- as.matrix(exp(-0.048 * dtrain ^ 2))
kitest <- as.matrix(exp(-0.048 * ditest ^ 2))

Example: Training from a set of instances with 1-NN (knn3) as base classifier.
gen.learner <- function(indexes, cls)

caret::knn3(x = xtrain[indexes,], y = cls, k = 1)
gen.pred <- function(model, indexes)

predict(model, xtrain[indexes,])

trControl_selfTrainingG1 <- list(gen.learner = gen.learner, gen.pred = gen.pred)
md1 <- train_generic(ytrain, method = "selfTrainingG", trControl = trControl_selfTrainingG1)

p1 <- predict(md1$model, xitest, type = "class")
table(p1, yitest)

confusionMatrix(p1, yitest)$overall[1]

Example: Training from a distance matrix with 1-NN (oneNN) as base classifier.
dtrain <- as.matrix(proxy::dist(x = xtrain, method = "euclidean", by_rows = TRUE))
gen.learner <- function(indexes, cls) {

m <- SSLR::oneNN(y = cls)
attr(m, "tra.idxs") <- indexes
m

}

gen.pred <- function(model, indexes) {
tra.idxs <- attr(model, "tra.idxs")
d <- dtrain[indexes, tra.idxs]
prob <- predict(model, d, distance.weighting = "none")
prob

}

trControl_selfTrainingG2 <- list(gen.learner = gen.learner, gen.pred = gen.pred)
md2 <- train_generic(ytrain, method = "selfTrainingG", trControl = trControl_selfTrainingG2)

ditest <- proxy::dist(x = xitest, y = xtrain[md2$instances.index,],

setred 61

method = "euclidean", by_rows = TRUE)
p2 <- predict(md2$model, ditest, type = "class")
table(p2, yitest)

confusionMatrix(p2, yitest)$overall[1]

setred General Interface for SETRED model

Description

SETRED (SElf-TRaining with EDiting) is a variant of the self-training classification method (as
implemented in the function selfTraining) with a different addition mechanism. The SETRED
classifier is initially trained with a reduced set of labeled examples. Then, it is iteratively retrained
with its own most confident predictions over the unlabeled examples. SETRED uses an amending
scheme to avoid the introduction of noisy examples into the enlarged labeled set. For each iteration,
the mislabeled examples are identified using the local information provided by the neighborhood
graph.

Usage

setred(
dist = "Euclidean",
learner,
theta = 0.1,
max.iter = 50,
perc.full = 0.7,
D = NULL

)

Arguments

dist A distance function or the name of a distance available in the proxy package to
compute. Default is "Euclidean" the distance matrix in the case that D is NULL.

learner model from parsnip package for training a supervised base classifier using a set
of instances. This model need to have probability predictions (or optionally a
distance matrix) and it’s corresponding classes.

theta Rejection threshold to test the critical region. Default is 0.1.

max.iter maximum number of iterations to execute the self-labeling process. Default is
50.

perc.full A number between 0 and 1. If the percentage of new labeled examples reaches
this value the self-training process is stopped. Default is 0.7.

D A distance matrix between all the training instances. This matrix is used to
construct the neighborhood graph. Default is NULL, this means the method
create a matrix with dist param

62 setred

Details

SETRED initiates the self-labeling process by training a model from the original labeled set. In each
iteration, the learner function detects unlabeled examples for which it makes the most confident
prediction and labels those examples according to the pred function. The identification of misla-
beled examples is performed using a neighborhood graph created from the distance matrix. Most
examples possess the same label in a neighborhood. So if an example locates in a neighborhood
with too many neighbors from different classes, this example should be considered problematic.
The value of the theta argument controls the confidence of the candidates selected to enlarge the
labeled set. The lower this value is, the more restrictive is the selection of the examples that are con-
sidered good. For more information about the self-labeled process and the rest of the parameters,
please see selfTraining.

Value

(When model fit) A list object of class "setred" containing:

model The final base classifier trained using the enlarged labeled set.

instances.index The indexes of the training instances used to train the model. These indexes in-
clude the initial labeled instances and the newly labeled instances. Those indexes are relative
to x argument.

classes The levels of y factor.

pred The function provided in the pred argument.

pred.pars The list provided in the pred.pars argument.

References

Ming Li and ZhiHua Zhou.
Setred: Self-training with editing.
In Advances in Knowledge Discovery and Data Mining, volume 3518 of Lecture Notes in Com-
puter Science, pages 611-621. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-26076-9. doi:
10.1007/11430919 71.

