Package 'SEMID'

May 21, 2019
Type Package
Title Identifiability of Linear Structural Equation Models
Version 0.3.2
Date 2019-5-18
Maintainer Luca Weihs lucaw@uw.edu
Description Provides routines to check identifiability or non-identifiability of linear structural equation models as described in Drton, Foygel, and Sullivant (2011) DOI:10.1214/10-AOS859, Foygel, Draisma, and Drton (2012) DOI:10.1214/12-AOS1012, and other works. The routines are based on the graphical representation of structural equation models by a path diagram/mixed graph.

License GPL (>= 2)
URL https://github.com/Lucaweihs/SEMID
BugReports https://github.com/Lucaweihs/SEMID/issues
Imports R.oo ($>=1.20 .0$), R.methodsS3, igraph ($>=1.0 .1$), R.utils ($>=$ 2.3.0)

Suggests testhat
NeedsCompilation no
Repository CRAN
RoxygenNote 6.1.1
Author Rina Foygel Barber [aut], Mathias Drton [aut], Luca Weihs [cre, aut]

Date/Publication 2019-05-21 07:30:11 UTC

R topics documented:

SEMID-package . 3
ancestors . 5
ancestralID . 6
ancestralIdentifyStep . 6
createAncestralIdentifier 7
createEdgewiseIdentifier 8
createHalfTrekFlowGraph 9
createHtcIdentifier 9
createHtrGraph 10
createIdentifierBaseCase 11
createSimpleBiDirIdentifier 11
createTrekFlowGraph 12
createTrekSeparationIdentifier 12
createTrGraph 13
descendants 14
edgewiseID 14
edgewiseIdentifyStep 15
edgewiseTSID 16
flowBetween 17
FlowGraph 17
generalGenericID 18
getAncestors 19
getDescendants 19
getHalfTrekSystem 20
getMaxFlow 20
getMixedCompForNode 21
getParents 22
getSiblings 22
getTrekSystem 23
graphID 23
graphID.ancestralID 25
graphID.decompose 26
graphID.genericID 27
graphID.globalID 27
graphID.htcID 28
graphID.main 29
graphID.nonHtcID 30
htcID 30
htcIdentifyStep 31
htr 32
htrFrom 33
inducedSubgraph 33
isSibling 34
L 34
MixedGraph 35
MixedGraphFixedOrder 36
mixedGraphHasSimpleNumbering 36
nodes 37
numNodes 37
O 38
parents 38
plot.MixedGraph 39
SEMID-package3
plotMixedGraph 39
print.GenericIDResult 40
print.SEMIDResult 40
semID 41
siblings 42
stronglyConnectedComponent 43
stronglyConnectedComponents 43
subsetsOfSize 44
tianComponent 44
tianDecompose 45
tianIdentifier 45
tianSigmaForComponent 46
toEx 46
toIn 47
trekSeparationIdentifyStep 47
trFrom 48
updateEdgeCapacities 49
updateVertexCapacities 49
validateMatrices 50
Index 51
SEMID-package SEMID package documentation.

Description

SEMID provides a number of methods for testing the global/generic identifiability of mixed graphs.

Details

The only function you're likely to need from SEMID is semID. A complete description of all package features, along with examples, can be found at https://github.com/Lucaweihs/SEMID.

Examples

```
###
# Checking the generic identifiability of parameters in a mixed graph.
###
# Mixed graphs are specified by their directed adjacency matrix L and
# bidirected adjacency matrix 0.
L = t(matrix(
    c(0, 1, 1, 0, 0,
        0, 0, 1, 1, 1,
        0, 0, 0, 1, 0,
        0, 0, 0, 0, 1,
        0, 0, 0, 0, 0), 5, 5))
```

```
0 = t(matrix(
    c(0, 0, 0, 1, 0,
        0, 0, 1, 0, 1,
        0, 0, 0, 0, 0,
        0, 0, 0, 0, 0,
        0, 0, 0, 0, 0), 5, 5)); 0=0+t(0)
# Create a mixed graph object
graph = MixedGraph(L, 0)
# We can plot what this mixed graph looks like, blue edges are directed
# red edges are bidirected.
plot(graph)
# Without using decomposition techniques we can't identify all nodes
# just using the half-trek criterion
htcID(graph, tianDecompose = FALSE)
# The edgewiseTSID function can show that all edges are generically
# identifiable without proprocessing with decomposition techniques
edgewiseTSID(graph, tianDecompose = FALSE)
# The above shows that all edges in the graph are generically identifiable.
# See the help of edgewiseTSID to find out more information about what
# else is returned by edgewiseTSID.
###
# Checking generic parameter identifiability using the generalGenericID
# function
###
L = t(matrix(
    c(0, 1, 0, 0, 0,
        0, 0, 0, 1, 1,
        0, 0, 0, 1, 0,
        0, 1, 0, 0, 1,
        0, 0, 0, 1, 0), 5, 5))
0 = t(matrix(
    c(0, 0, 0, 0, 0,
        0, 0, 1, 0, 1,
        0, 0, 0, 1, 0,
        0, 0, 0, 0, 0,
        0, 0, 0, 0, 0), 5, 5)); 0=0+t(0)
# Create a mixed graph object
graph = MixedGraph(L, 0)
# Now lets define an "identification step" function corresponding to
# using the edgewise identification algorithm but with subsets
# controlled by 1.
restrictedEdgewiseIdentifyStep <- function(mixedGraph,
                                unsolvedParents,
```

```
        solvedParents,
        identifier) {
        return(edgewiseIdentifyStep(mixedGraph, unsolvedParents,
        solvedParents, identifier,
        subsetSizeControl = 1))
    }
    # Now we run an identification algorithm that iterates between the
    # htc and the "restricted" edgewise identification algorithm
    generalGenericID(graph, list(htcIdentifyStep,
        restrictedEdgewiseIdentifyStep),
        tianDecompose = FALSE)
    # We can do better (fewer unsolved parents) if we don't restrict the edgewise
# identifier algorithm as much
generalGenericID(graph, list(htcIdentifyStep, edgewiseIdentifyStep),
        tianDecompose = FALSE)
```

 ancestors All ancestors of a collection of nodes

Description

Finds all the ancestors of a collection of nodes. These ancestors DO include the nodes themselves (every node is considered an ancestor of itself).

Usage

ancestors(this, nodes)
\#\# S3 method for class 'MixedGraphFixedOrder'
ancestors(this, nodes)
\#\# S3 method for class 'MixedGraph'
ancestors(this, nodes)

Arguments

this the mixed graph object
nodes the nodes from which to find all ancestors

Description

Uses the an identification criterion of Drton and Weihs (2015); this version of the algorithm is somewhat different from Drton and Weihs (2015) in that it also works on cyclic graphs. The original version of the algorithm can be found in the function graphID. ancestralID.

Usage

ancestralID(mixedGraph, tianDecompose = T)

Arguments

mixedGraph a MixedGraph object representing the L-SEM.
tianDecompose TRUE or FALSE determining whether or not the Tian decomposition should be used before running the current generic identification algorithm. In general letting this be TRUE will make the algorithm faster and more powerful.

Value

see the return of generalGenericID.

```
ancestralIdentifyStep Perform one iteration of ancestral identification.
```


Description

A function that does one step through all the nodes in a mixed graph and tries to determine if directed edge coefficients are generically identifiable by leveraging decomposition by ancestral subsets. See algorithm 1 of Drton and Weihs (2015); this version of the algorithm is somewhat different from Drton and Weihs (2015) in that it also works on cyclic graphs.

Usage

ancestralIdentifyStep(mixedGraph, unsolvedParents, solvedParents, identifier)

Arguments

mixedGraph a MixedGraph object representing the mixed graph.
unsolvedParents
a list whose ith index is a vector of all the parents j of i in G which for which the edge $\mathrm{j}->\mathrm{i}$ is not yet known to be generically identifiable.
solvedParents the complement of unsolvedParents, a list whose ith index is a vector of all parents j of i for which the edge $\mathrm{i}->\mathrm{j}$ is known to be generically identifiable (perhaps by other algorithms).
identifier an identification function that must produce the identifications corresponding to those in solved parents. That is identifier should be a function taking a single argument Sigma (any generically generated covariance matrix corresponding to the mixed graph) and returns a list with two named arguments
Lambda denote the number of nodes in mixedGraph as n . Then Lambda is an nxn matrix whose i, j th entry

1. equals 0 if i is not a parent of j,
2. equals NA if i is a parent of j but identifier cannot identify it generically,
3. equals the (generically) unique value corresponding to the weight along the edge $i->j$ that was used to produce Sigma.
Omega just as Lambda but for the bidirected edges in the mixed graph such that if j is in solvedParents[[i]] we must have that Lambda[j,i] is not NA.

