Package ‘SPOT’

June 17, 2020
License GPL (>=2)
Title Sequential Parameter Optimization Toolbox
Type Package
LazyLoad yes
LazyData true

Description A set of tools for model based optimization and tuning of
algorithms. It includes surrogate models, optimizers and design of experiment
approaches. The main interface is spot, which uses sequentially updated
surrogate models for the purpose of efficient optimization. The main goal is
to ease the burden of objective function evaluations, when a single evaluation
requires a significant amount of resources.

Version 2.0.6
Date 2020-06-17
Depends R (>=3.0.0)

Imports randomForest, ranger, stats, utils, graphics, grDevices, MASS,
DEoptim, rgenoud, plotly, rsm, nloptr, ggplot2

RoxygenNote 7.1.0
Suggests testthat, batchtools
NeedsCompilation no

Author Thomas Bartz-Beielstein [aut, cre],
Joerg Stork [aut],
Martin Zaefferer [aut],
Margarita Rebolledo [ctb],
Christian Lasarczyk [ctb],
Lorenzo Gentile [ctb],
Frederik Rehbach [aut]

Maintainer Thomas Bartz-Beielstein <tbb@bartzundbartz.de>
Repository CRAN
Date/Publication 2020-06-17 14:20:02 UTC



2

R topics documented:

R topics documented:

Index

SPOT-package . . . . . . . . . . e 3
buildCVModel . . . . . . . . . e 4
buildEnsembleStack . . . . . .. ... 5
buildKriging . . . . . . .. 6
buildKrigingDACE . . . . . . . .. e 9
builldLM . . . . . . 10
buildLOESS . . . . . . . o e 11
buildRandomForest . . . . . . . ... ... 12
buildRanger . . . . . . . . ... 13
buildRSM . . . . . e 14
dataGasSensor. . . . . ... L. e e e e e 15
descentSpotRSM . . . . . . L e 17
designLHD . . . . . . . e 17
designUniformRandom . . . . . . . . . .. ... o Lo 19
expectedlmprovement . . . . . . . ... .. e e 20
funBranin . . . . . ... 20
funCyclone . . . . . . . . . e e 21
funOptimLecture . . . . . . . . . . .. e 22
funRosen . . . . . . e 23
funSphere . . . . . . L e 23
infillExpectedlmprovement . . . . . . . .. ... 24
optimDE . . . . . . e e e 25
optimES . . . . L 26
optimGenoud . . . . . ... 27
optimLBFGSB . . . . . . . e 28
optimLHD . . . . . . . e 29
optimNLOPTR . . . . . . e 30
plotData . . . . . . . . 32
plotFunction . . . . . . . ... e 33
plotModel . . . . . . . 35
predictcvModel . . . . .. oL 36
repeatsOCBA . . . . . . . . e 37
SALET . . . . o . e e e e e e e e e e e e 38
simulate.kriging . . . . . ... oL e 38
simulateFunction . . . . . . ... 40
SPOL o o o e e e e e 41
SPOtAIgES . . . . e 43
SPOtLOOD . . . . 45
wrapBatchTools . . . . . . . . . .. 46
wrapFunction . . . . . .. 47
wrapFunctionParallel . . . . . . . ... ... 48
wrapSystemCommand . . . . .. ... L e 48

50



SPOT-package 3

SPOT-package Sequential Parameter Optimization Toolbox

Description

Sequential Parameter Optimization Toolbox

Details

SPOT uses a combination statistic models and optimization algorithms for the purpose of parameter
optimization. Design of Experiment methods are employed to generate an initial set of candidate
solutions, which are evaluated with a user-provided objective function. The resulting data is used
to fit a model, which in turn is subject to an optimization algorithm, to find the most promising
candidate solution(s). These are again evaluated, after which the model is updated with the new
results. This sequential procedure of modeling, optimization and evaluation is iterated until the
evaluation budget is exhausted.

Note, that versions >=2.0.1 of the package are a complete rewrite of the interfaces and conventions
in SPOT. The rewritten SPOT package aims to improve the following issues of the older package:

- A more modular architecture is provided, that allows the user to easily customize parts of the SPO
procedure.

- Core functions for modeling and optimization use interfaces more similar to algorithms from other
packages / core-R, hence making them easier accessible for new users. Also, these can now be more
easily used separately from the main SPO approach, e.g., only for modeling.

- Reducing the unnecessarily large number of choices and parameters.

- Removal of extremely rarely used / un-used features, to reduce overall complexity of the package.
- Improving documentation and accessibility in general.

- Speed-up of frequently used procedures.

We appreciate feedback about any bugs or other issues with the package. Feel free to send feedback
by mail to the maintainer.

Package: SPOT

Type: Package
Version: 2.0.6
Date: 2020-06-17

License: GPL (>=2)
LazyLoad: yes

Acknowledgments

This work has been partially supported by the Federal Ministry of Education and Research (BMBF)
under the grants CIMO (FKZ 17002X11) and MCIOP (FKZ 17N0311).

Maintainer

Thomas Bartz-Beielstein <tbb@bartzundbartz.de>



4 buildCVModel

Author(s)

Thomas Bartz-Beielstein <tbb@bartzundbartz.de>, Joerg Stork, Martin Zaefferer with contribu-
tions from: C. Lasarczyk, M. Rebolledo, L. Gentile, F. Rehbach.

See Also

Main interface function is spot.

buildCVModel buildCVModel

Description

Build a set of models trained on different folds of cross-validated data. Can be used to estimate the
uncertainty of a given model type at any point.

Usage

buildCVModel(x, y, control = list())

Arguments

X design matrix (sample locations)
y vector of observations at x

control (list), with the options for the model building procedure:
types a character vector giving the data type of each variable. All but "factor"
will be handled as numeric, "factor" (categorical) variables will be subject to the
hamming distance.
target target values of the prediction, a vector of strings. Each string specifies
a value to be predicted, e.g., "y" for mean, "s" for standard deviation. This can
also be changed after the model has been built, by manipulating the respective
object$target value.
uncertaintyEstimator a character vector specifying which uncertaintyEsti-
mator should be used. "s" or the linearlyAdapted uncertrainty "sLinear". Default
is "sLinear"

Value

set of models (class cvModel)



buildEnsembleStack 5

buildEnsembleStack Ensemble: Stacking

Description

Generates an ensemble of surrogate models with stacking (stacked generalization).

Usage

buildEnsembleStack(x, y, control = list())

Arguments
X design matrix (sample locations), rows for each sample, columns for each vari-
able.
y vector of observations at x
control (list), with the options for the model building procedure:
modellL1 Function for fitting the L1 model (default: buildLM) which combines
the results of the LO models.
modelL1Control List of control parameters for the L1 model (default: 1ist()).
modell @ A list of functions for fitting the LO models (default: 1ist(buildLM,buildRandomForest,buil
modelL@Control List of control lists for each LO model (default: 1ist(list(),list(),list())).
Value

returns an object of class ensembleStack.

Note

Loosely based on the code by Emanuele Olivetti https://github.com/emanuele/kaggle_pbr/blob/master/blend.py

References

Bartz-Beielstein, Thomas. Stacked Generalization of Surrogate Models-A Practical Approach.
Technical Report 5/2016, TH Koeln, Koeln, 2016.

David H Wolpert. Stacked generalization. Neural Networks, 5(2):241-259, January 1992.

See Also

predict.ensembleStack



Examples

buildKriging

## Create a test function: branin

braninFunction <- function (x) {

(x[2] - 5.1/(4 * pi*2) * (x[1] *2) + 5/pi *x x[1] - 6)*2 +
10 * (1 - 1/(8 * pi)) * cos(x[1] ) + 10

3

## Create design points

x <= cbind(runif(20)*15-5,runif(20)*15)
## Compute observations at design points
y <- as.matrix(apply(x,1,braninFunction))
## Create model with default settings
fit <- buildEnsembleStack(x,y)

## Predict new point
predict(fit,cbind(1,2))

## True value at location
braninFunction(c(1,2))

buildKriging

Build Kriging Model

Description

This function builds a Kriging model based on code by Forrester et al.. By default exponents (p) are
fixed at a value of two, and a nugget (or regularization constant) is used. To correct the uncertainty
estimates in case of nugget, re-interpolation is also by default turned on.