Examples

library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)

data(wine)

set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[train.index,]
test <- wine[-train.index,]

cls <- which(colnames(wine) == "Wine")

#% LABELED

setredG 63

labeled.index <- createDataPartition(wine$Wine, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

#We need a model with probability predictions from parsnip
#https://tidymodels.github.io/parsnip/articles/articles/Models.html
#It should be with mode = classification

#For example, with Random Forest
rf <- rand_forest(trees = 100, mode = "classification") %>%

set_engine("randomForest")

m <- setred(learner = rf,
theta = 0.1,
max.iter = 2,
perc.full = 0.7) %>% fit(Wine ~ ., data = train)

#Accuracy
predict(m,test) %>%

bind_cols(test) %>%
metrics(truth = "Wine", estimate = .pred_class)

#Another example, with dist matrix

distance <- as.matrix(proxy::dist(train[,-cls], method ="Euclidean",
by_rows = TRUE, diag = TRUE, upper = TRUE))

m <- setred(learner = rf,
theta = 0.1,
max.iter = 2,
perc.full = 0.7,
D = distance) %>% fit(Wine ~ ., data = train)

#Accuracy
predict(m,test) %>%

bind_cols(test) %>%
metrics(truth = "Wine", estimate = .pred_class)

setredG SETRED generic method

Description

SETRED is a variant of the self-training classification method (selfTraining) with a different
addition mechanism. The SETRED classifier is initially trained with a reduced set of labeled ex-
amples. Then it is iteratively retrained with its own most confident predictions over the unlabeled
examples. SETRED uses an amending scheme to avoid the introduction of noisy examples into

64 setredG

the enlarged labeled set. For each iteration, the mislabeled examples are identified using the local
information provided by the neighborhood graph.

Usage

setredG(
y,
D,
gen.learner,
gen.pred,
theta = 0.1,
max.iter = 50,
perc.full = 0.7

)

Arguments

y A vector with the labels of training instances. In this vector the unlabeled in-
stances are specified with the value NA.

D A distance matrix between all the training instances. This matrix is used to
construct the neighborhood graph.

gen.learner A function for training a supervised base classifier. This function needs two
parameters, indexes and cls, where indexes indicates the instances to use and cls
specifies the classes of those instances.

gen.pred A function for predicting the probabilities per classes. This function must be
two parameters, model and indexes, where the model is a classifier trained with
gen.learner function and indexes indicates the instances to predict.

theta Rejection threshold to test the critical region. Default is 0.1.

max.iter Maximum number of iterations to execute the self-labeling process. Default is
50.

perc.full A number between 0 and 1. If the percentage of new labeled examples reaches
this value the self-training process is stopped. Default is 0.7.

Details

SetredG can be helpful in those cases where the method selected as base classifier needs a learner
and pred functions with other specifications. For more information about the general setred method,
please see setred function. Essentially, setred function is a wrapper of setredG function.

Value

A list object of class "setredG" containing:

model The final base classifier trained using the enlarged labeled set.

instances.index The indexes of the training instances used to train the model. These indexes in-
clude the initial labeled instances and the newly labeled instances. Those indexes are relative
to the y argument.

setredG 65

Examples

library(SSLR)
library(caret)

Load Wine data set
data(wine)

cls <- which(colnames(wine) == "Wine")
x <- wine[, - cls] # instances without classes
y <- wine[, cls] # the classes
x <- scale(x) # scale the attributes

Prepare data
set.seed(20)
Use 50% of instances for training
tra.idx <- sample(x = length(y), size = ceiling(length(y) * 0.5))
xtrain <- x[tra.idx,] # training instances
ytrain <- y[tra.idx] # classes of training instances
Use 70% of train instances as unlabeled set
tra.na.idx <- sample(x = length(tra.idx), size = ceiling(length(tra.idx) * 0.7))
ytrain[tra.na.idx] <- NA # remove class information of unlabeled instances

Use the other 50% of instances for inductive testing
tst.idx <- setdiff(1:length(y), tra.idx)
xitest <- x[tst.idx,] # testing instances
yitest <- y[tst.idx] # classes of testing instances

Compute distances between training instances
D <- as.matrix(proxy::dist(x = xtrain, method = "euclidean", by_rows = TRUE))

Example: Training from a set of instances with 1-NN (knn3) as base classifier.
Compute distances between training instances
D <- as.matrix(proxy::dist(x = xtrain, method = "euclidean", by_rows = TRUE))

Example: Training from a set of instances with 1-NN (knn3) as base classifier.
gen.learner <- function(indexes, cls)

caret::knn3(x = xtrain[indexes,], y = cls, k = 1)
gen.pred <- function(model, indexes)

predict(model, xtrain[indexes,])

trControl_SETRED1 <- list(D = D, gen.learner = gen.learner,
gen.pred = gen.pred)

md1 <- train_generic(ytrain, method = "setredG", trControl = trControl_SETRED1)