Value

a list

References

Drton, M. and Weihs, L. (2015) Generic Identifiability of Linear Structural Equation Models by Ancestor Decomposition. arXiv 1504.02992

```
createAncestralIdentifier
```

Create an ancestral identification function.

Description

A helper function for ancestralIdentifyStep, creates an identifier function based on its given parameters. This created identifier function will identify the directed edges from 'targets' to 'node.'

Usage

createAncestralIdentifier(idFunc, sources, targets, node, htrSources, ancestralSubset, cComponent)

Arguments

idFunc identification of edge coefficients often requires that other edge coefficients already be identified. This argument should be a function that produces all such identifications. The newly created identifier function will return these identifications along with its own.
sources the sources of the half-trek system.
targets the targets of the half-trek system (these should be the parents of node).
node the node for which all incoming edges are to be identified (the tails of which are targets).
htrSources the nodes in sources which are half-trek reachable from node. All incoming edges to these sources should be identified by idFunc for the newly created identification function to work.
ancestralSubset
an ancestral subset of the graph containing node.
cComponent a list corresponding to the c-component containing node in the subgraph induced by ancestralSubset. See tianDecompose for how such c-component lists are formed.

Value

an identification function

```
createEdgewiseIdentifier
```

Create an edgewise identification function

Description

A helper function for edgewiseIdentifyStep, creates an identifier function based on its given parameters. This created identifier function will identify the directed edges from 'targets' to 'node.'

Usage

createEdgewiseIdentifier(idFunc, sources, targets, node, solvedNodeParents, sourceParentsToRemove)

Arguments

idFunc identification of edge coefficients often requires that other edge coefficients already be identified. This argument should be a function that produces all such identifications. The newly created identifier function will return these identifications along with its own.
sources the sources of the half-trek system.
targets the targets of the half-trek system (these should be the parents of node).

```
node the node for which all incoming edges are to be identified (the tails of which are
    targets).
solvedNodeParents
    the parents of node that have been solved
sourceParentsToRemove
    a list of the parents of the sources that should have their edge to their respect
    source removed.
```


Value

an identification function

```
createHalfTrekFlowGraph
```

Helper function to create a flow graph.

Description

Helper function to create a flow graph.

Usage

createHalfTrekFlowGraph(this)
\#\# S3 method for class 'MixedGraphFixedOrder'
createHalfTrekFlowGraph(this)

Arguments

this the mixed graph object createHtcIdentifier Create an htc identification function.

Description

A helper function for htcIdentifyStep, creates an identifier function based on its given parameters. This created identifier function will identify the directed edges from 'targets' to 'node.'

Usage

createHtcIdentifier(idFunc, sources, targets, node, htrSources)

Arguments

idFunc identification of edge coefficients often requires that other edge coefficients already be identified. This argument should be a function that produces all such identifications. The newly created identifier function will return these identifications along with its own.
sources the sources of the half-trek system.
targets the targets of the half-trek system (these should be the parents of node).
node the node for which all incoming edges are to be identified (the tails of which are targets).
htrSources the nodes in sources which are half-trek reachable from node. All incoming edges to these sources should be identified by idFunc for the newly created identification function to work.

Value
an identification function

References

Foygel, R., Draisma, J., and Drton, M. (2012) Half-trek criterion for generic identifiability of linear structural equation models. Ann. Statist. 40(3): 1682-1713.

```
createHtrGraph Helper function to create a graph encoding htr relationships.
```


Description

Helper function to create a graph encoding htr relationships.

Usage

createHtrGraph(this)
\#\# S3 method for class 'MixedGraphFixedOrder'
createHtrGraph(this)

Arguments

```
createIdentifierBaseCase
```

Create an identifier base case

Description

Identifiers are functions that take as input a covariance matrix Sigma corresponding to some mixed graph G and, from that covariance matrix, identify some subset of the coefficients in the mixed graph G. This function takes as input the matrices, L and O , defining G and creates an identifier that does not identify any of the coefficients of G. This is useful as a base case when building more complex identification functions.

Usage
 createIdentifierBaseCase(L, 0)

Arguments

L
Adjacency matrix for the directed part of the path diagram/mixed graph; an edge pointing from i to j is encoded as $L[i, j]=1$ and the lack of an edge between i and j is encoded as $L[i, j]=0$. There should be no directed self loops, i.e. no i such that $\mathrm{L}[\mathrm{i}, \mathrm{i}]=1$.
0
Adjacency matrix for the bidirected part of the path diagram/mixed graph. Edges are encoded as for the L parameter. Again there should be no self loops. Also this matrix will be coerced to be symmetric so it is only necessary to specify an edge once, i.e. if $\mathrm{O}[\mathrm{i}, \mathrm{j}]=1$ you may, but are not required to, also have $\mathrm{O}[\mathrm{j}, \mathrm{i}]=1$.

Value

a function that takes as input a covariance matrix compatible with the mixed graph defined by L/O and returns a list with two named components: Lambda - a matrix equal to L but with NA values instead of 1s, Omega - a matrix equal to O but with NA values instead of 1 s . When building more complex identifiers these NAs will be replaced by the value that can be identified from Sigma.

```
createSimpleBiDirIdentifier
    Identify bidirected edges if all directed edges are identified
```


Description

Creates an identifier function that assumes that all directed edges have already been identified and then is able to identify all bidirected edges simultaneously.

Usage

createSimpleBiDirIdentifier(idFunc)

Arguments

idFunc an identifier function that identifies all directed edges

Value

a new identifier function that identifies everything.

```
createTrekFlowGraph Helper function to create a flow graph.
```


Description

Helper function to create a flow graph.

```
Usage
    createTrekFlowGraph(this)
    ## S3 method for class 'MixedGraphFixedOrder'
    createTrekFlowGraph(this)
```


Arguments

this the mixed graph object
createTrekSeparationIdentifier
Create an trek separation identification function

Description

A helper function for trekSeparationIdentifyStep, creates an identifier function based on its given parameters. This created identifier function will identify the directed edge from 'parent' to 'node.'

Usage

createTrekSeparationIdentifier(idFunc, sources, targets, node, parent, solvedParents)

Arguments

idFunc identification of edge coefficients often requires that other edge coefficients already be identified. This argument should be a function that produces all such identifications. The newly created identifier function will return these identifications along with its own.
sources the sources of the half-trek system.
targets the targets of the half-trek system (these should be the parents of node).
node the node for which all incoming edges are to be identified (the tails of which are targets).
parent the parent of node for which the edge node -> parent should be generically identified.
solvedParents the parents of node that have been solved

Value

an identification function
createTrGraph Helper function to create a graph encoding trek reachable relationships.

Description

Helper function to create a graph encoding trek reachable relationships.

Usage

createTrGraph(this)
\#\# S3 method for class 'MixedGraphFixedOrder'
createTrGraph(this)

Arguments

this the mixed graph object
descendants Get descendants of a node

Description

Finds all descendants of a node, this DOES include the node itself (every node is considered a descendant of itself).

Usage

descendants(this, node)
\#\# S3 method for class 'MixedGraphFixedOrder' descendants(this, node)
\#\# S3 method for class 'MixedGraph'
descendants(this, node)

Arguments

this the mixed graph object
node the node from which to get the descendants.
edgewiseID Determines which edges in a mixed graph are edgewiseID-identifiable

Description

Uses the edgewise identification criterion of Weihs, Robeva, Robinson, et al. (2017) to determine which edges in a mixed graph are generically identifiable.