Usage

buildKriging(x, y, control = list())

Arguments

X

y
control

design matrix (sample locations)
vector of observations at x

(list), with the options for the model building procedure:

types a character vector giving the data type of each variable. All but "factor"
will be handled as numeric, "factor” (categorical) variables will be subject to the
hamming distance.

thetalLower lower boundary for theta, default is 1e-4

thetaUpper upper boundary for theta, default is 1e2

algTheta algorithm used to find theta, default is optimDE.

budgetAlgTheta budget for the above mentioned algorithm, default is 200. The
value will be multiplied with the length of the model parameter vector to be op-
timized.

optimizeP boolean that specifies whether the exponents (p) should be opti-
mized. Else they will be set to two. Default is FALSE



buildKriging

Details

useLambda whether or not to use the regularization constant lambda (nugget ef-
fect). Default is TRUE.

lambdaLower lower boundary for log10lambda, default is -6

lambdaUpper upper boundary for log10lambda, default is @

startTheta optional start value for theta optimization, default is NULL
reinterpolate whether (TRUE,default) or not (FALSE) reinterpolation should
be performed target target values of the prediction, a vector of strings. Each
string specifies a value to be predicted, e.g., "y" for mean, "s" for standard de-
viation, "ei" for expected improvement. See also predict.kriging. This can
also be changed after the model has been built, by manipulating the respective
object$target value.

The model uses a Gaussian kernel: k(x,z)=exp(-sum(theta_i * |x_i-z_i|*p_i)). By default,
p_i = 2. Note that if dimension x_i is a factor variable (see parameter types), Hamming distance
will be used instead of |x_i-z_i]|.

Value

an object of class kriging. Basically a list, with the options and found parameters for the model
which has to be passed to the predictor function:

x sample locations (scaled to values between 0 and 1)

y observations at sample locations (see parameters)

thetalLower lower boundary for theta (see parameters)

thetaUpper upper boundary for theta (see parameters)

algTheta algorithm to find theta (see parameters)

budgetAlgTheta budget for the above mentioned algorithm (see parameters)

optimizeP boolean that specifies whether the exponents (p) were optimized (see parameters)
normalizeymin minimum in normalized space

normalizeymax maximum in normalized space

normalizexmin minimum in input space

normalizexmax maximum in input space

dmodeltheta vector of activity parameters

Theta log_10 vector of activity parameters (i.e. log1@(dmodeltheta))

dmodellambda regularization constant (nugget)

Lambda log_10 of regularization constant (nugget) (i.e. log1@(dmodellambda))

yonemu Ay-ones*mu

ssq sigma square
mu mean mu

Psi matrix large Psi
Psinv inverse of Psi
nevals number of Likelihood evaluations during MLE

References

Forrester, Alexander 1.J.; Sobester, Andras; Keane, Andy J. (2008). Engineering Design via Surro-
gate Modelling - A Practical Guide. John Wiley & Sons.



8 buildKriging

See Also

predict.kriging

Examples

## Test-function:

braninFunction <- function (x) {

(x[2] - 5.1/(4 * pi*2) * (x[1] *2) + 5/pi » x[1] - 6)*2 +
10 * (1 - 1/(8 * pi)) *x cos(x[1] ) + 10

3

## Create design points

set.seed(1)

X <= cbind(runif(20)*15-5,runif(20)*15)

## Compute observations at design points (for Branin function)
y <- as.matrix(apply(x,1,braninFunction))

## Create model with default settings

fit <- buildKriging(x,y,control = list(algTheta=optimLHD))
## Print model parameters

print(fit)

## Predict at new location

predict(fit,cbind(1,2))

## True value at location

braninFunction(c(1,2))

#H#

## Next Example: Handling factor variables

#H#

## create a test function:

braninFunctionFactor <- function (x) {

y <= (x[2] - 5.1/(4 * pi*2) = (x[1] *2) + 5/pi * x[1] - 6)"2 +
10 x (1 - 1/(8 *x pi)) * cos(x[1] ) + 10

if(x[31==1)

y <-y +1

else if(x[3]==2)
y <=y -1

y

3

## create training data

set.seed(1)

x <= cbind(runif(50)*15-5,runif(50)*15,sample(1:3,50,replace=TRUE))
y <- as.matrix(apply(x,1,braninFunctionFactor))

## fit the model (default: assume all variables are numeric)
fitDefault <- buildKriging(x,y,control = list(algTheta=optimDE))

## fit the model (give information about the factor variable)
fitFactor <- buildKriging(x,y,control =

list(algTheta=optimDE, types=c("numeric”,"numeric”,"factor")))

## create test data

xtest <- cbind(runif(200)*15-5,runif(200)*15,sample(1:3,200,replace=TRUE))
ytest <- as.matrix(apply(xtest,1,braninFunctionFactor))

## Predict test data with both models, and compute error

ypredDef <- predict(fitDefault,xtest)$y

ypredFact <- predict(fitFactor,xtest)$y

mean((ypredDef-ytest)*2)



buildKrigingDACE 9

mean((ypredFact-ytest)*2)

buildKrigingDACE Build DACE model

Description

This Kriging meta model is based on DACE (Design and Analysis of Computer Experiments). It
allows to choose different regression and correlation models. The optimization of model parameters
is by default done with a bounded simplex method from the nloptr package.

Usage
buildKrigingDACE(x, y, control = list())

Arguments

X design matrix (sample locations), rows for each sample, columns for each vari-
able.

y vector of observations at x

control (list), with the options for the model building procedure:
startTheta optional start value for theta optimization, default is NULL
algTheta algorithm used to find theta, default is optimDE.
budgetAlgTheta budget for the above mentioned algorithm, default is 200. The
value will be multiplied with the length of the model parameter vector to be op-
timized.
nugget Value for nugget. Default is -1, which means the nugget will be op-
timized during MLE. Else it can be fixed in a range between O and 1. regr
Regression function to be used: regpoly@ (default), regpoly1, regpoly2. Can
be a custom user function.
corr Correlation function to be used: corrnoisykriging (default), corrkriging,
corrnoisygauss, corrgauss, correxp, correxpg, corrlin, corrcubic,corrspherical,corrspline.
Can also be user supplied (if in the right form). target target values of the pre-
diction, a vector of strings. Each string specifies a value to be predicted, e.g., "y"
for mean, "s" for standard deviation, "ei" for expected improvement. See also
predict.kriging. This can also be changed after the model has been build, by
manipulating the respective object$target value.

Value

returns an object of class dace with the following elements:

model A list, containing model parameters
like Estimated likelihood value

theta activity parameters theta (vector)

p exponents p (vector)

lambda nugget value (numeric)

nevals Number of iterations during MLE



10 buildLM

Author(s)

The authors of the original DACE Matlab toolbox are Hans Bruun Nielsen, Soren Nymand Lophaven

and Jacob Sondergaard.

Extension of the Matlab code by Tobias Wagner <wagner@isf.de>.

Porting and adaptation to R and further extensions by Martin Zaefferer <martin.zaefferer@fh-koeln.de>.

References

S.~Lophaven, H.~Nielsen, and J.~Sondergaard. DACE—A Matlab Kriging Toolbox. Technical Re-
port IMM-REP-2002-12, Informatics and Mathematical Modelling, Technical University of Den-
mark, Copenhagen, Denmark, 2002.

See Also

predict.dace

Examples

## Create design points

x <= cbind(runif(20)*15-5,runif(20)*15)

## Compute observations at design points

y <- funSphere(x)

## Create model with default settings

fit <- buildKrigingDACE(x,y)

## Print model parameters

print(fit)

## Create with different regression and correlation functions
fit <- buildKrigingDACE(x,y,control=1ist(regr=regpoly2,corr=corrspline))
## Print model parameters

print(fit)

buildLM Linear Model Interface

Description

This is a simple wrapper for the Im function, which fits linear models. The purpose of this function
is to provide an interface as required by SPOT, to enable modeling and model-based optimization
with linear models. The linear model is build with main effects. Optionally, the model is also
subject to the AIC-based stepwise algorithm, using the step function from the stats package.

Usage

buildLM(x, y, control = list())



buildLOESS 11

Arguments
X matrix of input parameters. Rows for each point, columns for each parameter.
y one column matrix of observations to be modeled.
control list of control parameters, currently only with parameters useStep and formula.
The useStep boolean specifies whether the step function is used. The formula
is passed to the Im function. Without a formula, a second order model will be
built.
Value

an object of class "spotLinearModel”, with a predict method and a print method.

Examples

## Test-function:

braninFunction <- function (x) {

(x[2] - 5.1/(4 * pi*2) * (x[1] *2) + 5/pi » x[1] - 6)*2 +
10 x (1 - 1/(8 * pi)) *x cos(x[1] ) + 10

3

## Create design points

set.seed(1)

X <= cbind(runif(20)*15-5,runif(20)*15)

## Compute observations at design points (for Branin function)
y <- as.matrix(apply(x,1,braninFunction))

## Create model

fit <- buildLM(x,y,control = list(algTheta=optimLHD))

## Print model parameters

print(fit)

## Predict at new location

predict(fit,cbind(1,2))

## True value at location

braninFunction(c(1,2))

buildLOESS Build LOESS Model

Description

Build an interpolation model using the loess function. Essentially a SPOT-style interface to that
function.