'md1 <- setredG(y = ytrain, D, gen.learner, gen.pred)'

cls1 <- predict(md1$model, xitest, type = "class")
table(cls1, yitest)

confusionMatrix(cls1, yitest)$overall[1]

66 snnrce

Example: Training from a distance matrix with 1-NN (oneNN) as base classifier
gen.learner <- function(indexes, cls) {

m <- SSLR::oneNN(y = cls)
attr(m, "tra.idxs") <- indexes
m

}

gen.pred <- function(model, indexes) {
tra.idxs <- attr(model, "tra.idxs")
d <- D[indexes, tra.idxs]
prob <- predict(model, d, distance.weighting = "none")
prob

}

trControl_SETRED2 <- list(D = D, gen.learner = gen.learner,
gen.pred = gen.pred)

md2 <- train_generic(ytrain, method = "setredG", trControl = trControl_SETRED2)

ditest <- proxy::dist(x = xitest, y = xtrain[md2$instances.index,],
method = "euclidean", by_rows = TRUE)

cls2 <- predict(md2$model, ditest, type = "class")
table(cls2, yitest)

confusionMatrix(cls2, yitest)$overall[1]

snnrce General Interface for SNNRCE model

Description

SNNRCE (Self-training Nearest Neighbor Rule using Cut Edges) is a variant of the self-training
classification method (selfTraining) with a different addition mechanism and a fixed learning
scheme (1-NN). SNNRCE uses an amending scheme to avoid the introduction of noisy examples
into the enlarged labeled set. The mislabeled examples are identified using the local information
provided by the neighborhood graph. A statistical test using cut edge weight is used to modify the
labels of the missclassified examples.

Usage

snnrce(x.inst = TRUE, dist = "Euclidean", alpha = 0.1)

snnrce 67

Arguments

x.inst A boolean value that indicates if x is or not an instance matrix. Default is TRUE.

dist A distance function available in the proxy package to compute the distance
matrix in the case that x.inst is TRUE.

alpha Rejection threshold to test the critical region. Default is 0.1.

Details

SNNRCE initiates the self-labeling process by training a 1-NN from the original labeled set. This
method attempts to reduce the noise in examples by labeling those instances with no cut edges
in the initial stages of self-labeling learning. These highly confident examples are added into the
training set. The remaining examples follow the standard self-training process until a minimum
number of examples will be labeled for each class. A statistical test using cut edge weight is used
to modify the labels of the missclassified examples The value of the alpha argument defines the
critical region where the candidates examples are tested. The higher this value is, the more relaxed
it is the selection of the examples that are considered mislabeled.

Value

(When model fit) A list object of class "snnrce" containing:

model The final base classifier trained using the enlarged labeled set.

instances.index The indexes of the training instances used to train the model. These indexes in-
clude the initial labeled instances and the newly labeled instances. Those indexes are relative
to x argument.

classes The levels of y factor.

x.inst The value provided in the x.inst argument.

dist The value provided in the dist argument when x.inst is TRUE.

xtrain A matrix with the subset of training instances referenced by the indexes instances.index
when x.inst is TRUE.

References

Yu Wang, Xiaoyan Xu, Haifeng Zhao, and Zhongsheng Hua.
Semisupervised learning based on nearest neighbor rule and cut edges.
Knowledge-Based Systems, 23(6):547-554, 2010. ISSN 0950-7051. doi: http://dx.doi.org/10.1016/j.knosys.2010.03.012.

Examples

library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)

data(wine)
set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[train.index,]

68 SSLRDecisionTree

test <- wine[-train.index,]

cls <- which(colnames(wine) == "Wine")

#% LABELED
labeled.index <- createDataPartition(wine$Wine, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- snnrce(x.inst = TRUE,
dist = "Euclidean",
alpha = 0.1) %>% fit(Wine ~ ., data = train)

predict(m,test) %>%
bind_cols(test) %>%
metrics(truth = "Wine", estimate = .pred_class)

SSLRDecisionTree General Interface Decision Tree model

Description

Decision Tree is a simple and effective semi-supervised learning method. Based on the article
"Semi-supervised classification trees". It also offers many parameters to modify the behavior of
this method. It is the same as the traditional Decision Tree algorithm, but the difference is how the
gini coefficient is calculated (classification). In regression we use SSE metric (different from the
original investigation) It can be used in classification or regression. If Y is numeric is for regression,
classification in another case

Usage

SSLRDecisionTree(
max_depth = 30,
w = 0.5,
min_samples_split = 20,
min_samples_leaf = ceiling(min_samples_split/3)

)

Arguments

max_depth A number from 1 to Inf. Is the maximum number of depth in Decision Tree
Default is 30

w weight parameter ranging from 0 to 1. Default is 0.5
min_samples_split

the minimum number of observations to do split. Default is 20
min_samples_leaf

the minimum number of any terminal leaf node. Default is ceiling(min_samples_split/3)