Usage

edgewiseID(mixedGraph, tianDecompose $=\mathrm{T}$, subsetSizeControl $=3$)

Arguments

mixedGraph a MixedGraph object representing the L-SEM.
tianDecompose TRUE or FALSE determining whether or not the Tian decomposition should be used before running the current generic identification algorithm. In general letting this be TRUE will make the algorithm faster and more powerful.
subsetSizeControl
a positive integer (Inf allowed) which controls the size of edgesets searched in the edgewiseID algorithm. Suppose, for example, this has value 3. Then if a node i has n parents, this will restrict the algorithm to only look at subsets of the parents of size $1,2,3$ and $n-2, n-1, n$. Making this parameter smaller means the algorithm will be faster but less exhaustive (and hence less powerful).

Value

see the return of generalGenericID.
edgewiseIdentifyStep Perform one iteration of edgewise identification.

Description

A function that does one step through all the nodes in a mixed graph and tries to identify new edge coefficients using the existence of half-trek systems as described in Weihs, Robeva, Robinson, et al. (2017).

Usage

edgewiseIdentifyStep(mixedGraph, unsolvedParents, solvedParents, identifier, subsetSizeControl = Inf)

Arguments

mixedGraph a MixedGraph object representing the mixed graph.
unsolvedParents
a list whose ith index is a vector of all the parents j of i in G which for which the edge $\mathrm{j}->\mathrm{i}$ is not yet known to be generically identifiable.
solvedParents the complement of unsolvedParents, a list whose ith index is a vector of all parents j of i for which the edge $\mathrm{i}->\mathrm{j}$ is known to be generically identifiable (perhaps by other algorithms).
identifier an identification function that must produce the identifications corresponding to those in solved parents. That is identifier should be a function taking a single argument Sigma (any generically generated covariance matrix corresponding to the mixed graph) and returns a list with two named arguments
Lambda denote the number of nodes in mixedGraph as n . Then Lambda is an nxn matrix whose i,jth entry

1. equals 0 if i is not a parent of j,
2. equals NA if i is a parent of j but identifier cannot identify it generically,
3. equals the (generically) unique value corresponding to the weight along the edge $i->j$ that was used to produce Sigma.
Omega just as Lambda but for the bidirected edges in the mixed graph such that if j is in solvedParents[[i]] we must have that Lambda[j,i] is not NA.
subsetSizeControl
a positive integer (Inf allowed) which controls the size of edgesets searched in the edgewiseID algorithm. Suppose, for example, this has value 3. Then if a node i has n parents, this will restrict the algorithm to only look at subsets of the parents of size $1,2,3$ and $n-2, n-1, n$. Making this parameter smaller means the algorithm will be faster but less exhaustive (and hence less powerful).

Value

see the return of htcIdentifyStep.

edgewiseTSID | Determines which edges in a mixed graph are edgewiseID+TS identi- |
| :--- |
| fiable |

Description

Uses the edgewise+TS identification criterion of Weihs, Robeva, Robinson, et al. (2017) to determine which edges in a mixed graph are generically identifiable. In particular this algorithm iterates between the half-trek, edgewise, and trek-separation identification algorithms in an attempt to identify as many edges as possible, this may be very slow.

Usage

edgewiseTSID(mixedGraph, tianDecompose = T, subsetSizeControl = 3, maxSubsetSize = 3)

Arguments

mixedGraph a MixedGraph object representing the L-SEM.
tianDecompose TRUE or FALSE determining whether or not the Tian decomposition should be used before running the current generic identification algorithm. In general letting this be TRUE will make the algorithm faster and more powerful.
subsetSizeControl
a positive integer (Inf allowed) which controls the size of edgesets searched in the edgewiseID algorithm. Suppose, for example, this has value 3. Then if a node i has n parents, this will restrict the algorithm to only look at subsets of the parents of size $1,2,3$ and $n-2, n-1, n$. Making this parameter smaller means the algorithm will be faster but less exhaustive (and hence less powerful).
maxSubsetSize a positive integer which controls the maximum subset size considered in the trek-separation identification algorithm. Making this parameter smaller means the algorithm will be faster but less exhaustive (and hence less powerful).

Value

see the return of generalGenericID.
flowBetween Flow from one set of nodes to another.

Description

Flow from one set of nodes to another.

Usage

```
flowBetween(this, sources, sinks)
## S3 method for class 'FlowGraph'
flowBetween(this, sources, sinks)
```


Arguments

this	the flow graph object
sources	the nodes from which flow should start.
sinks	the nodes at which the flow should end.

Value

a list with two named components, value (the size of the computed flow) and activeSources (a vector representing the subset of sources which have non-zero flow out of them for the found max-flow).
FlowGraph Construct FlowGraph object

Description

Creates an object representing a flow graph.

Usage

FlowGraph(L = matrix $(0,1,1)$, vertexCaps $=1$, edgeCaps $=$ matrix $(1,1,1)$)

Arguments

$\mathrm{L} \quad$ the adjacency matrix for the flow graph. The (i, j) th of L should be a 1 if there is an edge from i to j and 0 otherwise.
vertexCaps the capacity of the vertices in the flow graph, should either be a single number or a vector whose ith entry is the capacity of vertex i.
edgeCaps the capacities of the edges in the the flow graph, should be a matrix of the same dimensions as L with (i, j)th entry the capacity of the $\mathrm{i}->\mathrm{j}$ edge.

Value

An object representing the FlowGraph

Description

A function that encapsulates the general structure of our algorithms for testing generic identifiability. Allows for various identification algorithms to be used in concert, in particular it will use the identifier functions in the list idStepFunctions sequentially until it can find no more identifications. The step functions that are currently available for use are in idStepFunctions

1. htcIdentifyStep
2. ancestralIdentifyStep
3. edgewiseIdentifyStep
4. trekSeparationIdentifyStep

Usage

generalGenericID(mixedGraph, idStepFunctions, tianDecompose $=\mathrm{T}$)

Arguments

$$
\left.\begin{array}{ll}
\text { mixedGraph a MixedGraph object representing the L-SEM. } \\
\text { idStepFunctions }
\end{array} \quad \begin{array}{l}
\text { a list of identification step functions }
\end{array}\right] \begin{aligned}
& \text { tren or FALSE determining whether or not the Tian decomposition should } \\
& \text { te used before running the current generic identification algorithm. In general } \\
& \text { letting this be TRUE will make the algorithm faster and more powerful. }
\end{aligned}
$$

Value

returns an object of class 'GenericIDResult,' this object is just a list with 9 components:
solvedParents a list whose ith element contains a vector containing the subsets of parents of node i for which the edge $\mathrm{j}->\mathrm{i}$ could be shown to be generically identifiable.
unsolvedParents as for solvedParents but for the unsolved parents.
solvedSiblings as for solvedParents but for the siblings of node i (i.e. the bidirected neighbors of i).
unsolvedSiblings as for solvedSilbings but for the unsolved siblings of node i (i.e. the bidirected neighbors of i).
identifier a function that takes a (generic) covariance matrix corresponding to the graph and identifies the edges parameters from solvedParents and solvedSiblings. See htcIdentifyStep for a more in-depth discussion of identifier functions.
mixedGraph a mixed graph object of the graph.
idStepFunctions a list of functions used to generically identify parameters. For instance, htcID uses the function htcIdentifyStep to identify edges.
tianDecompose the argument tianDecompose.
call the call made to this function.
getAncestors Get getAncestors of nodes in a graph.

Description

Get the getAncestors of a collection of nodes in a graph g , the getAncestors DO include the the nodes themselves.

Usage

getAncestors(g, nodes)

Arguments

g
the graph (as an igraph).
nodes the nodes in the graph of which to get the getAncestors.

Value

a sorted vector of all ancestor nodes.

```
getDescendants Get descendants of nodes in a graph.
```


Description

Gets the descendants of a collection of nodes in a graph (all nodes that can be reached by following directed edges from those nodes). Descendants DO include the nodes themselves.

Usage

getDescendants(g, nodes)

Arguments

$\mathrm{g} \quad$ the graph (as an igraph).
nodes the nodes in the graph of which to get the descendants.

Value

a sorted vector of all descendants of nodes.

Description

Determines if a half-trek system exists in the mixed graph.