Usage

buildLOESS(x, y, control = list())



12 buildRandomForest

Arguments
X design matrix (sample locations), rows for each sample, columns for each vari-
able.
y vector of observations at x
control named list, with the options for the model building procedure loess. These will
be passed to loess as arguments. Please refrain from setting the formula or data
arguments as these will be supplied by the interface, based on x and y.
Value

returns an object of class spotLOESS.

See Also

predict.spotLOESS

Examples

## Create a test function: branin

braninFunction <- function (x) {

(x[2] - 5.1/(4 * pi*2) * (x[1] *2) + 5/pi » x[1] - 6)*2 +
10 * (1 - 1/(8 * pi)) *x cos(x[1] ) + 10

3

## Create design points

set.seed(1)

X <= cbind(runif(40)*15-5,runif(40)*15)

## Compute observations at design points

y <- as.matrix(apply(x,1,braninFunction))

## Create model with default settings

fit <- buildLOESS(x,y)

fit

## Predict new point

predict(fit,cbind(1,2))

## True value at location

braninFunction(c(1,2))

## Change model control

fit <- buildLOESS(x,y,control=list(parametric=c(TRUE,FALSE)))
fit

buildRandomForest Random Forest Interface

Description

This is a simple wrapper for the randomForest function from the randomForest package. The pur-
pose of this function is to provide an interface as required by SPOT, to enable modeling and model-
based optimization with random forest.



buildRanger 13

Usage

buildRandomForest(x, y, control = list())

Arguments
X matrix of input parameters. Rows for each point, columns for each parameter.
y one column matrix of observations to be modeled.
control list of control parameters, currently not used.

Value

an object of class "spotRandomForest"”, with a predict method and a print method.

Examples

## Not run:

## Test-function:

braninFunction <- function (x) {

(x[2] - 5.1/(4 * pi*2) x (x[1] *2) + 5/pi * x[1] - 6)*2 +
10 x (1 - 1/(8 * pi)) *x cos(x[1] ) + 10

3

## Create design points

set.seed(1)

x <= cbind(runif(20)*15-5,runif(20)*15)

## Compute observations at design points (for Branin function)
y <- as.matrix(apply(x,1,braninFunction))

## Create model

fit <- buildRandomForest(x,y)

## Print model parameters

print(fit)

## Predict at new location

predict(fit,cbind(1,2))

## True value at location

braninFunction(c(1,2))

## End(Not run)

buildRanger ranger Interface

Description

This is a simple wrapper for the ranger function from the ranger package. The purpose of this
function is to provide an interface as required by SPOT, to enable modeling and model-based opti-
mization with ranger.

Usage

buildRanger(x, y, control = list())



14 buildRSM

Arguments
X matrix of input parameters. Rows for each point, columns for each parameter.
y one column matrix of observations to be modeled.
control list of control parameters. These are all configuration parameters of the ranger
function, and will be passed on to it.
Value

an object of class "spotRanger”, with a predict method and a print method.

Examples

## Not run:

## Create a simple training data set

testfun <- function (x) x[1]*2

x <= cbind(sort(runif(30)*2-1))

y <- as.matrix(apply(x,1,testfun))

## test data:

xt <- cbind(sort(runif(3000)*2-1))

## Example with default model (standard randomforest)

fit <- buildRanger(x,y)

yt <- predict(fit,data.frame(x=xt))

plot(xt,yt$y, type="1")

points(x,y,col="red",pch=20)

## Example with extratrees, an interpolating model

fit <- buildRanger(x,y,

control=list(rangerArguments =
list(replace = F,

sample.fraction=1,
min.node.size = 1,
splitrule = "extratrees")))

yt <- predict(fit,data.frame(x=xt))

plot(xt,yt$y, type="1")

points(x,y,col="red",pch=20)

## End(Not run)

buildRSM Build Response Surface Model

Description

Using the rsm package, this function builds a linear response surface model.

Usage

buildRSM(x, y, control = list())



dataGasSensor 15

Arguments
X design matrix (sample locations), rows for each sample, columns for each vari-
able.
y vector of observations at x
control (list), with the options for the model building procedure:
mainEffectsOnly Logical, defaults to FALSE. Set to TRUE if a model with
main effects only is desired (no interactions, second order effects).
canonical Logical, defaults to FALSE. If this is TRUE, use the canonical path
to descent from saddle points. Else, simply use steepest descent
Value

returns an object of class spotRSM.

See Also

predict.spotRSM

Examples

## Create a test function: branin
braninFunction <- function (x) {

(x[2] - 5.1/(4 * pi*2) * (x[1] *2) + 5/pi » x[1] - 6)*2 +
10 * (1 - 1/(8 * pi)) *x cos(x[1] ) + 10
3

## Create design points

X <= cbind(runif(20)*15-5,runif(20)*15)
## Compute observations at design points
y <- as.matrix(apply(x,1,braninFunction))
## Create model with default settings

fit <- buildRSM(x,y)

## Predict new point
predict(fit,cbind(1,2))

## True value at location
braninFunction(c(1,2))

## plots

plot(fit)

## path of steepest descent
descentSpotRSM(fit)

dataGasSensor Gas Sensor Data

Description

A data set of a Gas Sensor, similar to the one used by Rebolledo et al. 2016. It also contains
information of 10 different test/training splits, to enable comparable evaluation procedures.



16 dataGasSensor

Usage

dataGasSensor

Format

A data frame with 280 rows and 20 columns (1 output, 7 input, 2 disturbance, 10 training/test split)

Y Measured Sensor Output

X1 Sensor Input 1

X2 Sensor Input 2

X3 Sensor Input 3

X4 Sensor Input 4

X5 Sensor Input 5

X6 Sensor Input 6

X7 Sensor Input 7

Batch Disturbance variable, measurement batch
Sensor Disturbance variable, sensor ID

Setl test/training split, 1 is training data, 2 is test data
Set2 test/training split

Set3 test/training split

Set4 test/training split

Set5 test/training split

Set6 test/training split

Set7 test/training split

Set8 test/training split

Set9 test/training split

Set10 test/training split

Two different modeling tasks are of interest for this data set: Y~X1+X2+X3+X4+X5+X6+X7+Batch+Sensor
and X1~Y+X7+Batch+Sensor.

References

Margarita A. Rebolledo C., Sebastian Krey, Thomas Bartz-Beielstein, Oliver Flasch, Andreas Fis-
chbach and Joerg Stork.

2016.

Modeling and Optimization of a Robust Gas Sensor.

7th International Conference on Bioinspired Optimization Methods and their Applications (BIOMA
2016).



descentSpotRSM 17

descentSpotRSM Descent RSM model

Description

Generate steps along the path of steepest descent for a RSM model. This is only intended as a
manual tool to use together with buildRSM.

Usage

descentSpotRSM(object)

Arguments

object RSM model (settings and parameters) of class spotRSM.

Value
list with
x list of points along the path of steepest descent

y corresponding predicted values

See Also

buildRSM

designLHD Latin Hypercube Design Generator

Description

Creates a latin Hypercube Design (LHD) with user-specified dimension and number of design
points. LHDs are created repeatedly created at random. For each each LHD, the minimal pair-
wise distance between design points is computed. The design with the maximum of that minimal
value is chosen.

Usage

designLHD(x = NULL, lower, upper, control = list())



18 designLHD

Arguments

X optional matrix X, rows for points, columns for dimensions. This can contain
one or more points which are part of the design, but specified by the user. These
points are added to the design, and are taken into account when calculating
the pair-wise distances. They do not count for the design size. E.g., if x has
two rows, control$replicates is one and control$size is ten, the returned
design will have 12 points (12 rows). The first two rows will be identical to x.
Only the remaining ten rows are guaranteed to be a valid LHD.

lower vector with lower boundary of the design variables (in case of categorical pa-
rameters, please map the respective factor to a set of contiguous integers, e.g.,
with lower = 1 and upper = number of levels)

upper vector with upper boundary of the design variables (in case of categorical pa-
rameters, please map the respective factor to a set of contiguous integers, e.g.,
with lower = 1 and upper = number of levels)
control list of controls:
size number of design points
retries number of retries during design creation
types this specifies the data type for each design parameter, as a vector of either
"numeric","integer","factor". (here, this only affects rounding)
inequalityConstraint inequality constraint function, smaller zero for infea-
sible points. Used to replace infeasible points with random points.
replicates integer for replications of each design point. E.g., if replications
is two, every design point will occur twice in the resulting matrix.