SSLRRandomForest 69

Details

In this model we can make predictions with prob type

References

Jurica Levati, Michelangelo Ceci, Dragi Kocev, Saso Dzeroski.
Semi-supervised classification trees.
Published online: 25 March 2017 © Springer Science Business Media New York 2017

Examples

library(tidyverse)
library(caret)
library(SSLR)
library(tidymodels)

data(wine)

set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[train.index,]
test <- wine[-train.index,]

cls <- which(colnames(wine) == "Wine")

#% LABELED
labeled.index <- createDataPartition(wine$Wine, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- SSLRDecisionTree(min_samples_split = round(length(labeled.index) * 0.25),
w = 0.3,
) %>% fit(Wine ~ ., data = train)

#Accuracy
predict(m,test) %>%

bind_cols(test) %>%
metrics(truth = "Wine", estimate = .pred_class)

#For probabilities
predict(m,test, type = "prob")

SSLRRandomForest General Interface Random Forest model

70 SSLRRandomForest

Description

Random Forest is a simple and effective semi-supervised learning method. It is the same as the
traditional Random Forest algorithm, but the difference is that it use Semi supervised Decision
Trees It can be used in classification or regression. If Y is numeric is for regression, classification
in another case

Usage

SSLRRandomForest(
mtry = NULL,
trees = 500,
min_n = NULL,
w = 0.5,
replace = TRUE,
tree_max_depth = Inf,
sampsize = NULL,
min_samples_leaf = NULL,
allowParallel = TRUE

)

Arguments

mtry number of features in each decision tree. Default is null. This means that mtry
= log(n_features) + 1

trees number of trees. Default is 500

min_n number of minimum samples in each tree Default is null. This means that uses
all training data

w weight parameter ranging from 0 to 1. Default is 0.5

replace replacing type in sampling. Default is true

tree_max_depth maximum tree depth. Default is Inf

sampsize Size of sample. Default if (replace) nrow(x) else ceiling(.632*nrow(x))

min_samples_leaf

the minimum number of any terminal leaf node. Default is 1

allowParallel Execute Random Forest in parallel if doParallel is loaded. Default is TRUE

Details

We can use paralleling processing with doParallel package and allowParallel = TRUE.

References

Jurica Levati, Michelangelo Ceci, Dragi Kocev, Saso Dzeroski.
Semi-supervised classification trees.
Published online: 25 March 2017 © Springer Science Business Media New York 2017

train_generic 71

Examples

library(tidyverse)
library(caret)
library(SSLR)
library(tidymodels)

data(wine)

set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[train.index,]
test <- wine[-train.index,]

cls <- which(colnames(wine) == "Wine")

#% LABELED
labeled.index <- createDataPartition(wine$Wine, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- SSLRRandomForest(trees = 5, w = 0.3) %>% fit(Wine ~ ., data = train)

#Accuracy
predict(m,test) %>%

bind_cols(test) %>%
metrics(truth = "Wine", estimate = .pred_class)

#For probabilities
predict(m,test, type = "prob")

train_generic FUNCTION TO TRAIN GENERIC MODEL

Description

FUNCTION TO TRAIN GENERIC MODEL

Usage

train_generic(y, ...)

Arguments

y (optional) factor (classes)
... list parms trControl (method...)

Value

model trained

72 triTraining

triTraining General Interface for Tri-training model

Description

Tri-training is a semi-supervised learning algorithm with a co-training style. This algorithm trains
three classifiers with the same learning scheme from a reduced set of labeled examples. For each
iteration, an unlabeled example is labeled for a classifier if the other two classifiers agree on the
labeling proposed.

Usage

triTraining(learner)

Arguments

learner model from parsnip package for training a supervised base classifier using a set
of instances. This model need to have probability predictions (or optionally a
distance matrix) and it’s corresponding classes.

Details

Tri-training initiates the self-labeling process by training three models from the original labeled set,
using the learner function specified. In each iteration, the algorithm detects unlabeled examples
on which two classifiers agree with the classification and includes these instances in the enlarged set
of the third classifier under certain conditions. The generation of the final hypothesis is produced
via the majority voting. The iteration process ends when no changes occur in any model during a
complete iteration.