Usage

getHalfTrekSystem(this, fromNodes, toNodes)
\#\# S3 method for class 'MixedGraphFixedOrder'
getHalfTrekSystem(this, fromNodes, toNodes)
\#\# S3 method for class 'MixedGraph'
getHalfTrekSystem(this, fromNodes, toNodes)

Arguments

this	the mixed graph object
fromNodes	the nodes from which the half-trek system should start. If length(fromNodes) $>$ length(toNodes) will find if there exists any half-trek system from any subset of fromNodes of size length(toNodes) to toNodes.
toNodes	the nodes where the half-trek system should end.

Value

a list with two named components, systemExists (TRUE if a system exists, FALSE otherwise) and activeFrom (the subset of fromNodes from which the maximal half-trek system was started).

$$
\begin{array}{ll}
\text { getMaxFlow } & \begin{array}{l}
\text { Size of largest } H T \text { system } Y \text { satisfying the HTC for a node } v \text { except } \\
\text { perhaps having } \mid \text { getParents }(v)|<|Y| .
\end{array}
\end{array}
$$

Description

For an input mixed graph H, constructs the Gflow graph as described in Foygel et al. (2012) for a subgraph G of H . A max flow algorithm is then run on Gflow to determine the largest half-trek system in G to a particular node's getParents given a set of allowed nodes. Here G should consist of a bidirected part and nodes which are not in the bidirected part but are a parent of some node in the bidirected part. G should contain the node for which to compute the max flow.

Usage

getMaxFlow(L, 0, allowedNodes, biNodes, inNodes, node)

Arguments

L

0

Adjacency matrix for the directed part of the path diagram/mixed graph; an edge pointing from i to j is encoded as $L[i, j]=1$ and the lack of an edge between i and j is encoded as $L[i, j]=0$. There should be no directed self loops, i.e. no i such that $\mathrm{L}[\mathrm{i}, \mathrm{i}]=1$.
Adjacency matrix for the bidirected part of the path diagram/mixed graph. Edges are encoded as for the L parameter. Again there should be no self loops. Also this matrix will be coerced to be symmetric so it is only necessary to specify an edge once, i.e. if $\mathrm{O}[\mathrm{i}, \mathrm{j}]=1$ you may, but are not required to, also have $\mathrm{O}[\mathrm{j}, \mathrm{i}]=1$.
allowedNodes the set of allowed nodes.
biNodes the set of nodes in the subgraph G which are part of the bidirected part.
inNodes the nodes of the subgraph G which are not in the bidirected part but are a parent of some node in the bidirected component.
node the node (as an integer) for which the maxflow the largest half trek system

Value

See title.

References

Foygel, R., Draisma, J., and Drton, M. (2012) Half-trek criterion for generic identifiability of linear structural equation models. Ann. Statist. 40(3): 1682-1713.

Description

For an input mixed graph H and set of nodes A , let GA be the subgraph of H on the nodes A . This function returns the mixed component of GA containing a specified node.

Usage

getMixedCompForNode(dG, bG, subNodes, node)

Arguments

dG a directed graph representing the directed part of the mixed graph.
bG an undirected graph representing the undirected part of the mixed graph.
subNodes an ancestral set of nodes in the mixed graph, this set should include the node for which the mixed component sould be found.
node the node for which the mixed component is found.

Value

a list with two named elements: biNodes - the nodes of the mixed graph in the biDirected component containing nodeName w.r.t the ancestral set of nodes inNodes - the nodes in the graph which are not part of biNodes but which are a parent of some node in biNodes.

```
    getParents Get getParents of nodes in a graph.
```


Description

Get the getParents of a collection of nodes in a graph g , the getParents DO include the input nodes themselves.

Usage

getParents(g, nodes)

Arguments

$\mathrm{g} \quad$ the graph (as an igraph).
nodes the nodes in the graph of which to get the getParents.

Value

a sorted vector of all parent nodes.
getSiblings Get getSiblings of nodes in a graph.

Description

Get the getSiblings of a collection of nodes in a graph g , the getSiblings DO include the input nodes themselves.

Usage

getSiblings(g, nodes)

Arguments

```
    g the graph (as an igraph).
    nodes the nodes in the graph of which to get the getSiblings.
```


Value

a sorted vector of all getSiblings of nodes.

```
    getTrekSystem Determines if a trek system exists in the mixed graph.
```


Description

Determines if a trek system exists in the mixed graph.

Usage

```
getTrekSystem(this, fromNodes, toNodes, avoidEdgesOnRight)
## S3 method for class 'MixedGraphFixedOrder'
getTrekSystem(this, fromNodes, toNodes,
        avoidEdgesOnRight = NULL)
    ## S3 method for class 'MixedGraph'
    getTrekSystem(this, fromNodes, toNodes,
        avoidEdgesOnRight = NULL)
```


Arguments

this	the mixed graph object
fromNodes	the start nodes
toNodes	the end nodes
avoidEdgesOnRight	

a collection of edges in the graph that should not be used on any right hand side of any trek in the trek system.

```
graphID Identifiability of linear structural equation models.
```


Description

NOTE: graphID has been deprecated, use semID instead.
This function checks global and generic identifiability of linear structural equation models. For generic identifiability the function checks a sufficient criterion as well as a necessary criterion but this check may be inconclusive.

Usage

graphID(L, 0, output.type = "matrix", file.name = NULL, decomp.if.acyclic = TRUE, test.globalID = TRUE, test.genericID $=$ TRUE, test.nonID $=$ TRUE)

Arguments

L Adjacency matrix for the directed part of the path diagram/mixed graph; an edge pointing from i to j is encoded as $L[i, j]=1$ and the lack of an edge between i and j is encoded as $L[i, j]=0$. There should be no directed self loops, i.e. no i such that $\mathrm{L}[\mathrm{i}, \mathrm{i}]=1$.

0 Adjacency matrix for the bidirected part of the path diagram/mixed graph. Edges are encoded as for the L parameter. Again there should be no self loops. Also this matrix will be coerced to be symmetric so it is only necessary to specify an edge once, i.e. if $\mathrm{O}[\mathrm{i}, \mathrm{j}]=1$ you may, but are not required to, also have $\mathrm{O}[\mathrm{j}, \mathrm{i}]=1$.
output.type A character string indicating whether output is printed ('matrix'), saved to a file ('file'), or returned as a list ('list') for further processing in R.
file.name A character string naming the output file.
decomp.if.acyclic
A logical value indicating whether an input graph that is acyclic is to be decomposed before applying identifiability criteria.
test.globalID A logical value indicating whether or not global identifiability is checked.
test.genericID A logical value indicating whether or not a sufficient condition for generic identifiability is checked.
test.nonID A logical value indicating whether or not a condition implying generic nonidentifiability is checked.

Value

A list or printed matrix indicating the identifiability status of the linear SEM given by the input graph. Optionally the graph's components are listed.

With output.type = 'list', the function returns a list of components for the graph. Each list entry is again a list that indicates first which nodes form the component and second whether the component forms a mixed graph that is acyclic. The next entries in the list show HTC-identifiable nodes, meaning nodes v for which the coefficients for all the directed edges pointing to v can be identified using the methods from Foygel et al. (2012). The HTC-identifiable nodes are listed in the order in which they are found by the recursive identification algorithm. The last three list entries are logical values that indicate whether or not the graph component is generically identifiable, globally identifiable or not identifiable; compare Drton et al. (2011) and Foygel et al. (2012). In the latter case the Jacobian of the parametrization does not have full rank.

With output.type = 'matrix', a summary of the above information is printed.

References

Drton, M., Foygel, R., and Sullivant, S. (2011) Global identifiability of linear structural equation models. Ann. Statist. 39(2): 865-886.
Foygel, R., Draisma, J., and Drton, M. (2012) Half-trek criterion for generic identifiability of linear structural equation models. Ann. Statist. 40(3): 1682-1713.