Value

matrix design
- design has length(lower) columns and (size + nrow(x))*control$replicates rows. All
values should be within lower <= design <= upper

Author(s)

Original code by Christian Lasarczyk, adaptations by Martin Zaefferer

Examples

set.seed(1) #set RNG seed to make examples reproducible

design <- designlLHD(,1,2) #simple, 1-D case

design

design <- designLHD(,1,2,control=list(replicates=3)) #with replications
design

design <- designLHD(,c(-1,-2,1,0),c(1,4,9,1),

control=list(size=5, retries=100, types=c("numeric”,"integer","factor”,"factor")))
design

x <- designLHD(,c(1,-10),c(2,10),control=list(size=5,retries=100))

x2 <- designLHD(x,c(1,-10),c(2,10),control=list(size=5,retries=100))
plot(x2)

points(x, pch=19)



designUniformRandom 19

designUniformRandom Uniform Design Generator

Description

Create a simple experimental design based on uniform random sampling.

Usage

designUniformRandom(x = NULL, lower, upper, control = list())

Arguments
X optional data.frame x to be part of the design
lower vector with lower boundary of the design variables (in case of categorical pa-
rameters, please map the respective factor to a set of contiguous integers, e.g.,
with lower = 1 and upper = number of levels)
upper vector with upper boundary of the design variables (in case of categorical pa-
rameters, please map the respective factor to a set of contiguous integers, e.g.,
with lower = 1 and upper = number of levels)
control list of controls:
size number of design points
types this specifies the data type for each design parameter, as a vector of either
"numeric","integer","factor". (here, this only affects rounding)
replicates integer for replications of each design point. E.g., if replications is
two, every design point will occur twice in the resulting matrix.
Value

matrix design
- design has length(lower) columns and (size + nrow(x))*control$replicates rows. All
values should be within lower <= design <= upper

Examples

set.seed(1) #set RNG seed to make examples reproducible

design <- designUniformRandom(,1,2) #simple, 1-D case

design

design <- designUniformRandom(,1,2,control=list(replicates=3)) #with replications
design

design <- designUniformRandom(,c(-1,-2,1,0),c(1,4,9,1),
control=list(size=5, types=c(”"numeric”,"integer"”,"factor”,"factor")))
design

x <- designUniformRandom(,c(1,-10),c(2,10),control=list(size=5))

x2 <- designUniformRandom(x,c(1,-10),c(2,10),control=list(size=5))
plot(x2)

points(x, pch=19)



20 funBranin

expectedImprovement Expected Improvement

Description

Compute the negative logarithm of the Expected Improvement of a set of candidate solutions. Based
on mean and standard deviation of a candidate solution, this estimates the expectation of improve-
ment. Improvement considers the amount by which the best known value (best observed value) is
exceeded by the candidates.

Usage

expectedImprovement(mean, sd, min)

Arguments
mean vector of predicted means of the candidate solutions.
sd vector of estimated uncertainties / standard deviations of the candidate solutions.
min minimal observed value.

Value

a vector with the negative logarithm of the expected improvement values, -log10(EI).

Examples

mean <- 1:10 #mean of the candidates

sd <- 10:1 #st. deviation of the candidates
min <- 5 #best known value

EI <- expectedImprovement(mean,sd,min)

EI

funBranin funBranin

Description

Branin Test Function

Usage

funBranin(x)

Arguments

X matrix of points to evaluate with the function. Rows for points and columns for
dimension.



funCyclone 21

Value

1-column matrix with resulting function values

Examples

x1 <= matrix(c(-pi, 12.275),1,)
funBranin(x1)

funCyclone Objective function - Cyclone Simulation: Barth/Muschelknautz

Description

Calculate cyclone collection efficiency. A simple, physics-based optimization problem (potentially
bi-objective). See the references [1,2].

Usage

funCyclone(
X,
deterministic = c¢(T, T, T),
cyclone = list(Da = 1.26, H = 2.5, Dt = 0.42, Ht = 0.65, He = 0.6, Be = 0.2),
fluid = 1ist(Mu = 1.85e-05, Ve = (50/36)/0.12, lambdag = 1/200, Rhop = 2000, Rhof =
1.2, Croh = 9.05),
noiselLevel = list(Vp = 0.1, Rhop = 0.05),
model = "Barth-Muschelknautz”,
intervals = c(0, 2, 4, 6, 8, 10, 15, 20, 30) * 1e-06,
delta = c(@, 0.02, 0.03, 0.05, 0.1, 0.3, 0.3, 0.2)

Arguments

X vector of length at least one and up to six, specifying non-default geometrical
parameters in [m]: Da, H, Dt, Ht, He, Be

deterministic binary vector. First element specifies whether volume flow is deterministic or
not. Second element specifies whether particle density is deterministic or not.
Third element specifies whether particle diameters are deterministic or not. De-
fault: All are deterministic (TRUE).

cyclone list of a default cyclone’s geometrical parameters: fluid$Da, fluid$H, fluid$Dt,
fluid$Ht, fluid$He and fluid$Be

fluid list of default fluid parameters: fluid$Mu, fluid$Vp, fluid$Rhop, fluid$Rhof and
fluid$Croh

noiselLevel list of noise levels for volume flow (noiseLevel$Vp) and particle density (noise-

Level$Rhop), only used if non-deterministic.



22 funOptimLecture

model type of the model (collection efficiency only): either "Barth-Muschelknautz" or
"Mothes"

intervals vector specifying the particle size interval bounds.

delta vector of densities in each interval (specified by intervals). Should have one

element less than the intervals parameter.

Value

returns a function that calculates the fractional efficiency for the specified diameter, see example.

References

[1] Zaefferer, M.; Breiderhoff, B.; Naujoks, B.; Friese, M.; Stork, J.; Fischbach, A.; Flasch, O.;
Bartz-Beielstein, T. Tuning Multi-objective Optimization Algorithms for Cyclone Dust Separators
Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, ACM, 2014, 1223-
1230

[2] Breiderhoff, B.; Bartz-Beielstein, T.; Naujoks, B.; Zaefferer, M.; Fischbach, A.; Flasch, O.;
Friese, M.; Mersmann, O.; Stork, J.; Simulation and Optimization of Cyclone Dust Separators
Proceedings 23. Workshop Computational Intelligence, 2013, 177-196

Examples

## Call directly

funCyclone(c(1.26,2.5))

## create vectorized target funcion, vectorized, first objective only

## Also: negated, since SPOT always does minimization.

tfunvecF1 <-function(x){-apply(x,1,funCyclone)[1,]}

tfunvecF1(matrix(c(1.26,2.5,1,2),2,2,byrow=TRUE))

## optimize with spot

res <- spot(fun=tfunvecF1,lower=c(1,2),upper=c(2,3),
control=list(modelControl=list(target="ei"),
model=buildKriging,optimizer=optimDE,plots=TRUE))

## best found solution ...

res$xbest
## ... and its objective function value
res$ybest
funOptimLecture JfunOptimLecture
Description

A testfunction used in the optimizaton lecture of the AIT Masters course at TH Koeln

Usage

funOptimLecture(vec)



funRosen 23

Arguments

vec input vector or matrix of candidate solution

Value

vector of objective function values

funRosen funRosen

Description

Rosenbrock Test Function

Usage
funRosen(x)
Arguments
X matrix of points to evaluate with the function. Rows for points and columns for
dimension.
Value

1-column matrix with resulting function values

Examples

x1 <= matrix(c(-pi, 12.275),1,)
funRosen(x1)

funSphere funSphere

Description

Sphere Test Function

Usage
funSphere(x)



24 infillExpectedImprovement

Arguments
X matrix of points to evaluate with the function. Rows for points and columns for
dimension.
Value

1-column matrix with resulting function values

Examples

x1 <= matrix(c(-pi, 12.275),1,)
funSphere(x1)

infillExpectedImprovement
infillExpectedImprovement

Description

Compute the negative logarithm of the Expected Improvement of a set of candidate solutions. Based
on mean and standard deviation of a candidate solution, this estimates the expectation of improve-
ment. Improvement considers the amount by which the best known value (best observed value)
is exceeded by the candidates. Expected Improvement infill criterion that can be passed to con-
trol$modelControl$infillCriterion in order to be used during the optimization in SPOT. Parameters
dont have to be specified as this function is ment to be internally by SPOT.

Usage

infillExpectedImprovement (predictionList, model)

Arguments

predictionList The results of a predict.model call

model The surrogate model which was used for the prediction

Value

numeric vector, expected improvement results

Examples

spot(, funSphere,c(-2,-3),c(1,2), control =
list(infillCriterion = infillExpectedImprovement, modelControl = list(target = c("y","s"))))



optimDE

25

optimDE

Minimization by Differential Evolution

Description

For minimization, this function uses the "DEoptim” method from the codeDEoptim package. It is
basically a wrapper, to enable DEoptim for usage in SPOT.

