Inference in a Bayesian framework for a generalised stochastic block model. The generalised stochastic block model (SBM) can capture group structure in network data without requiring conjugate priors on the edge-states. Two sampling methods are provided to perform inference on edge parameters and block structure: a split-merge Markov chain Monte Carlo algorithm and a Dirichlet process sampler. Green, Richardson (2001) <doi:10.1111/1467-9469.00242>; Neal (2000) <doi:10.1080/10618600.2000.10474879>; Ludkin (2019) <arXiv:1909.09421>.
Version: | 1.1.1 |
Depends: | R (≥ 3.1.0) |
Imports: | ggplot2, scales, reshape2 |
Suggests: | knitr, rmarkdown |
Published: | 2020-06-04 |
Author: | Matthew Ludkin [aut, cre, cph] |
Maintainer: | Matthew Ludkin <m.ludkin1 at lancaster.ac.uk> |
License: | MIT + file LICENSE |
NeedsCompilation: | no |
Language: | en-GB |
Materials: | README NEWS |
CRAN checks: | SBMSplitMerge results |
Reference manual: | SBMSplitMerge.pdf |
Vignettes: |
Weibull-edges |
Package source: | SBMSplitMerge_1.1.1.tar.gz |
Windows binaries: | r-devel: SBMSplitMerge_1.1.1.zip, r-release: SBMSplitMerge_1.1.1.zip, r-oldrel: SBMSplitMerge_1.1.1.zip |
macOS binaries: | r-release: SBMSplitMerge_1.1.1.tgz, r-oldrel: SBMSplitMerge_1.1.1.tgz |
Please use the canonical form https://CRAN.R-project.org/package=SBMSplitMerge to link to this page.