Examples

```
## Not run:
L = t(matrix(
        c(0, 1, 0, 0, 0,
            0, 0, 1, 0, 0,
            0,0,0,1,0,
            0,0,0,0,1,
            0,0,0,0,0), 5, 5))
0 = t(matrix(
    c(0, 0, 1, 1, 0,
            0, 0, 0, 1, 1,
            0, 0, 0, 0, 0,
            0, 0, 0, 0, 0,
            0, 0, 0, 0, 0), 5, 5))
0=0+t(0)
graphID(L,0)
## Examples from Foygel, Draisma & Drton (2012)
demo(SEMID)
## End(Not run)
```

```
graphID.ancestralID
```

Determine generic identifiability of an acyclic mixed graph using ancestral decomposition.

Description

For an input, acyclic, mixed graph attempts to determine if the graph is generically identifiable using decomposition by ancestral subsets. See algorithm 1 of Drton and Weihs (2015).

Usage

graphID.ancestralID(L, 0)

Arguments

L

0

Adjacency matrix for the directed part of the path diagram/mixed graph; an edge pointing from i to j is encoded as $L[i, j]=1$ and the lack of an edge between i and j is encoded as $L[i, j]=0$. There should be no directed self loops, i.e. no i such that $\mathrm{L}[\mathrm{i}, \mathrm{i}]=1$.
Adjacency matrix for the bidirected part of the path diagram/mixed graph. Edges are encoded as for the L parameter. Again there should be no self loops. Also this matrix will be coerced to be symmetric so it is only necessary to specify an edge once, i.e. if $\mathrm{O}[\mathrm{i}, \mathrm{j}]=1$ you may, but are not required to, also have $\mathrm{O}[\mathrm{j}, \mathrm{i}]=1$.

Value

The vector of nodes that could be determined to be generically identifiable using the above algorithm.

References

Drton, M. and Weihs, L. (2015) Generic Identifiability of Linear Structural Equation Models by Ancestor Decomposition. arXiv 1504.02992
graphID.decompose Determine generic identifiability by Tian Decomposition and HTC

Description

Split a graph into mixed Tian components and solve each separately using the HTC.

Usage

graphID.decompose(L, 0, decomp.if.acyclic = TRUE, test.globalID = TRUE, test.genericID $=$ TRUE, test.nonID $=$ TRUE)

Arguments

L Adjacency matrix for the directed part of the path diagram/mixed graph; an edge pointing from i to j is encoded as $L[i, j]=1$ and the lack of an edge between i and j is encoded as $L[i, j]=0$. There should be no directed self loops, i.e. no i such that $\mathrm{L}[\mathrm{i}, \mathrm{i}]=1$.
$0 \quad$ Adjacency matrix for the bidirected part of the path diagram/mixed graph. Edges are encoded as for the L parameter. Again there should be no self loops. Also this matrix will be coerced to be symmetric so it is only necessary to specify an edge once, i.e. if $\mathrm{O}[\mathrm{i}, \mathrm{j}]=1$ you may, but are not required to, also have $\mathrm{O}[\mathrm{j}, \mathrm{i}]=1$.
decomp.if.acyclic
A logical value indicating whether an input graph that is acyclic is to be decomposed before applying identifiability criteria.
test.globalID A logical value indicating whether or not global identifiability is checked.
test.genericID A logical value indicating whether or not a sufficient condition for generic identifiability is checked.
test.nonID A logical value indicating whether or not a condition implying generic nonidentifiability is checked.

Value

A list with two named components:

1. Components - a list of lists. Each list represents one mixed Tian component of the graph. Each list contains named components corresponding to which nodes are in the component and results of various tests of identifiability on the component (see the parameter descriptions).
2. Decomp - true if a decomposition occured, false if not.
graphID.genericID Determine generic identifiability of a mixed graph.

Description

If directed part of input graph is cyclic then will check for generic identifiability using the half-trek criterion. Otherwise will use the a slightly stronger version of the half-trek criterion using ancestor decompositions.

Usage
 graphID.genericID(L, 0)

Arguments

L Adjacency matrix for the directed part of the path diagram/mixed graph; an edge pointing from i to j is encoded as $L[i, j]=1$ and the lack of an edge between i and j is encoded as $L[i, j]=0$. There should be no directed self loops, i.e. no i such that $\mathrm{L}[\mathrm{i}, \mathrm{i}]=1$.
0 Adjacency matrix for the bidirected part of the path diagram/mixed graph. Edges are encoded as for the L parameter. Again there should be no self loops. Also this matrix will be coerced to be symmetric so it is only necessary to specify an edge once, i.e. if $\mathrm{O}[\mathrm{i}, \mathrm{j}]=1$ you may, but are not required to, also have $\mathrm{O}[\mathrm{j}, \mathrm{i}]=1$.

Value

The vector of nodes that could be determined to be generically identifiable.

References

Foygel, R., Draisma, J., and Drton, M. (2012) Half-trek criterion for generic identifiability of linear structural equation models. Ann. Statist. 40(3): 1682-1713.
Drton, M. and Weihs, L. (2015) Generic Identifiability of Linear Structural Equation Models by Ancestor Decomposition. arXiv 1504.02992
graphID.globalID Check for global identifiability of a mixed graph.

Description

Checks for the global identifiability of a mixed graph using techniques presented in Drton, Foygel, Sullivant (2011).

Usage

graphID.globalID(L, 0)

Arguments

L
Adjacency matrix for the directed part of the path diagram/mixed graph; an edge pointing from i to j is encoded as $L[i, j]=1$ and the lack of an edge between i and j is encoded as $L[i, j]=0$. There should be no directed self loops, i.e. no i such that $\mathrm{L}[\mathrm{i}, \mathrm{i}]=1$.
0
Adjacency matrix for the bidirected part of the path diagram/mixed graph. Edges are encoded as for the L parameter. Again there should be no self loops. Also this matrix will be coerced to be symmetric so it is only necessary to specify an edge once, i.e. if $\mathrm{O}[\mathrm{i}, \mathrm{j}]=1$ you may, but are not required to, also have $\mathrm{O}[\mathrm{j}, \mathrm{i}]=1$.

Value

TRUE if the graph was globally identifiable, FALSE otherwise.

References

Drton, Mathias; Foygel, Rina; Sullivant, Seth. Global identifiability of linear structural equation models. Ann. Statist. 39 (2011), no. 2, 865-886.
graphID.htcID Determines if a mixed graph is HTC-identifiable.

Description

Uses the half-trek criterion of Foygel, Draisma, and Drton (2013) to check if an input mixed graph is generically identifiable.

Usage

graphID.htcID(L, 0)

Arguments

L

0

Adjacency matrix for the directed part of the path diagram/mixed graph; an edge pointing from i to j is encoded as $L[i, j]=1$ and the lack of an edge between i and j is encoded as $L[i, j]=0$. There should be no directed self loops, i.e. no i such that $\mathrm{L}[\mathrm{i}, \mathrm{i}]=1$.
Adjacency matrix for the bidirected part of the path diagram/mixed graph. Edges are encoded as for the L parameter. Again there should be no self loops. Also this matrix will be coerced to be symmetric so it is only necessary to specify an edge once, i.e. if $\mathrm{O}[\mathrm{i}, \mathrm{j}]=1$ you may, but are not required to, also have $\mathrm{O}[\mathrm{j}, \mathrm{i}]=1$.

Value

The vector of HTC-identifiable nodes.

References

Foygel, R., Draisma, J., and Drton, M. (2012) Half-trek criterion for generic identifiability of linear structural equation models. Ann. Statist. 40(3): 1682-1713.
graphID.main Helper function to handle a graph component.

Description

Calls the other functions that determine identifiability status.

Usage

graphID.main(L, 0, test.globalID = TRUE, test.genericID = TRUE, test.nonID = TRUE)

Arguments

L Adjacency matrix for the directed part of the path diagram/mixed graph; an edge pointing from i to j is encoded as $L[i, j]=1$ and the lack of an edge between i and j is encoded as $L[i, j]=0$. There should be no directed self loops, i.e. no i such that $\mathrm{L}[\mathrm{i}, \mathrm{i}]=1$.

0
Adjacency matrix for the bidirected part of the path diagram/mixed graph. Edges are encoded as for the L parameter. Again there should be no self loops. Also this matrix will be coerced to be symmetric so it is only necessary to specify an edge once, i.e. if $\mathrm{O}[\mathrm{i}, \mathrm{j}]=1$ you may, but are not required to, also have $\mathrm{O}[\mathrm{j}, \mathrm{i}]=1$.
test.globalID A logical value indicating whether or not global identifiability is checked.
test.genericID A logical value indicating whether or not a sufficient condition for generic identifiability is checked.
test.nonID A logical value indicating whether or not a condition implying generic nonidentifiability is checked.