Usage

optimDE (x

Arguments

X
fun

lower
upper

control

Value

= NULL, fun, lower, upper, control = list(), ...)

optional start point

objective function, which receives a matrix x and returns observations y
boundary of the search space

boundary of the search space

list of control parameters

funEvals Budget, number of function evaluations allowed. Default is 200.

populationSize Population size or number of particles in the population. De-
fault is 10*dimension.

passed to fun

list, with elements

x archive of the best member at each iteration

y archive of the best value of fn at each iteration

xbest best solution

ybest best observation

count number of evaluations of fun

Examples

res <- optimDE(,lower = c(-10,-20),upper=c(20,8),fun = funSphere)

res$ybest
optimDE (x

= matrix(rep(1,6), 3, 2),lower = c(-10,-20),upper=c(20,8),fun = funSphere,

control = list(funEvals=100@, populationSize=20))

#Compare to DEoptim:

require(DEoptim)

set.seed(1234)

DEoptim(function(x){funRosen(matrix(x,1))}, lower=c(-10,-10), upper=c(10,10),
DEoptim.control(strategy = 2,bs = FALSE, N = 20, itermax = 28, CR =0.7, F = 1.2,



26

optimES

trace = FALSE, p = 0.2, c = 0, reltol = sqrt(.Machine$double.eps), steptol = 200 ))

set.seed(1234)
optimDE(, fun=funRosen, lower=c(-10,-10), upper= c(10,10),
control = list( populationSize = 20, funEvals = 580, F = 1.2, CR = 0.7))

optimES Evolution Strategy

Description

This is an implementation of an Evolution Strategy.

Usage
optimES(x = NULL, fun, lower, upper, control = list(), ...)
Arguments
X optional start point, not used
fun objective function, which receives a matrix x and returns observations y
lower is a vector that defines the lower boundary of search space (this also defines the
dimensionality of the problem)
upper is a vector that defines the upper boundary of search space (same length as lower)
control list of control parameters. The control list can contain the following settings:

funEvals number of function evaluations, stopping criterion, default is 500

mue number of parents, default is 10

nu selection pressure. That means, number of offspring (lambda) is mue multi-

plied with nu. Default is 10
mutation string of mutation type, default is 1
sigmalnit initial sigma value (step size), defaultis 1.0
nSigma number of different sigmas, default is 1
tau0 number, default is 0. 0. tau0 is the general multiplier.

tau number, learning parameter for self adaption, i.e. the local multiplier for

step sizes (for each dimension).default is 1.0

rho number of parents involved in the procreation of an offspring (mixing num-

ber), default is "bi”
sel number of selected individuals, default is 1

stratReco Recombination operator for strategy variables. 1: none. 2: domi-
nant/discrete (default). 3: intermediate. 4: variation of intermediate recom-

bination.
objReco Recombination operator for object variables. 1: none.

2: domi-

nant/discrete (default). 3: intermediate. 4: variation of intermediate re-

combination.
maxGen number of generations, stopping criterion, default is Inf



optimGenoud 27

seed number, random seed, default is 1

noise number, value of noise added to fitness values, default is 0.0
verbosity defines output verbosity of the ES, default is @
plotResult boolean, specifies if results are plotted, default is FALSE

logPlotResult boolean, defines if plot results should be logarithmic, default is
FALSE

sigmaRestart number, value of sigma on restart, default is . 1

preScanMult initial population size is multiplied by this number for a pre-scan,
default is 1

globalOpt termination criterion on reaching a desired optimum value, default
is rep(@,dimension)

additional parameters to be passed on to fun

Value

list, with elements

x NULL, currently not used
y NULL, currently not used
xbest best solution

ybest best observation

count number of evaluations of fun

Examples

cont <- list(funEvals=100)
optimES(fun=funSphere, lower=rep(@,2), upper=rep(1,2), control= cont)

optimGenoud Minimization by GENetic Optimization Using Derivatives

Description

For minimization, this function uses the "genoud” method from the codergenoud package. It is
basically a wrapper, to enable genoud for usage in SPOT.

Usage

optimGenoud(x = NULL, fun, lower, upper, control = list(), ...)



28 optimLBFGSB

Arguments
X optional start point, not used
fun objective function, which receives a matrix x and returns observations y
lower boundary of the search space
upper boundary of the search space
control list of control parameters
funEvals Budget, number of function evaluations allowed. Default is 100.
populationSize Population size, number of individuals in the population. De-
fault is 10*dimension.
passed to fun
Value

list, with elements

x NULL, currently not used
y NULL, currently not used
xbest best solution

ybest best observation

count number of evaluations of fun

Examples

res <- optimGenoud(,fun = funSphere,lower = c(-10,-20),upper=c(20,8))
res$ybest

optimLBFGSB Minimization by L-BFGS-B

Description

For minimization, this function uses the "L-BFGS-B"” method from the optim function, which is
part of the codestats package. It is basically a wrapper, to enable L-BFGS-B for usage in SPOT.

Usage

optimLBFGSB(x = NULL, fun, lower, upper, control = list(), ...)



optimLHD 29

Arguments
X optional matrix of points. Only first point (row) is used as startpoint.
fun objective function, which receives a matrix x and returns observations y
lower boundary of the search space
upper boundary of the search space
control list of control parameters
funEvals Budget, number of function evaluations allowed. Default is 100.
All other control parameters accepted by the optim function can be used, too,
and are passed to optim.
passed to fun
Value

list, with elements

x NA, not used

y NA, not used

xbest best solution
ybest best observation

count number of evaluations of fun (estimated from the more complicated "counts” variable
returned by optim)

message termination message returned by optim

Examples

res <- optimLBFGSB(,fun = funSphere,lower = c(-10,-20),upper=c(20,8))
res$ybest

optimLHD Minimization by Latin Hypercube Sampling

Description

This uses Latin Hypercube Sampling (LHS) to optimize a specified target function. A Latin Hyper-
cube Design (LHD) is created with designLHD, then evaluated by the objective function. All results
are reported, including the best (minimal) objective value, and corresponding design point.

Usage

optimLHD(x = NULL, fun, lower, upper, control = list(), ...)



30

Arguments

X
fun

lower
upper

control

Value

list, with elements

optimNLOPTR

optional matrix of points to be included in the evaluation

objective function, which receives a matrix x and returns observations y
boundary of the search space

boundary of the search space

list of control parameters

funEvals Budget, number of function evaluations allowed. Default: 100.

retries Number of retries for design generation, used by designLHD. Default:
100.

passed to fun

x archive of evaluated solutions

y archive of observations

xbest best solution

ybest best observation

count number of evaluations of fun

message success message

Examples

res <- optimLHD(,fun = funSphere,lower = c(-10,-20),upper=c(20,8))

res$ybest

optimNLOPTR

Minimization by NLOPT

Description

This is a wrapper that employs the nloptr function from the package of the same name. The nloptr
function itself is an interface to the nlopt library, which contains a wide selection of different
optimization algorithms.

Usage

optimNLOPTR(x

NULL, fun, lower, upper, control = list(), ...)



optimNLOPTR

Arguments

X

fun
lower
upper

control

Value

list, with elements

31

optional matrix of points to be included in the evaluation (only first row will be
used)

objective function, which receives a matrix x and returns observations y
boundary of the search space
boundary of the search space

named list, with the options for nloptr. These will be passed to nloptr as
arguments. In addition, the following parameter can be used to set the function
evaluation budget:

funEvals Budget, number of function evaluations allowed. Default: 100.

passed to fun

Note that the arguments x, fun, lower and upper will be mapped to the corre-
sponding arguments of nloptr: x0, eval_f, 1b and ub.

x archive of evaluated solutions

y archive of observations

xbest best solution

ybest best observation

count number of evaluations of fun

message Success message

Examples

## Not run:

##simple example:

res <- optimNLOPTR(,fun = funSphere,lower = c(-10,-20),upper=c(20,8))

res

##with an inequality constraint:

contr <- list() #control list

##specify constraint

contr$eval_g_ineq <- function(x) 1+x[1]-x[2]

res <- optimNLOPTR(, fun=funSphere, lower=c(-10,-20),upper=c(20,8),control=contr)

res

## End(Not run)



32

plotData

plotData

Interpolated plot

Description

A (filled) contour or perspective plot of a data set with two independent and one dependent variable.
The plot is generated by some interpolation or regression model. By default, the loess function is

used.