Value

A list object of class "triTraining" containing:

model The final three base classifiers trained using the enlarged labeled set.

model.index List of three vectors of indexes related to the training instances used per each classi-
fier. These indexes are relative to the y argument.

instances.index The indexes of all training instances used to train the three models. These indexes
include the initial labeled instances and the newly labeled instances. These indexes are relative
to the y argument.

model.index.map List of three vectors with the same information in model.index but the indexes
are relative to instances.index vector.

classes The levels of y factor.

pred The function provided in the pred argument.

pred.pars The list provided in the pred.pars argument.

x.inst The value provided in the x.inst argument.

triTrainingCombine 73

References

ZhiHua Zhou and Ming Li.
Tri-training: exploiting unlabeled data using three classifiers.
IEEE Transactions on Knowledge and Data Engineering, 17(11):1529-1541, Nov 2005. ISSN 1041-
4347. doi: 10.1109/TKDE.2005. 186.

Examples

library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)

data(wine)

set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[train.index,]
test <- wine[-train.index,]

cls <- which(colnames(wine) == "Wine")

#% LABELED
labeled.index <- createDataPartition(wine$Wine, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

#We need a model with probability predictions from parsnip
#https://tidymodels.github.io/parsnip/articles/articles/Models.html
#It should be with mode = classification

#For example, with Random Forest
rf <- rand_forest(trees = 100, mode = "classification") %>%

set_engine("randomForest")

m <- triTraining(learner = rf) %>% fit(Wine ~ ., data = train)

#Accuracy
predict(m,test) %>%

bind_cols(test) %>%
metrics(truth = "Wine", estimate = .pred_class)

triTrainingCombine Combining the hypothesis

Description

This function combines the predictions obtained by the set of classifiers.

74 triTrainingG

Usage

triTrainingCombine(pred)

Arguments

pred A list with the predictions of each classifiers

Value

A vector of classes

triTrainingG Tri-training generic method

Description

Tri-training is a semi-supervised learning algorithm with a co-training style. This algorithm trains
three classifiers with the same learning scheme from a reduced set of labeled examples. For each
iteration, an unlabeled example is labeled for a classifier if the other two classifiers agree on the
labeling proposed.

Usage

triTrainingG(y, gen.learner, gen.pred)

Arguments

y A vector with the labels of training instances. In this vector the unlabeled in-
stances are specified with the value NA.

gen.learner A function for training three supervised base classifiers. This function needs two
parameters, indexes and cls, where indexes indicates the instances to use and cls
specifies the classes of those instances.

gen.pred A function for predicting the probabilities per classes. This function must be
two parameters, model and indexes, where the model is a classifier trained with
gen.learner function and indexes indicates the instances to predict.

Details

TriTrainingG can be helpful in those cases where the method selected as base classifier needs a
learner and pred functions with other specifications. For more information about the general
triTraining method, please see the triTraining function. Essentially, the triTraining function is
a wrapper of the triTrainingG function.

triTrainingG 75

Value

A list object of class "triTrainingG" containing:

model The final three base classifiers trained using the enlarged labeled set.

model.index List of three vectors of indexes related to the training instances used per each classi-
fier. These indexes are relative to the y argument.

instances.index The indexes of all training instances used to train the three models. These indexes
include the initial labeled instances and the newly labeled instances. These indexes are relative
to the y argument.

model.index.map List of three vectors with the same information in model.index but the indexes
are relative to instances.index vector.

Examples

library(SSLR)
library(caret)

Load Wine data set
data(wine)

cls <- which(colnames(wine) == "Wine")
x <- wine[, - cls] # instances without classes
y <- wine[, cls] # the classes
x <- scale(x) # scale the attributes

Prepare data
set.seed(20)
Use 50% of instances for training
tra.idx <- sample(x = length(y), size = ceiling(length(y) * 0.5))
xtrain <- x[tra.idx,] # training instances
ytrain <- y[tra.idx] # classes of training instances
Use 70% of train instances as unlabeled set
tra.na.idx <- sample(x = length(tra.idx), size = ceiling(length(tra.idx) * 0.7))
ytrain[tra.na.idx] <- NA # remove class information of unlabeled instances

Use the other 50% of instances for inductive testing
tst.idx <- setdiff(1:length(y), tra.idx)
xitest <- x[tst.idx,] # testing instances
yitest <- y[tst.idx] # classes of testing instances

Example: Training from a set of instances with 1-NN (knn3) as base classifier.
gen.learner <- function(indexes, cls)

caret::knn3(x = xtrain[indexes,], y = cls, k = 1)
gen.pred <- function(model, indexes)

predict(model, xtrain[indexes,])

Train
set.seed(1)

trControl_triTraining1 <- list(gen.learner = gen.learner,
gen.pred = gen.pred)

76 triTrainingG

md1 <- train_generic(ytrain, method = "triTrainingG", trControl = trControl_triTraining1)

Predict testing instances using the three classifiers
pred <- lapply(

X = md1$model,
FUN = function(m) predict(m, xitest, type = "class")