Value

A list containing named components of the results of various tests desired based on the input parameters.

Description

Checks if a mixed graph is infinite-to-one using the half-trek criterion presented by Foygel, Draisma, and Drton (2012).

Usage

graphID.nonHtcID(L, 0)

Arguments

L Adjacency matrix for the directed part of the path diagram/mixed graph; an edge pointing from i to j is encoded as $L[i, j]=1$ and the lack of an edge between i and j is encoded as $L[i, j]=0$. There should be no directed self loops, i.e. no i such that $\mathrm{L}[\mathrm{i}, \mathrm{i}]=1$.
$0 \quad$ Adjacency matrix for the bidirected part of the path diagram/mixed graph. Edges are encoded as for the L parameter. Again there should be no self loops. Also this matrix will be coerced to be symmetric so it is only necessary to specify an edge once, i.e. if $\mathrm{O}[\mathrm{i}, \mathrm{j}]=1$ you may, but are not required to, also have $\mathrm{O}[\mathrm{j}, \mathrm{i}]=1$.

Value

TRUE if the graph could be determined to be generically non-identifiable, FALSE if this test was inconclusive.

References

Foygel, R., Draisma, J., and Drton, M. (2012) Half-trek criterion for generic identifiability of linear structural equation models. Ann. Statist. 40(3): 1682-1713.

$$
\text { htcID } \quad \text { Determines which edges in a mixed graph are HTC-identifiable. }
$$

Description

Uses the half-trek criterion of Foygel, Draisma, and Drton (2012) determine which edges in a mixed graph are generically identifiable. Depending on your application it faster to use the graphID.htcID function instead of this one, this function has the advantage of returning additional information.

Usage

htcID(mixedGraph, tianDecompose $=\mathrm{T}$)

Arguments

$$
\begin{array}{ll}
\text { mixedGraph } & \text { a MixedGraph object representing the L-SEM. } \\
\text { tianDecompose } & \text { TRUE or FALSE determining whether or not the Tian decomposition should } \\
\text { be used before running the current generic identification algorithm. In general } \\
\text { letting this be TRUE will make the algorithm faster and more powerful. }
\end{array}
$$

Value

see the return value of generalGenericID.

References

Foygel, R., Draisma, J., and Drton, M. (2012) Half-trek criterion for generic identifiability of linear structural equation models. Ann. Statist. 40(3): 1682-1713.
Jin Tian. 2005. Identifying direct causal effects in linear models. In Proceedings of the 20th national conference on Artificial intelligence - Volume 1 (AAAI'05), Anthony Cohn (Ed.), Vol. 1. AAAI Press 346-352.

htcIdentifyStep Perform one iteration of HTC identification.

Description

A function that does one step through all the nodes in a mixed graph and tries to identify new edge coefficients using the existence of half-trek systems as described in Foygel, Draisma, Drton (2012).

Usage

htcIdentifyStep(mixedGraph, unsolvedParents, solvedParents, identifier)

Arguments

mixedGraph a MixedGraph object representing the mixed graph.
unsolvedParents
a list whose ith index is a vector of all the parents j of i in G which for which the edge $\mathrm{j}->\mathrm{i}$ is not yet known to be generically identifiable.
solvedParents the complement of unsolvedParents, a list whose ith index is a vector of all parents j of i for which the edge $i->j$ is known to be generically identifiable (perhaps by other algorithms).
identifier an identification function that must produce the identifications corresponding to those in solved parents. That is identifier should be a function taking a single argument Sigma (any generically generated covariance matrix corresponding to the mixed graph) and returns a list with two named arguments

Lambda denote the number of nodes in mixedGraph as n . Then Lambda is an nxn matrix whose i,jth entry

1. equals 0 if i is not a parent of j,
2. equals NA if i is a parent of j but identifier cannot identify it generically,
3. equals the (generically) unique value corresponding to the weight along the edge $i->j$ that was used to produce Sigma.
Omega just as Lambda but for the bidirected edges in the mixed graph
such that if j is in solvedParents[[i]] we must have that Lambda[j,i] is not NA.

Value

a list with four components:
identifiedEdges a matrix rx2 matrix where r is the number of edges that where identified by this function call and identifiedEdges[i,1] \rightarrow identifiedEdges[i,2] was the ith edge identified
unsolvedParents as the input argument but updated with any newly identified edges
solvedParents as the input argument but updated with any newly identified edges
identifier as the input argument but updated with any newly identified edges

References

Foygel, R., Draisma, J., and Drton, M. (2012) Half-trek criterion for generic identifiability of linear structural equation models. Ann. Statist. 40(3): 1682-1713
htr Get all HTR nodes from a set of nodes in a graph.

Description

Gets all vertices in a graph that are half-trek reachable from a set of nodes. WARNING: Often the half-trek reachable nodes from a vertex v are defined to not include the vertex v or its getSiblings. We DO NOT follow this convention, the returned set will include input nodes and their getSiblings.

Usage

$h t r(d G, b G$, nodes $)$

Arguments

dG a directed graph representing the directed part of the mixed graph.
bG an undirected graph representing the undirected part of the mixed graph.
nodes the nodes in the graph of which to get the HTR nodes.

Value

a sorted list of all half-trek reachable nodes.

htrFrom Half trek reachable nodes.

Description

Half trek reachable nodes.

Usage

htrFrom(this, node)
\#\# S3 method for class 'MixedGraphFixedOrder'
htrFrom(this, node)
\#\# S3 method for class 'MixedGraph'
htrFrom(this, node)

Arguments

this	the mixed graph object
node	the node from which to get all half-trek reachable nodes.

Value

a vector of all nodes half-trek reachable from node.
inducedSubgraph Get the induced subgraph on a collection of nodes

Description

Get the induced subgraph on a collection of nodes

Usage

inducedSubgraph(this, nodes)
\#\# S3 method for class 'MixedGraph'
inducedSubgraph(this, nodes)

Arguments

this	the mixed graph object
nodes	the nodes on which to create the induced subgraph.

```
    isSibling Are two nodes siblings?
```


Description

Are two nodes siblings?

Usage

```
isSibling(this, node1, node2)
## S3 method for class 'MixedGraphFixedOrder'
isSibling(this, node1, node2)
## S3 method for class 'MixedGraph'
isSibling(this, node1, node2)
```


Arguments

this	the mixed graph object
node1	a node
node2	a second node

Value

TRUE if the nodes are siblings in the graph, FALSE otherwise

L
Get adjacency matrix for directed part.

Description

Get adjacency matrix for directed part.

Usage

L(this)
\#\# S3 method for class 'MixedGraph'
L(this)

Arguments

this the mixed graph object

MixedGraph Construct MixedGraph object

Description

Creates an object representing a mixed graph. The methods that are currently available to be used on the mixed graph include

1. ancestors
2. descendants
3. parents
4. siblings
5. isSibling
6. htrFrom
7. trFrom
8. getHalfTrekSystem
9. getTrekSystem
10. inducedSubgraph
11. L
12. O
13. nodes
14. numNodes
15. stronglyConnectedComponent
16. tianComponent
17. tianDecompose
see the individual function documentation for more information.

Usage

MixedGraph(L = matrix(0,1,1), $0=\operatorname{matrix}(0,1,1)$, vertexNums = 1:nrow(L))

Arguments

L
see graphID for the appropriate form of L.
0 as for L .
vertexNums the labeling of the vertices in the graph in the order of the rows of L and O . Labels must be positive integers.

Value

An object representing the MixedGraph

```
MixedGraphFixedOrder Construct MixedGraphFixedOrder object
```


Description

Creates an object representing a mixed graph.

Usage

MixedGraphFixedOrder $(L=\operatorname{matrix}(0,1,1), 0=\operatorname{matrix}(0,1,1))$

Arguments

$\mathrm{L} \quad$ see graphID for the appropriate form of L .
0 as for L.