Usage
plotData(
X ’
Y,

which = 1:2,

constant = x[which.min(y), 1,
model = buildLOESS,
modelControl = list(),

xlab = c("x1", "x2"),

no,n

ylab = "y",

type = "filled.contour”,

Arguments

X

which

constant

model
modelControl
xlab

independent variables, or input variables. this should be a matrix of at least two
columns and several rows. If more than two columns are present, all will be used
for fitting the model. The parameter which will determine which of these will be
plotted, and the parameter constant will determine the values of all parameters
that are not varied.

dependent, or observed output variable to be interpolated/regressed and plotted.

a vector with two elements, each an integer giving the two independent variables
of the plot (the integers are indices of the respective data set, i.e., columns of x).
All other parameters will be fixed to the best known solution, i.e., the one with
minimal y-value.

a numeric vector that states for each variable a constant value that it will take
on if it is not varied in the plot. This affects the parameters not selected by
the which parameter. By default, this will be fixed to the best known solution,
i.e., the one with minimal y-value, according to which.min(object$y). The
length of this numeric vector should be the same as the number of columns in
object$x

the model building function to be used, by default bui1dLOESS.
control list of the chosen model building function.

a vector of characters, giving the labels for each of the two independent variables



plotFunction 33

ylab character, the value of the dependent variable predicted by the corresponding
model
type string describing the type of the plot: "filled.contour” (default), "contour”,

"persp"” (perspective), or "persp3d” plot. Note that "persp3d" is based on the
plotly package and will work in RStudio, but not in the standard RGui.

additional parameters passed to the contour or filled. contour function

See Also

plotFunction, plotModel

Examples

## generate random test data

testfun <- function (x) sum(x*2)
set.seed(1)

k <- 30

x <= cbind(runif(k)*15-5,runif(k)*15)
y <- as.matrix(apply(x,1,testfun))
plotData(x,y)

plotData(x,y, type="contour")
plotData(x,y, type="persp")

plotFunction Surface plot of a function

Description

A (filled) contour plot or perspective / surface plot of a function.

Usage

plotFunction(
f = function(x) { rowSums (x*2) 3},
lower = c(0, 0),
upper = c(1, 1),
type = "filled.contour”,
s = 100,
xlab = "x1",
ylab = "x2",
zlab = "y",
color.palette = terrain.colors,
title = " ",
levels = NULL,
points1,
points2,
pch1l = 20,



34

pch2 = 8
lwdl =1,
lwd2 =1
cex1 =1
cex2 =1

coll = "red",

plotFunction

col2 = "black”,

theta = -40,

phi = 40,

Arguments

.F

lower
upper

type

s
xlab

ylab

zlab
color.palette
title

levels

points1

points2

pch1
pch2
lwd1
lwd2

cex]

function to be plotted. The function should either be able to take two vectors or
one matrix specifying sample locations. i.e. z=f(X) or z=f(x2,x1) where Z is
a two column matrix containing the sample locations x1 and x2.

boundary for x1 and x2 (defaults to c(@,)).
boundary (defaults to c(1,1)).

string describing the type of the plot: "filled.contour"” (default), "contour”,
"persp” (perspective), or "persp3d” plot. Note that "persp3d" is based on the
plotly package and will work in RStudio, but not in the standard RGui.

number of samples along each dimension. e.g. f will be evaluated s*2 times.
lable of first axis

lable of second axis

lable of third axis

colors used, default is terrain.color

of the plot

number of levels for the plotted function value. Will be set automatically with
default NULL.. (contour plots only)

can be omitted, but if given the points in this matrix are added to the plot in
form of dots. Contour plots and persp3d only. Contour plots expect matrix with
two columns for coordinates. 3Dperspective expects matrix with three columns,
third column giving the corresponding observed value of the plotted function.

can be omitted, but if given the points in this matrix are added to the plot in form
of crosses. Contour plots and persp3d only. Contour plots expect matrix with
two columns for coordinates. 3Dperspective expects matrix with three columns,
third column giving the corresponding observed value of the plotted function.

pch (symbol) setting for points1 (default: 20). (contour plots only)
pch (symbol) setting for points2 (default: 8). (contour plots only)
line width for points1 (default: 1). (contour plots only)

line width for points2 (default: 1). (contour plots only)

cex for points1 (default: 1). (contour plots only)



plotModel 35

cex2 cex for points2 (default: 1). (contour plots only)

coll color for points1 (default: "black"). (contour plots only)

col2 color for points2 (default: "black"). (contour plots only)

theta angle defining the viewing direction. theta gives the azimuthal direction and phi

the colatitude. (persp plot only)
phi angle defining the viewing direction. theta gives the colatitude. (persp plot only)

additional parameters passed to contour or filled.contour

See Also

plotData, plotModel

Examples

plotFunction(function(x){rowSums(x*2)},c(-5,0),c(10,15))
plotFunction(function(x){rowSums(x*2)3},c(-5,0),c(10,15),type="contour")
plotFunction(function(x){rowSums(x*2)3},c(-5,0),c(10,15),type="persp")

plotModel Surface plot of a model

Description

A (filled) contour or perspective plot of a fitted model.

Usage
plotModel(
object,
which = if (ncol(object$x) > 1 & tolower(type) != "singledim") { 1:2 } else {
13,
constant = object$x[which.min(object$y), 1,
xlab = paste(”"x", which, sep = ""),
ylab = Hyll’

type = "filled.contour”,

Arguments
object fit created by a modeling function, e.g., buildRandomForest.
which a vector with two elements, each an integer giving the two independent variables

of the plot (the integers are indices of the respective data set).



36

constant

x1lab

ylab

type

See Also

predict.cvModel

a numeric vector that states for each variable a constant value that it will take
on if it is not varied in the plot. This affects the parameters not selected by
the which parameter. By default, this will be fixed to the best known solution,
i.e., the one with minimal y-value, according to which.min(object$y). The
length of this numeric vector should be the same as the number of columns in
object$x

a vector of characters, giving the labels for each of the two independent vari-
ables.

character, the value of the dependent variable predicted by the corresponding
model.

string describing the type of the plot: "filled.contour"” (default), "contour”,
"persp” (perspective), or "persp3d” plot. Note that "persp3d" is based on the
plotly package and will work in RStudio, but not in the standard RGui.

additional parameters passed to the contour or filled. contour function.

plotFunction, plotData

Examples

## generate random test data
testfun <- function (x) sum(x*2)

set.seed(1)
k <- 30

x <= cbind(runif(k)*15-5,runif(k)*15,runif(k)*2-7,runif(k)*5+22)
y <- as.matrix(apply(x,1,testfun))
fit <- buildLM(x,y)

plotModel (fit)

plotModel(fit,type="contour")
plotModel (fit, type="persp")
plotModel (fit,which=c(1,4))
plotModel (fit,which=2:3)

predict.cvModel

predict.cvModel

Description

Predict with the cross validated model produced by buildCVModel.

Usage

## S3 method for class 'cvModel'
predict(object, newdata, ...)



repeatsOCBA 37

Arguments
object CV model (settings and parameters) of class cvModel.
newdata design matrix to be predicted
Additional parameters passed to the model
Value

prediction results: list with predicted mean (’y’), estimated uncertainty (’y’), linearly adapted un-
certainty (’sLinear’)

repeatsOCBA Optimal Computing Budget Allocation

Description

A simple interface to the Optimal Computing Budget Allocation algorithm.

Usage

repeatsOCBA(x, y, budget)

Arguments
X matrix of samples. Identical rows indicate repeated evaluations. Any sample
should be evaluated at least twice, to get an estimate of the variance.
y observations of the respective samples. For repeated evaluations, y should differ
(variance not zero).
budget of additional evaluations to be allocated to the samples.
Value

A vector that specifies how often each solution should be evaluated.

References

Chun-hung Chen and Loo Hay Lee. 2010. Stochastic Simulation Optimization: An Optimal Com-
puting Budget Allocation (1st ed.). World Scientific Publishing Co., Inc., River Edge, NJ, USA.
See Also

repeatsOCBA calls OCBA, which also provides some additional details.

Examples

x <- matrix(c(1:3,1:3),9,2)
y <= runif(9)
repeatsOCBA(x,y,10)



38 simulate.kriging

satter Satterthwaite Function

Description
The Satterthwaite function can be used to estimate the magnitude of the variance component (sigma_beta)"2,
when the random factor has significant main effects.

Usage

satter(MScoeff, MSi, dfi, alpha = 0.05)

Arguments
MScoeff coefficients c_1, c_2
MSi mean squared values
dfi degrees of freedom
alpha error probability
Details

Note, the output from the satter () procedure is sigma_beta.

Value

vector with 1. estimate of variance 2. degrees of freedom, 3. lower value of 1-alpha confint 4. upper
value of 1-alpha confint

Examples

res <- satter(MScoeff= c(1/4, -1/4)
, MSi = c(394.9, 73.3)

, dfi = c(4,3)
, alpha = 0.1)
simulate.kriging Kriging Simulation

Description

(Conditional) Simulation at given locations, with a model fit resulting from buildKriging. In
contrast to prediction or estimation, the goal is to reproduce the covariance structure, rather than
the data itself. Note, that the conditional simulation also reproduces the training data, but has a two
times larger error than the Kriging predictor.



simulate.kriging 39

Usage

## S3 method for class 'kriging'
simulate(
object,
nsim = 1,
seed = NA,
xsim,
method = "decompose”,
conditionalSimulation = TRUE,
Ncos = 10,
returnAll = FALSE,

Arguments
object fit of the Kriging model (settings and parameters), of class kriging.
nsim number of simulations
seed random number generator seed. Defaults to NA, in which case no seed is set
xsim list of samples in input space, to be simulated at
method "decompose” (default) or "spectral”, specifying the method used for simu-

lation. Note that "decompose” is can be preferable, since it is exact but may
be computationally infeasible for high-dimensional xsim. On the other hand,
"spectral” yields a function that can be evaluated at arbitrary sample loca-
tions.

conditionalSimulation
logical, if set to TRUE (default), the simulation is conditioned with the training
data of the Kriging model. Else, the simulation is non-conditional.