)
Combine the predictions
cls1 <- triTrainingCombine(pred)
table(cls1, yitest)

confusionMatrix(cls1, yitest)$overall[1]

Example: Training from a distance matrix with 1-NN (oneNN) as base classifier.
dtrain <- as.matrix(proxy::dist(x = xtrain, method = "euclidean", by_rows = TRUE))
gen.learner <- function(indexes, cls) {

m <- SSLR::oneNN(y = cls)
attr(m, "tra.idxs") <- indexes
m

}

gen.pred <- function(model, indexes) {
tra.idxs <- attr(model, "tra.idxs")
d <- dtrain[indexes, tra.idxs]
prob <- predict(model, d, distance.weighting = "none")
prob

}

Train
set.seed(1)

trControl_triTraining2 <- list(gen.learner = gen.learner,
gen.pred = gen.pred)

md2 <- train_generic(ytrain, method = "triTrainingG", trControl = trControl_triTraining2)

Predict
ditest <- proxy::dist(x = xitest, y = xtrain[md2$instances.index,],

method = "euclidean", by_rows = TRUE)

Predict testing instances using the three classifiers
pred <- mapply(

FUN = function(m, indexes) {
D <- ditest[, indexes]
predict(m, D, type = "class")

},
m = md2$model,
indexes = md2$model.index.map,
SIMPLIFY = FALSE

)
Combine the predictions

TSVMSSLR 77

cls2 <- triTrainingCombine(pred)
table(cls2, yitest)

confusionMatrix(cls2, yitest)$overall[1]

TSVMSSLR General Interface for TSVM (Transductive SVM classifier using the
convex concave procedure) model

Description

model from RSSL package Transductive SVM using the CCCP algorithm as proposed by Collobert
et al. (2006) implemented in R using the quadprog package. The implementation does not handle
large datasets very well, but can be useful for smaller datasets and visualization purposes. C is the
cost associated with labeled objects, while Cstar is the cost for the unlabeled objects. s control the
loss function used for the unlabeled objects: it controls the size of the plateau for the symmetric
ramp loss function. The balancing constraint makes sure the label assignments of the unlabeled
objects are similar to the prior on the classes that was observed on the labeled data.

Usage

TSVMSSLR(
C = 1,
Cstar = 0.1,
kernel = kernlab::vanilladot(),
balancing_constraint = TRUE,
s = 0,
x_center = TRUE,
scale = FALSE,
eps = 1e-09,
max_iter = 20,
verbose = FALSE

)

Arguments

C numeric; Cost parameter of the SVM

Cstar numeric; Cost parameter of the unlabeled objects

kernel kernlab::kernel to use
balancing_constraint

logical; Whether a balancing constraint should be enfored that causes the frac-
tion of objects assigned to each label in the unlabeled data to be similar to the
label fraction in the labeled data.

s numeric; parameter controlling the loss function of the unlabeled objects (gen-
erally values between -1 and 0)

x_center logical; Should the features be centered?

78 USMLeastSquaresClassifierSSLR

scale If TRUE, apply a z-transform to all observations in X and X_u before running
the regression

eps numeric; Stopping criterion for the maximinimization

max_iter integer; Maximum number of iterations

verbose logical; print debugging messages, only works for vanilladot() kernel (default:
FALSE)

References

Collobert, R. et al., 2006. Large scale transductive SVMs. Journal of Machine Learning Research,
7, pp.1687-1712.

Examples

library(tidyverse)
library(caret)
library(tidymodels)
library(SSLR)

data(breast)

set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]
test <- breast[-train.index,]

cls <- which(colnames(breast) == "Class")

#% LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

library(kernlab)
m <- TSVMSSLR(kernel = kernlab::vanilladot()) %>% fit(Class ~ ., data = train)

#Accuracy
predict(m,test) %>%

bind_cols(test) %>%
metrics(truth = "Class", estimate = .pred_class)

USMLeastSquaresClassifierSSLR

General Interface for USMLeastSquaresClassifier (Updated Second
Moment Least Squares Classifier) model

USMLeastSquaresClassifierSSLR 79

Description

model from RSSL package This methods uses the closed form solution of the supervised least
squares problem, except that the second moment matrix (X’X) is exchanged with a second moment
matrix that is estimated based on all data. See for instance Shaffer1991, where in this implementa-
tion we use all data to estimate E(X’X), instead of just the labeled data. This method seems to work
best when the data is first centered x_center=TRUE and the outputs are scaled using y_scale=TRUE.