Value

An object representing the MixedGraphFixedOrder

```
mixedGraphHasSimpleNumbering
    Checks a MixedGraph has appropriate node numbering
```


Description

Checks that the input mixed graph has vertices are numbered from 1 to mixedGraph $\$$ numNodes(). Throws an error if they are not.

Usage
 mixedGraphHasSimpleNumbering(mixedGraph)

Arguments

mixedGraph the mixed graph object

Description

Get all nodes in the graph.

Usage

```
nodes(this)
## S3 method for class 'MixedGraph'
nodes(this)
```


Arguments

this the mixed graph object

Number of nodes in the graph.

Description

Number of nodes in the graph.

Usage

numNodes(this)
\#\# S3 method for class 'MixedGraphFixedOrder'
numNodes(this)
\#\# S3 method for class 'MixedGraph'
numNodes(this)

Arguments

this the mixed graph object

Description

Get adjacency matrix for bidirected part.

Usage

O(this)
\#\# S3 method for class 'MixedGraph' O(this)

Arguments

this the mixed graph object
parents All parents a collection of nodes.

Description

All parents a collection of nodes.

Usage

parents(this, nodes)
\#\# S3 method for class 'MixedGraphFixedOrder'
parents(this, nodes)
\#\# S3 method for class 'MixedGraph'
parents(this, nodes)

Arguments

this the mixed graph object.
nodes nodes the nodes of which to find the parents.

Value

a vector of parents of the nodes.

```
    plot.MixedGraph Plots the mixed graph
```


Description

Plots the mixed graph

Usage

\#\# S3 method for class 'MixedGraph'
plot(x, ...)

Arguments

x the mixed graph object
... additional plotting arguments. Currently ignored.

```
plotMixedGraph Plot a mixed graph
```


Description

Given adjacency matrices representing the directed and bidirected portions of a mixed graph, plots a representation of the graph.

Usage

plotMixedGraph(L, 0, main = "", vertexLabels = 1:nrow(L))

Arguments

L
Adjacency matrix for the directed part of the path diagram/mixed graph; an edge pointing from i to j is encoded as $L[i, j]=1$ and the lack of an edge between i and j is encoded as $L[i, j]=0$. There should be no directed self loops, i.e. no i such that $\mathrm{L}[\mathrm{i}, \mathrm{i}]=1$.

0
Adjacency matrix for the bidirected part of the path diagram/mixed graph. Edges are encoded as for the L parameter. Again there should be no self loops. Also this matrix will be coerced to be symmetric so it is only necessary to specify an edge once, i.e. if $\mathrm{O}[\mathrm{i}, \mathrm{j}]=1$ you may, but are not required to, also have $\mathrm{O}[\mathrm{j}, \mathrm{i}]=1$.
main the plot title.
vertexLabels labels to use for the vertices.

```
print.GenericIDResult Prints a GenericIDResult object
```


Description

Prints a GenericIDResult object as returned by generalGenericID. Invisibly returns its argument via invisible(x) as most print functions do.

Usage

\#\# S3 method for class 'GenericIDResult'
print(x, ...)

Arguments

x
...
the GenericIDResult object optional parameters, currently unused.

Description

Prints a SEMIDResult object as returned by semID. Invisibly returns its argument via invisible (x) as most print functions do.

Usage

```
## S3 method for class 'SEMIDResult'
print(x, ...)
```


Arguments

x
the SEMIDResult object
optional parameters, currently unused.
semID Identifiability of linear structural equation models.

Description

This function can be used to check global and generic identifiability of linear structural equation models (L-SEMs). In particular, this function takes a MixedGraph object corresponding to the L-SEM and checks different conditions known for global and generic identifiability.

Usage

semID(mixedGraph, testGlobalID = TRUE, testGenericNonID = TRUE, genericIdStepFunctions = list(htcIdentifyStep), tianDecompose = TRUE)

Arguments

mixedGraph a MixedGraph object representing the L-SEM.
testGlobalID TRUE or FALSE if the graph should be tested for global identifiability. This uses the graphID.globalID function.
testGenericNonID
TRUE of FALSE if the graph should be tested for generic non-identifiability, that is, if for every generic choice of parameters for the L-SEM there are infinitely many other choices that lead to the same covariance matrix. This currently uses the graphID. nonHtcID function.
genericIdStepFunctions
a list of the generic identifier step functions that should be used for testing generic identifiability. See generalGenericID for a discussion of such functions. If this list is empty then generic identifiability is not tested. By default this will (only) run the half-trek criterion (see htcIdentifyStep) for generic identifiability.
tianDecompose TRUE or FALSE if the mixed graph should be Tian decomposed before running the identification algorithms (when appropriate). In general letting this be TRUE will make the algorithm faster and more powerful. Note that this is a version of the Tian decomposition that works also with cyclic graphs.

Value

returns an object of class 'SEMIDResult,' this object is just a list with 6 components:
isGlobalID If testGlobalID == TRUE, then TRUE or FALSE if the graph is globally identifiable. If testGlobalID $==$ FALSE then NA.
isGenericNonID If testGenericNonID == TRUE, then TRUE if the graph is generically nonidentifiable or FALSE the test is inconclusive. If testGenericNonID $==$ FALSE then NA.
genericIDResult If length(genericIdStepFunctions) != 0 then a GenericIDResult object as returned by generalGenericID. Otherwise a list of length 0 .
mixedGraph the inputted mixed graph object.
tianDecompose the argument tianDecompose.
call the call made to this function.

Examples

```
## Not run:
L = t(matrix(
        c(0, 1, 0, 0, 0,
            0, 0, 1, 0, 0,
            0, 0, 0, 1, 0,
            0, 0, 0, 0, 1,
            0,0,0,0,0), 5, 5))
0 = t(matrix(
        c(0, 0, 1, 1, 0,
            0, 0, 0, 1, 1,
            0, 0, 0, 0, 0,
            0, 0, 0, 0, 0,
            0, 0, 0, 0, 0), 5, 5))
0 = 0 + t(0)
graph = MixedGraph(L,0)
semID(graph)
## Examples from Foygel, Draisma & Drton (2012)
demo(SEMID)
## End(Not run)
```

siblings All siblings of a collection of nodes

Description

All siblings of a collection of nodes

Usage

siblings(this, nodes)
\#\# S3 method for class 'MixedGraphFixedOrder'
siblings(this, nodes)
\#\# S3 method for class 'MixedGraph'
siblings(this, nodes)

Arguments

this
nodes
the mixed graph object
a vector of nodes of which to find the siblings.

Value

a vector of all of the siblings.
stronglyConnectedComponent
Strongly connected component

Description

Get the strongly connected component for a node i in the directed part of the graph.

Usage

stronglyConnectedComponent(this, node)
\#\# S3 method for class 'MixedGraphFixedOrder'
stronglyConnectedComponent(this, node)
\#\# S3 method for class 'MixedGraph'
stronglyConnectedComponent(this, node)

Arguments

this the mixed graph object
node the node for which to get the strongly connected component.

```
stronglyConnectedComponents
```

Strongly connected components

Description

Get the strongly connected components of a graph

Usage

stronglyConnectedComponents(this)
\#\# S3 method for class 'MixedGraphFixedOrder'
stronglyConnectedComponents(this)

Arguments

this
the mixed graph object
subsetsOfSize Returns all subsets of a certain size

Description

For an input vector x , returns in a list, the collection of all subsets of x of size k .

Usage

subsetsOfSize(x, k)

Arguments

x a vector from which to get subsets
k the size of the subsets returned

Value

a list of all subsets of x of a given size k
tianComponent \quad Returns the Tian c-component of a node

Description

Returns the Tian c-component of a node

Usage

```
tianComponent(this, node)
## S3 method for class 'MixedGraph'
tianComponent(this, node)
```


Arguments

this	the mixed graph object
node	the node for which to return its c-component

tianDecompose Performs the tian decomposition on the mixed graph

Description

Uses the Tian decomposition to break the mixed graph into c-components. These c-components are slightly different than those from Tian (2005) in that if they graph is not acyclic the bidirected components are combined whenever they are connected by a directed loop.

