Provides a general framework to perform statistical inference of each gene pair and global inference of whole-scale gene pairs in gene networks using the well known Gaussian graphical model (GGM) in a time-efficient manner. We focus on the high-dimensional settings where p (the number of genes) is allowed to be far larger than n (the number of subjects). Four main approaches are supported in this package: (1) the bivariate nodewise scaled Lasso (Ren et al (2015) <doi:10.1214/14-AOS1286>) (2) the de-sparsified nodewise scaled Lasso (Jankova and van de Geer (2017) <doi:10.1007/s11749-016-0503-5>) (3) the de-sparsified graphical Lasso (Jankova and van de Geer (2015) <doi:10.1214/15-EJS1031>) (4) the GGM estimation with false discovery rate control (FDR) using scaled Lasso or Lasso (Liu (2013) <doi:10.1214/13-AOS1169>). Windows users should install 'Rtools' before the installation of this package.
Version: | 1.0.0 |
Depends: | R (≥ 3.0.0), Rcpp |
Imports: | glasso, MASS, reshape, utils |
LinkingTo: | Rcpp |
Published: | 2017-10-16 |
Author: | Rong Zhang, Zhao Ren and Wei Chen |
Maintainer: | Rong Zhang <roz16 at pitt.edu> |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: | yes |
CRAN checks: | SILGGM results |
Reference manual: | SILGGM.pdf |
Package source: | SILGGM_1.0.0.tar.gz |
Windows binaries: | r-devel: SILGGM_1.0.0.zip, r-release: SILGGM_1.0.0.zip, r-oldrel: SILGGM_1.0.0.zip |
macOS binaries: | r-release: SILGGM_1.0.0.tgz, r-oldrel: SILGGM_1.0.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=SILGGM to link to this page.