Usage

USMLeastSquaresClassifierSSLR(
lambda = 0,
intercept = TRUE,
x_center = FALSE,
scale = FALSE,
y_scale = FALSE,
...,
use_Xu_for_scaling = TRUE

)

Arguments

lambda numeric; L2 regularization parameter

intercept logical; Whether an intercept should be included

x_center logical; Should the features be centered?

scale logical; Should the features be normalized? (default: FALSE)

y_scale logical; whether the target vector should be centered

... Not used
use_Xu_for_scaling

logical; whether the unlabeled objects should be used to determine the mean and
scaling for the normalization

References

Shaffer, J.P., 1991. The Gauss-Markov Theorem and Random Regressors. The American Statisti-
cian, 45(4), pp.269-273.

Examples

library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)

data(breast)

set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]

80 WellSVMSSLR

test <- breast[-train.index,]

cls <- which(colnames(breast) == "Class")

#% LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- USMLeastSquaresClassifierSSLR() %>% fit(Class ~ ., data = train)

#Accuracy
predict(m,test) %>%

bind_cols(test) %>%
metrics(truth = "Class", estimate = .pred_class)

WellSVMSSLR General Interface for WellSVM model

Description

model from RSSL package WellSVM is a minimax relaxation of the mixed integer programming
problem of finding the optimal labels for the unlabeled data in the SVM objective function. This
implementation is a translation of the Matlab implementation of Li (2013) into R.

Usage

WellSVMSSLR(
C1 = 1,
C2 = 0.1,
gamma = 1,
x_center = TRUE,
scale = FALSE,
use_Xu_for_scaling = FALSE,
max_iter = 20

)

Arguments

C1 double; A regularization parameter for labeled data, default 1;

C2 double; A regularization parameter for unlabeled data, default 0.1;

gamma double; Gaussian kernel parameter, i.e., k(x,y) = exp(-gamma^2||x-y||^2/avg)
where avg is the average distance among instances; when gamma = 0, linear
kernel is used. default gamma = 1;

x_center logical; Should the features be centered?

scale logical; Should the features be normalized? (default: FALSE)

wine 81

use_Xu_for_scaling

logical; whether the unlabeled objects should be used to determine the mean and
scaling for the normalization

max_iter integer; Maximum number of iterations

References

Y.-F. Li, I. W. Tsang, J. T. Kwok, and Z.-H. Zhou. Scalable and Convex Weakly Labeled SVMs.
Journal of Machine Learning Research, 2013.

R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order information for
training SVM. Journal of Machine Learning Research 6, 1889-1918, 2005.

Examples

library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)

data(breast)

set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]
test <- breast[-train.index,]

cls <- which(colnames(breast) == "Class")

#% LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- WellSVMSSLR() %>% fit(Class ~ ., data = train)

#Accuracy
predict(m,test) %>%

bind_cols(test) %>%
metrics(truth = "Class", estimate = .pred_class)

wine Wine recognition data

Description

This dataset is the result of a chemical analysis of wine grown in the same region in Italy but derived
from three different cultivars. The analysis determined the quantities of 13 constituents found in
each of the three types of wines.

82 wine

Usage

data(wine)

Format

A data frame with 178 rows and 14 variables including the class.

Details

The dataset is taken from the UCI data repository, to which it was donated by Riccardo Leardi,
University of Genova. The attributes are as follows:

• Alcohol

• Malic acid

• Ash

• Alcalinity of ash

• Magnesium

• Total phenols

• Flavanoids

• Nonflavanoid phenols

• Proanthocyanins

• Color intensity

• Hue

• OD280/OD315 of diluted wines

• Proline

• Wine (class)

Source

https://archive.ics.uci.edu/ml/datasets/Wine

https://archive.ics.uci.edu/ml/datasets/Wine

Index

∗ datasets
abalone, 4
breast, 5
coffee, 15
wine, 81

abalone, 4

best_split, 4
best_split,DecisionTreeClassifier-method,

5
breast, 5

calculate_gini, 6
check_value, 6
check_xy_interface, 7
coBC, 7, 10, 43
coBCCombine, 9
coBCG, 10
coBCReg, 12
coBCRegG, 13
coffee, 15
COREG, 15, 43

DecisionTreeClassifier-class, 16
democratic, 16, 19, 44
democraticCombine, 18
democraticG, 19

EMLeastSquaresClassifierSSLR, 20
EMNearestMeanClassifierSSLR, 22
EntropyRegularizedLogisticRegressionSSLR,

23

fit.model_sslr, 24
fit_decision_tree, 25
fit_decision_tree,DecisionTreeClassifier-method,

25
fit_random_forest,RandomForestSemisupervised-method,

26
fit_x_u, 28

fit_x_u.model_sslr, 28
fit_xy.model_sslr, 27

get_class_max_prob, 29
get_class_mean_prob, 29
get_function, 30
get_function_generic, 30
get_levels_categoric, 31
get_most_frequented, 31
get_value_mean, 31
get_x_y, 32
gini_or_variance, 32
gini_prob, 33
grow_tree, 33
grow_tree,DecisionTreeClassifier-method,