Usage

tianDecompose(this)
\#\# S3 method for class 'MixedGraph'
tianDecompose(this)

Arguments

this the mixed graph object

References

Jin Tian. 2005. Identifying direct causal effects in linear models. In Proceedings of the 20th national conference on Artificial intelligence - Volume 1 (AAAI'05), Anthony Cohn (Ed.), Vol. 1. AAAI Press 346-352.
tianIdentifier Identifies components in a tian decomposition

Description

Creates an identification function which combines the identification functions created on a collection of c-components into a identification for the full mixed graph.

Usage

tianIdentifier(idFuncs, cComponents)

Arguments

idFuncs a list of identifier functions for the c-components
cComponents the c-components of the mixed graph as returned by tianDecompose.

Value

a new identifier function
tianSigmaForComponent Globally identify the covariance matrix of a C-component

Description

The Tian decomposition of a mixed graph G allows one to globally identify the covariance matrices Sigma' of special subgraphs of G called c-components. This function takes the covariance matrix Sigma corresponding to G and a collection of node sets which specify the c-component, and returns the Sigma' corresponding to the c-component.

Usage

tianSigmaForComponent(Sigma, internal, incoming, topOrder)

Arguments

Sigma	the covariance matrix for the mixed graph G
internal	an integer vector corresponding to the vertices of the C-component that are in the bidirected equivalence classes (if the graph is not-acyclic then these equiva- lence classes must be enlarged by combining two bidirected components if there are two vertices, one in each component, that are simultaneously on the same directed cycle).
incoming	the parents of vertices in internal that are not in the set internal themselves topOrder
a topological ordering of c(internal, incoming) with respect to the graph G. For vertices in a strongly connected component the ordering is allowed to be arbi- trary.	

Value

the new Sigma corresponding to the c-component

$$
\begin{array}{ll}
\text { toEx } & \begin{array}{l}
\text { Transforms a vector of node indices in the internal rep. into external } \\
\text { numbering }
\end{array}
\end{array}
$$

Description

Transforms a vector of node indices in the internal rep. into external numbering

Usage

toEx(this, nodes)
\#\# S3 method for class 'MixedGraph'
toEx(this, nodes)

Arguments

this the mixed graph object
nodes the nodes to transform

```
toIn Transforms a vector of given node indices into their internal number-
ing
```


Description

Transforms a vector of given node indices into their internal numbering

Usage

```
toIn(this, nodes)
## S3 method for class 'MixedGraph'
toIn(this, nodes)
```


Arguments

this	the mixed graph object
nodes	the nodes to transform

trekSeparationIdentifyStep
Perform one iteration of trek separation identification.

Description

A function that does one step through all the nodes in a mixed graph and tries to identify new edge coefficients using trek-separation as described in Weihs, Robeva, Robinson, et al. (2017).

Usage

trekSeparationIdentifyStep(mixedGraph, unsolvedParents, solvedParents, identifier, maxSubsetSize = 3)

Arguments

```
mixedGraph a MixedGraph object representing the mixed graph.
```

unsolvedParents
a list whose ith index is a vector of all the parents j of i in G which for which the edge $\mathrm{j}->\mathrm{i}$ is not yet known to be generically identifiable.
solvedParents the complement of unsolvedParents, a list whose ith index is a vector of all parents j of i for which the edge $\mathrm{i}->\mathrm{j}$ is known to be generically identifiable (perhaps by other algorithms).
identifier an identification function that must produce the identifications corresponding to those in solved parents. That is identifier should be a function taking a single argument Sigma (any generically generated covariance matrix corresponding to the mixed graph) and returns a list with two named arguments
Lambda denote the number of nodes in mixedGraph as n. Then Lambda is an nxn matrix whose i,jth entry

1. equals 0 if i is not a parent of j,
2. equals NA if i is a parent of j but identifier cannot identify it generically,
3. equals the (generically) unique value corresponding to the weight along the edge $\mathrm{i}->\mathrm{j}$ that was used to produce Sigma.
Omega just as Lambda but for the bidirected edges in the mixed graph such that if j is in solvedParents[[i]] we must have that Lambda[j,i] is not NA.
maxSubsetSize a positive integer which controls the maximum subset size considered in the trek-separation identification algorithm. Making this parameter smaller means the algorithm will be faster but less exhaustive (and hence less powerful).

Value

see the return of htcIdentifyStep.

```
trFrom
Trek reachable nodes.
```


Description

Like htrFrom but for the nodes that are trek-reachable from a node

Usage

trFrom(this, node)
\#\# S3 method for class 'MixedGraphFixedOrder'
trFrom(this, node)
\#\# S3 method for class 'MixedGraph'
trFrom(this, node)

Arguments

this	the mixed graph object
node	the node from which to find trek-reachable nodes.

```
updateEdgeCapacities Update edge capacities.
```


Description

Update edge capacities.

Usage

updateEdgeCapacities(this, edges, newCaps)
\#\# S3 method for class 'FlowGraph'
updateEdgeCapacities(this, edges, newCaps)

Arguments

this the flow graph object
edges the vertices to update (as a 2 xr matrix with ith row corresponding to the edge edges[i,1]->edges[i,2].
newCaps the new capacities for the edges

```
updateVertexCapacities
```

Update vertex capacities.

Description

Update vertex capacities.

Usage

updateVertexCapacities(this, vertices, newCaps)
\#\# S3 method for class 'FlowGraph'
updateVertexCapacities(this, vertices, newCaps)

Arguments

this	the flow graph object
vertices	the vertices to update.
newCaps	the new capacities for the vertices.

validateMatrices A helper function to validate input matrices.

Description

This helper function validates that the two input matrices, L and O , are of the appropriate form to be interpreted by the other functions. In particular they should be square matrices of 1 's and 0 's with all 0 's along their diagonals. We do not require O to be symmetric here.

Usage

validateMatrices(L, 0)

Arguments

$\begin{array}{ll}\mathrm{L} & \text { See above description. } \\ 0 & \text { See above description. }\end{array}$

Value

This function has no return value.

Index

ancestors, 5
ancestralID, 6
ancestralIdentifyStep, 6
class, 18, 41
createAncestralIdentifier, 7
createEdgewiseIdentifier, 8
createHalfTrekFlowGraph, 9
createHtcIdentifier, 9
createHtrGraph, 10
createIdentifierBaseCase, 11
createSimpleBiDirIdentifier, 11
createTrekFlowGraph, 12
createTrekSeparationIdentifier, 12
createTrGraph, 13
descendants, 14
edgewiseID, 14
edgewiseIdentifyStep, 8,15
edgewiseTSID, 16
flowBetween, 17
FlowGraph, 17
generalGenericID, 6, 15, 16, 18, 31, 40, 41
getAncestors, 19
getDescendants, 19
getHalfTrekSystem, 20
getMaxFlow, 20
getMixedCompForNode, 21
getParents, 22
getSiblings, 22
getTrekSystem, 23
graphID, 23, 35, 36
graphID.ancestralID, 6, 25
graphID.decompose, 26
graphID.genericID, 27
graphID.globalID, 27,41
graphID.htcID, 28, 30
graphID.main, 29
graphID.nonHtcID, 30, 41
htcID, 30
htcIdentifyStep, 9, 16, 18, 19, 31, 41, 48
htr, 32
htrFrom, 33, 48
inducedSubgraph, 33
invisible, 40
isSibling, 34
L, 34
MixedGraph, 6, 7, 14-16, 18, 31, 35, 41, 48
MixedGraphFixedOrder, 36
mixedGraphHasSimpleNumbering, 36
nodes, 37
numNodes, 37

0, 38
parents, 38
plot.MixedGraph, 39
plotMixedGraph, 39
print.GenericIDResult, 40
print. SEMIDResult, 40
SEMID (SEMID-package), 3
semID, 3, 23, 40, 41
SEMID-package, 3
siblings, 42
stronglyConnectedComponent, 43
stronglyConnectedComponents, 43
subsetsOfSize, 44
tianComponent, 44
tianDecompose, 8, 45, 45
tianIdentifier, 45
tianSigmaForComponent, 46
toEx, 46
toIn, 47
trekSeparationIdentifyStep, 12, 47
trFrom, 48
updateEdgeCapacities, 49
updateVertexCapacities, 49
validateMatrices, 50