Ncos number of cosine functions (used with method="spectral” only)

returnAll if set to TRUE, a list with the simulated values (y) and the corresponding co-
variance matrix (covar) of the simulated samples is returned.

further arguments, not used

Value

Returned value depends on the setting of object$simulationReturnAll

References

N. A. Cressie. Statistics for Spatial Data. JOHN WILEY & SONS INC, 1993.

C. Lantuejoul. Geostatistical Simulation - Models and Algorithms. Springer-Verlag Berlin Heidel-
berg, 2002.

See Also

buildKriging, predict.kriging



40 simulateFunction

simulateFunction Simulation-based Function Generator

Description

Generate functions via simulation of Kriging models, e.g., for assessment of optimization algo-
rithms with non-conditional or conditional simulation, based on real-world data.

Usage
simulateFunction(
object,
nsim = 1,
seed = NA,
method = "spectral”,
xsim = NA,
Ncos = 10,
conditionalSimulation = TRUE
)
Arguments
object an object generated by buildKriging
nsim the number of simulations, or test functions, to be created
seed a random number generator seed. Defaults to NA; which means no seed is set.
For sake of reproducibility, set this to some integer value.
method "decompose” (default) or "spectral”, specifying the method used for simu-
lation. Note that "decompose” is can be preferable, since it is exact but may
be computationally infeasible for high-dimensional xsim. On the other hand,
"spectral” yields a function that can be evaluated at arbitrary sample loca-
tions.
xsim list of samples in input space, for simulation (only used for decomposition-based
simulation, not for spectral method)
Ncos number of cosine functions (used with method="spectral” only)

conditionalSimulation
whether (TRUE) or not (FALSE) to use conditional simulation

Value
a list of functions, where each function is the interpolation of one simulation realization. The length
of the list depends on the nsim parameter.

References

N. A. Cressie. Statistics for Spatial Data. JOHN WILEY & SONS INC, 1993.

C. Lantuejoul. Geostatistical Simulation - Models and Algorithms. Springer-Verlag Berlin Heidel-
berg, 2002.



spot 41

See Also

buildKriging, simulate.kriging

spot Sequential Parameter Optimization

Description

This is one of the main interfaces for using the SPOT package. Based on a user-given objective
function and configuration, spot finds the parameter setting that yields the lowest objective value
(minimization). To that end, it uses methods from the fields of design of experiment, statistical
modeling / machine learning and optimization.

Usage
spot(x = NULL, fun, lower, upper, control = list(), ...)
Arguments
X is an optional start point (or set of start points), specified as a matrix. One row
for each point, and one column for each optimized parameter.
fun is the objective function. It should receive a matrix x and return a matrix y. In
case the function uses external code and is noisy, an additional seed parameter
may be used, see the control$seedFun argument below for details.
lower is a vector that defines the lower boundary of search space. This determines also
the dimensionality of the problem.
upper is a vector that defines the upper boundary of search space.
control is a list with control settings for spot. See spotControl.
additional parameters passed to fun.
Value

This function returns a list with:

xbest Parameters of the best found solution (matrix).

ybest Objective function value of the best found solution (matrix).
x Archive of all evaluation parameters (matrix).

y Archive of the respective objective function values (matrix).
count Number of performed objective function evaluations.

msg Message specifying the reason of termination.

modelFit The fit of the last build model, i.e., an object returned by the last call to the function
specified by control$model.



42

Examples

## Most simple example: Kriging + LHS + predicted

## mean optimization (not expected improvement)

res <- spot(,funSphere,c(-2,-3),c(1,2),control=1list(funEvals=15))

res$xbest

## With expected improvement

res <- spot(,funSphere,c(-2,-3),c(1,2),
control=1list(funEvals=15,modelControl=1list(target="ei")))

res$xbest

### With additional start point:

#res <- spot(matrix(c(0.05,0.1),1,2),funSphere,c(-2,-3),c(1,2))

#res$xbest

#res <- spot(,funSphere,c(-2,-3),c(1,2),

# control=1ist(funEvals=50))

#res$xbest

### Use local optimization instead of LHS

#res <- spot(,funSphere,c(-2,-3),c(1,2),

# control=1list(optimizer=optimLBFGSB))

#res$xbest

### Random Forest instead of Kriging

#res <- spot(,funSphere,c(-2,-3),c(1,2),

# control=list(model=buildRandomForest))

#res$xbest

### LM instead of Kriging

#res <- spot(,funSphere,c(-2,-3),c(1,2),

# control=list(model=buildLM)) #lm as surrogate

#res$xbest

### LM and local optimizer (which for this simple example is perfect)

#res <- spot(,funSphere,c(-2,-3),c(1,2),

# control=1ist(model=buildLM, optimizer=optimLBFGSB))

#res$xbest

### Or a different Kriging model:

#res <- spot(,funSphere,c(-2,-3),c(1,2),

# control=list(model=buildKrigingDACE, optimizer=optimLBFGSB))

#res$xbest

## With noise: (this takes some time)

#res1l <- spot(,function(x)funSphere(x)+rnorm(nrow(x)),c(-2,-3),c(1,2),

# control=list(funEvals=100,noise=TRUE)) #noisy objective

#res2 <- spot(,function(x)funSphere(x)+rnorm(nrow(x)),c(-2,-3),c(1,2),

# control=list(funEvals=100,noise=TRUE,replicates=2,

# designControl=list(replicates=2))) #noise with replicated evaluations

#res3 <- spot(,function(x)funSphere(x)+rnorm(nrow(x)),c(-2,-3),c(1,2),

# control=list(funEvals=100,noise=TRUE,replicates=2,0CBA=T,0CBABudget=1,

# designControl=list(replicates=2))) #and with OCBA

### Check results with non-noisy function:

#funSphere(resl1$xbest)

#funSphere(res2$xbest)

#funSphere(res3$xbest)

## The following is for demonstration only, to be used for random number

## seed handling in case of external noisy target functions.

#res3 <- spot(,function(x,seed){set.seed(seed);funSphere(x)+rnorm(nrow(x))},

# c(-2,-3),c(1,2),control=1list(funEvals=100,noise=TRUE, seedFun=1))

spot



spotAIgEs 43

##
## Next Example: Handling factor variables
## Note: factors should be coded as integer values, i.e., 1,2,...,n

## create a test function:
braninFunctionFactor <- function (x) {
y <= (x[2] - 5.1/(4 * pi*2) * (x[1] *2) + 5/pi * x[1] - 6)*2 +
10 x (1 - 1/(8 x pi)) * cos(x[1] ) + 10
if(x[3]==1)
y <=y +1
else if(x[3]==2)
y <-y -1
y
}
## vectorize
objFun <- function(x){apply(x,1,braninFunctionFactor)?}
set.seed(1)
res <- spot(fun=objFun,lower=c(-5,0,1),upper=c(10,15,3),
control=list(model=buildKriging,
types= c("numeric”,"numeric”,"factor"),
optimizer=optimLHD))
res$xbest
res$ybest

spotAlgEs Evolution Strategy Implementation

Description

This function is used by optimES as a main loop for running the Evolution Strategy with the given
parameter set specified by SPOT.

Usage
spotAlgEs(
mue = 10,
nu =10,

dimension = 2,
mutation = 2,
sigmalnit = 1,

nSigma = 1,
tauo = 0,

tau = 1,

rho = "bi",
sel = -1,
stratReco = 1,
objReco = 2,

maxGen = Inf,
maxIter = Inf,
seed = 1,



44 spotAlgEs
noise = 0,
fName = funSphere,
lowerLimit = -1,

upperLimit = 1,
verbosity = 0,
plotResult = FALSE,
logPlotResult = FALSE,

sigmaRestart = 0.1,

preScanMult

T,

globalOpt = NULL,

Arguments

mue

nu

dimension
mutation
sigmalnit
nSigma
tau@

tau

rho

sel

stratReco

objReco

maxGen
maxIter

seed

noise

fName
lowerLimit
upperLimit
verbosity
plotResult
logPlotResult

number of parents, default is 10

selection pressure. That means, number of offspring (lambda) is mue multiplied
with nu. Default is 10

dimension number of the target function, default is 2
mutation type, either 1 or 2, default is 1

initial sigma value (step size), defaultis 1.0

number of different sigmas, default is 1

number, default is @. @. tau0 is the general multiplier.

number, learning parameter for self adaption, default is 1.0. tau is the local
multiplier for step sizes (for each dimension).

number of parents involved in the procreation of an offspring (mixing number),
default is "bi”

number of selected individuals, default is 1

Recombination operator for strategy variables. 1: none. 2: dominant/discrete
(default). 3: intermediate. 4: variation of intermediate recombination.