34

knn_regression, 34

LaplacianSVMSSLR, 35
LinearTSVMSSLR, 36
load_parsnip, 37
load_RANN, 38
load_RSSL, 38

MCNearestMeanClassifierSSLR, 38

newDecisionTree, 40
Node-class, 40
nullOrNumericOrCharacter-class, 40

oneNN, 41, 48

predict,DecisionTreeClassifier-method,
41

predict,RandomForestSemisupervised-method,
42

predict.coBC, 42
predict.COREG, 43
predict.democratic, 44

83

84 INDEX

predict.EMLeastSquaresClassifierSSLR,
44

predict.EMNearestMeanClassifierSSLR,
45

predict.EntropyRegularizedLogisticRegressionSSLR,
45

predict.LaplacianSVMSSLR, 46
predict.LinearTSVMSSLR, 46
predict.MCNearestMeanClassifierSSLR,

47
predict.model_sslr_fitted, 47
predict.OneNN, 48
predict.RandomForestSemisupervised_fitted,

48
predict.selfTraining, 49
predict.setred, 50
predict.snnrce, 50
predict.snnrceG, 51
predict.SSLRDecisionTree_fitted, 52
predict.triTraining, 52
predict.TSVMSSLR, 53
predict.USMLeastSquaresClassifierSSLR,

53
predict.WellSVMSSLR, 54
predict_inputs, 54
predict_inputs,DecisionTreeClassifier-method,

55
print.model_sslr, 55

RandomForestSemisupervised-class, 55

selfTraining, 49, 56, 59, 61–63, 66
selfTrainingG, 58
setred, 50, 61, 64
setredG, 63
snnrce, 51, 66
SSLRDecisionTree, 68
SSLRRandomForest, 69
SVM, 36

train_generic, 71
triTraining, 52, 53, 72, 74
triTrainingCombine, 73
triTrainingG, 74
TSVMSSLR, 77

USMLeastSquaresClassifierSSLR, 78

WellSVMSSLR, 80
wine, 81

	abalone
	best_split
	best_split,DecisionTreeClassifier-method
	breast
	calculate_gini
	check_value
	check_xy_interface
	coBC
	coBCCombine
	coBCG
	coBCReg
	coBCRegG
	coffee
	COREG
	DecisionTreeClassifier-class
	democratic
	democraticCombine
	democraticG
	EMLeastSquaresClassifierSSLR
	EMNearestMeanClassifierSSLR
	EntropyRegularizedLogisticRegressionSSLR
	fit.model_sslr
	fit_decision_tree
	fit_decision_tree,DecisionTreeClassifier-method
	fit_random_forest,RandomForestSemisupervised-method
	fit_xy.model_sslr
	fit_x_u
	fit_x_u.model_sslr
	get_class_max_prob
	get_class_mean_prob
	get_function
	get_function_generic
	get_levels_categoric
	get_most_frequented
	get_value_mean
	get_x_y
	gini_or_variance
	gini_prob
	grow_tree
	grow_tree,DecisionTreeClassifier-method
	knn_regression
	LaplacianSVMSSLR
	LinearTSVMSSLR
	load_parsnip
	load_RANN
	load_RSSL
	MCNearestMeanClassifierSSLR
	newDecisionTree
	Node-class
	nullOrNumericOrCharacter-class
	oneNN
	predict,DecisionTreeClassifier-method
	predict,RandomForestSemisupervised-method
	predict.coBC
	predict.COREG
	predict.democratic
	predict.EMLeastSquaresClassifierSSLR
	predict.EMNearestMeanClassifierSSLR
	predict.EntropyRegularizedLogisticRegressionSSLR
	predict.LaplacianSVMSSLR
	predict.LinearTSVMSSLR
	predict.MCNearestMeanClassifierSSLR
	predict.model_sslr_fitted
	predict.OneNN
	predict.RandomForestSemisupervised_fitted
	predict.selfTraining
	predict.setred
	predict.snnrce
	predict.snnrceG
	predict.SSLRDecisionTree_fitted
	predict.triTraining
	predict.TSVMSSLR
	predict.USMLeastSquaresClassifierSSLR
	predict.WellSVMSSLR
	predict_inputs
	predict_inputs,DecisionTreeClassifier-method
	print.model_sslr
	RandomForestSemisupervised-class
	selfTraining
	selfTrainingG
	setred
	setredG
	snnrce
	SSLRDecisionTree
	SSLRRandomForest
	train_generic
	triTraining
	triTrainingCombine
	triTrainingG
	TSVMSSLR
	USMLeastSquaresClassifierSSLR
	WellSVMSSLR
	wine
	Index

