Package 'SPIn'

February 19, 2015

Type Peakage
Type Package
Title Simulation-efficient Shortest Probability Intervals
Version 1.1
Date 2013-04-02
Author Ying Liu
Maintainer Ying Liu <yliu@stat.columbia.edu></yliu@stat.columbia.edu>
Depends R (>= 1.8.0), quadprog
Description An optimal weighting strategy to compute simulation-efficient shortest probability intervals (spins).
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2013-04-02 21:57:16
R topics documented:
SPIn-package
Index
SPIn-package Simulation Efficient Shortest Probability Intervals
Description
Implement an optimal weighting strategy to compute simulation efficient shortest probability intervals (spin's).

Details

2 bootSPIn

Package: SPIn
Type: Package
Version: 1.1
Date: 2013-4-2
License: GPL (>= 2)

This package contains functions for constructing and plotting simulation efficient shortest probability intervals.

Author(s)

Ying Liu

Maintainer: Ying Liu <yliu@stat.columbia.edu>

References

Simulation efficient shortest probability intervals. (arXiv:1302.2142)

|--|

Description

Compute the shortest probability interval (spin) using SPIn with bootstrap.

Usage

```
bootSPIn(x, n.boot = 50, conf = 0.95, bw = 0, 1b = -Inf, ub = Inf, 1 = NA, u = NA)
```

Arguments

X	A vector of samples from the distribution.
n.boot	Number of bootstraps.
conf	Scalar, the confidence level desired.
bw	Scalar, the bandwidth of the weighting kernel in terms of sample points. If not specified, sqrt(n) will be used, where n is the sample size.
lb,ub	Scalars, the lower and upper bounds of the distribution. If specified, a pseudo-sample point equal to the corresponding bound will be added.
l,u	Scalars, weighting centers (if provided).

Details

spin.boot computes the shortest probability interval for a distribution using SPIn with bootstrap.

plot.SPIn 3

Value

spin.boot returns an object of class 'SPIn'. An object of class 'SPIn' is a list containing the following components:

spin A vector of length 2 with the lower and upper endpoints of the interval.

conf The confidence level.

x A vector of samples from the distribution.

w.1,w.u Vectors of the computed weights.

1.1,1.u,u.1,u.u

Endpoints of the weights.

Note

This function assumes that the distribution is unimodal, and computes only 1 interval, not the set of intervals that are appropriate for multimodal distributions.

Author(s)

Ying Liu yliu@stat.columbia.edu

References

Simulation efficient shortest probability intervals. (arXiv:1302.2142)

See Also

```
plot.SPIn,SPIn
```

Examples

```
x <- rgamma(100,3)
bootSPIn(x)</pre>
```

plot.SPIn

Plot the Results from SPIn or bootSPIn

Description

Plot the histogram, the kernel density estimate, the shortest probability interval and the central interval.

Usage

```
## S3 method for class 'SPIn' plot(x, ...)
```

SPIn

Arguments

```
x SPIn object, result of SPIn or bootSPIn.... See plot.
```

Author(s)

Ying Liu yliu@stat.columbia.edu

References

Simulation efficient shortest probability intervals. (arXiv:1302.2142)

See Also

```
SPIn,bootSPIn
```

Examples

```
x <- rgamma(100,3)
r <- bootSPIn(x)
plot(r)</pre>
```

SPIn

Simulation Efficient Shortest Probability Intervals

Description

Compute the shortest probability interval (spin) using an optimal weighting strategy.

Usage

```
SPIn(x, conf = 0.95, bw = 0, 1b = -Inf, ub = Inf, 1=NA, u=NA)
```

Arguments

X	A vector of samples from the distribution.
conf	Scalar, the confidence level desired.
bw	Scalar, the bandwidth of the weighting kernel in terms of sample points. If not specified, sqrt(n) will be used, where n is the sample size.
lb,ub	Scalars, the lower and upper bounds of the distribution. If specified, a pseudo-sample point equal to the corresponding bound will be added.
1,u	Scalars, weighting centers (if provided).

Details

SPIn computes the shortest probability interval for a distribution using an optimal weighting strategy. Quadratic programming is used to determine the optimal weights.

SPIn 5

Value

SPIn returns an object of class 'SPIn'. An object of class 'SPIn' is a list containing the following components:

spin A vector of length 2 with the lower and upper endpoints of the interval.

conf The confidence level.

x A vector of samples from the distribution.

w.1, w.u Vectors of the computed weights.

1.1,1.u,u.1,u.u

Endpoints of the weights.

Note

This function assumes that the distribution is unimodal, and computes only 1 interval, not the set of intervals that are appropriate for multimodal distributions.

Author(s)

Ying Liu yliu@stat.columbia.edu

References

Simulation efficient shortest probability intervals. (arXiv:1302.2142)

See Also

```
bootSPIn,plot.SPIn
```

Examples

```
x <- rgamma(100,3)
SPIn(x)</pre>
```

Index

```
*Topic \textasciitildekwd1
bootSPIn, 2
plot.SPIn, 3
SPIn, 4
*Topic \textasciitildekwd2
bootSPIn, 2
plot.SPIn, 3
SPIn, 4

bootSPIn, 2, 4, 5
class, 3, 5

plot.SPIn, 3, 3, 5

SPIn, 3, 4, 4
SPIn-package, 1
```