Recombination operator for object variables. 1: none. 2: dominant/discrete
(default). 3: intermediate. 4: variation of intermediate recombination.

number of generations, stopping criterion, default is Inf

number of iterations (function evaluations), stopping criterion, default is 100
number, random seed, default is 1

number, value of noise added to fitness values, default is 0.0

function, fitness function, default is funSphere

number, lower limit for search space, default is -1.0

number, upper limit for search space, defaultis 1.0

defines output verbosity of the ES, default is @

boolean, asks if results are plotted, default is FALSE

boolean, asks if plot results should be logarithmic, default is FALSE



spotLoop

45

sigmaRestart  number, value of sigma on restart, default is @. 1

preScanMult initial population size is multiplied by this number for a pre-scan, default is 1

globalOpt termination criterion on reaching a desired optimum value, should be a vector
of length dimension (LOCATION of the optimum). Default to NULL, which
means it is ignored.
additional parameters to be passed on to fName

spotLoop Sequential Parameter Optimization Main Loop
Description

SPOT is usually started via the function spot. However, SPOT runs can be continued (i.e., with a
larger budget specified in control$funEvals) by using spotLoop. This is the main loop of SPOT
iterations. It requires the user to give the same inputs as specified for spot.

Usage
spotLoop(x, y, fun, lower, upper, control, ...)
Arguments
X are the known candidate solutions that the SPOT loop is started with, specified as
a matrix. One row for each point, and one column for each optimized parameter.
y are the corresponding observations for each solution in X, specified as a matrix.
One row for each point.
fun is the objective function. It should receive a matrix x and return a matrix y. In
case the function uses external code and is noisy, an additional seed parameter
may be used, see the control$seedFun argument below for details.
lower is a vector that defines the lower boundary of search space. This determines also
the dimensionality of the problem.
upper is a vector that defines the upper boundary of search space.
control is a list with control settings for spot. See spotControl.
additional parameters passed to fun.
Value

This function returns a list with:

xbest Parameters of the best found solution (matrix).

ybest Objective function value of the best found solution (matrix).

x Archive of all evaluation parameters (matrix).

y Archive of the respective objective function values (matrix).

count Number of performed objective function evaluations.

msg Message specifying the reason of termination.

modelFit The fit of the last build model, i.e., an object returned by the last call to the function
specified by control$model.



46 wrapBatchTools

Examples

## Most simple example: Kriging + LHS + predicted

## mean optimization (not expected improvement)

control <- list(funEvals=20)

res <- spot(,funSphere,c(-2,-3),c(1,2),control)

## now continue with larger budget

control$funEvals <- 25

res2 <- spotLoop(res$x,ress$y, funSphere,c(-2,-3),c(1,2),control)
res2$xbest

res2$ybest

wrapBatchTools wrapBatchTools

Description

Wrap a given objective function to be evaluated via the batchtools package and make it accessible
for SPOT.

Usage
wrapBatchTools(
fun,
reg = NULL,

clusterFunction = batchtools::makeClusterFunctionsInteractive(),
resources = NULL

)
Arguments
fun function to wrap
reg batchtools registry, if none is provided, then one will be created automatically
clusterFunction
batchtools clusterFunction, default: makeClusterFunctionsInteractive()
resources resource list that is passed to batchtools, default NULL
Value

callable function for SPOT



wrapFunction 47

wrapFunction Function Evaluation Wrapper

Description

This is a simple wrapper that turns a function of type y=f(x), where x is a vector and y is a
scalar, into a function that accepts and returns matrices, as required by spot. Note that the wrapper
essentially makes use of the apply function. This is effective, but not necessarily efficient. The
wrapper is intended to make the use of spot easier, but it could be faster if the user spends some
time on a more efficient vectorization of the target function.

Usage

wrapFunction(fun)
Arguments

fun the function y=f (x) to be wrapped, with x a vector and y a numeric
Value

a function in the style of y=f (x), accepting and returning a matrix

Examples

## example function
branin <- function (x) {
y <= (x[2] - 5.1/(4 * pi*2) * (x[1] *2) + 5/pi * x[1] - 6)"2 +
10 x (1 - 1/(8 x pi)) * cos(x[1] ) + 10
y
3

## vectorize / wrap

braninWrapped <-wrapFunction(branin)

## test original

branin(c(1,2))

branin(c(2,2))

branin(c(2,1))

## test wrapped
braninWrapped(matrix(c(1,2,2,2,2,1),3,2,byrow=TRUE))



48 wrapSystemCommand

wrapFunctionParallel  Parallelized Function Evaluation Wrapper

Description

This is a simple wrapper that turns a function of type y=f (x), where x is a vector and y is a scalar,
into a function that accepts and returns matrices, as required by spot. While doing so, the wrapper
will use the parallel package in order to parallelize the execution of each function evaluation. This
function will create a computation cluster if no cluster is specified and there is no default cluster
setup!

Usage

wrapFunctionParallel(fun, cl = NULL, nCores = NULL)

Arguments
fun the function that shall be evaluated in parallel
cl Optional, an existing computation cluster
nCores Optional, amount of cores to use for creating a new computation cluster. Default
is all cores.
Value

numeric vector, result of the parallelized evaluation

wrapSystemCommand wrapSystemCommand

Description

Optimize parameters for a script that is accessible via Command Line

Usage

wrapSystemCommand(systemCall)

Arguments

systemCall String that calls the command line script.

Value

callable function for SPOT



wrapSystemCommand

Examples

exampleScriptLocation <- system.file("consoleCallTrialScript.R"”,package = "SPOT")
f <- wrapSystemCommand(paste("Rscript”, exampleScriptlLocation))
spot(,f,c(1,1),c(100,100))

49



Index

+Topic datasets
dataGasSensor, 15

+Topic package
SPOT-package, 3

buildCVModel, 4, 36
buildEnsembleStack, 5
buildKriging, 6, 38—41
buildKrigingDACE, 9
buildLM, 10
buildLOESS, 11
buildRandomForest, 12, 35
buildRanger, 13
buildRSM, 14, 17

corrcubic, 9
correxp, 9
correxpg, 9
corrgauss, 9
corrkriging, 9
corrlin, 9
corrnoisygauss, 9
corrnoisykriging, 9
corrspherical, 9
corrspline, 9

dataGasSensor, 15
descentSpotRSM, 17
designLHD, 17, 29, 30
designUniformRandom, 19

expectedImprovement, 20

funBranin, 20
funCyclone, 21
funOptimLecture, 22
funRosen, 23
funSphere, 23, 44

infillExpectedImprovement, 24

OCBA, 37
optimDE, 25
optimES, 26, 43
optimGenoud, 27
optimLBFGSB, 28
optimLHD, 29
optimNLOPTR, 30

plotData, 32, 35, 36
plotFunction, 33, 33, 36
plotModel, 33, 35, 35
predict.cvModel, 36
predict.dace, 10
predict.ensembleStack, 5
predict.kriging, 7-9, 39
predict.spotLOESS, 12
predict.spotRSM, 15

regpolyo, 9
regpolyl, 9
regpoly2, 9
repeatsOCBA, 37

satter, 38
simulate.kriging, 38, 41
simulateFunction, 40
SPOT (SPOT-package), 3
spot, 4,41, 45,47, 48
SPOT-package, 3
spotAlgEs, 43
spotControl, 41, 45
spotLoop, 45

wrapBatchTools, 46
wrapFunction, 47
wrapFunctionParallel, 48
wrapSystemCommand, 48



	SPOT-package
	buildCVModel
	buildEnsembleStack
	buildKriging
	buildKrigingDACE
	buildLM
	buildLOESS
	buildRandomForest
	buildRanger
	buildRSM
	dataGasSensor
	descentSpotRSM
	designLHD
	designUniformRandom
	expectedImprovement
	funBranin
	funCyclone
	funOptimLecture
	funRosen
	funSphere
	infillExpectedImprovement
	optimDE
	optimES
	optimGenoud
	optimLBFGSB
	optimLHD
	optimNLOPTR
	plotData
	plotFunction
	plotModel
	predict.cvModel
	repeatsOCBA
	satter
	simulate.kriging
	simulateFunction
	spot
	spotAlgEs
	spotLoop
	wrapBatchTools
	wrapFunction
	wrapFunctionParallel
	wrapSystemCommand
	Index

