Package ‘RxODE’

March 13, 2020

Version 0.9.2-0

Title Facilities for Simulating from ODE-Based Models
Maintainer Wenping Wang <wwang8198@gmail.com>
Depends R (>=3.6.0)

Suggests DT, data.table (>= 1.12.4), nlme, shiny, tcltk, testthat,
usethis, devtools, covr, rmarkdown, SnakeCharmR, dplyr (>=
0.8.0), tidyr, tibble, curl, gridExtra, microbenchmark, scales,
stringi, htmltools, reticulate, rlang, installr, learnr,
remotes, crayon, xgxr, digest, vdiffr, ggrepel

Imports knitr, Matrix, PreciseSums (>= 0.3), Rcpp (>= 0.12.3), brew,
cli, dparser (>= 0.1.8), ggplot2, inline, magrittr, memoise,
methods, mvnfast, pillar, rex, sys, units(>= 0.6-0), utils,
assertthat, lotri

Description Facilities for running simulations from ordinary
differential equation (ODE) models, such as pharmacometrics and other
compartmental models. A compilation manager translates the ODE model
into C, compiles it, and dynamically loads the object code into R for
improved computational efficiency. An event table object facilitates
the specification of complex dosing regimens (optional) and sampling
schedules. NB: The use of this package requires both C and
Fortran compilers, for details on their use with R please see
Section 6.3, Appendix A, and Appendix D in the "R Administration and
Installation" manual. Also the code is mostly released under GPL. The
VODE and LSODA are in the public domain. The information is available
in the inst/COPYRIGHTS. You can also obtain the archived SnakeCharmR for
python integration from CRAN archives
<https://cran.r-project.org/src/contrib/Archive/SnakeCharmR/> or
<https://github.com/nlmixrdevelopment/SnakeCharmR>.

BugReports https://github.com/nlmixrdevelopment/RxODE/issues
NeedsCompilation yes

VignetteBuilder knitr
License GPL (>=3)

https://github.com/nlmixrdevelopment/RxODE/issues

2 R topics documented:

URL https://nlmixrdevelopment.github.io/RxODE/
RoxygenNote 7.0.2
Biarch true

LinkingTo dparser(>= 0.1.8), Repp (>= 0.12.3), RcppArmadillo(>=
0.9.300.2.0), PreciseSums (>= 0.3)

Encoding UTF-8
LazyData true
Language en-US

Author Matthew L. Fidler [aut] (<https://orcid.org/0000-0001-8538-6691>),
Melissa Hallow [aut],
Wenping Wang [aut, cre],
Zufar Mulyukov [ctb],
Justin Wilkins [ctb] (<https://orcid.org/0000-0002-7099-9396>),
Simon Frost [ctb],

Goro Fuji [ctb],
Morwenn [ctb],

Heng Li [ctb],

Yu Feng [ctb],

Alan Hindmarsh [ctb],
Linda Petzold [ctb],
Ernst Hairer [ctb],
Gerhard Wanner [ctb],
J Colinge [ctb],
Hadley Wickham [ctb],
G Grothendieck [ctb],
Robert Gentleman [ctb],
Daniel C. Dillon [ctb],
Ross Thaka [ctb],
Cleve Moler [ctb],
Jack Dongarra [ctb],

R core team [cph]

Repository CRAN
Date/Publication 2020-03-13 07:10:14 UTC

R topics documented:

clearPipe 4
axFindPow e 5
IXRmPrint . . . L L e 6
JXRMSens e e e 7
axSymPyJacobian L. oL 7
axWinRtoolsPath 8
setWarnldSort . . . L L L L e 8
add.dosing 9

add.sampling 11

https://nlmixrdevelopment.github.io/RxODE/

R topics documented: 3

as.data.tablerxEt L e 14
AS.L . . . e e e e e e e e e e e 14
as_tibble.rxEt 15
coef.RXODE e 15
CVPOSt . . L e e e e e e 16
< 17
etExpand 21
etRbind e e e 22
etRep e 25
BESEq . . . e e 28
eventTable e e e e 30
forderForceBase e e e 33
genShinyApp.template L 34
guide_NOne e 35
ISIXEL . . o e e e e 36
ISIXSOIVE e e e e 36
pillar_shaft 37
pillar_shaftrxRateDur 37
print.rxCoefSolve L 38
printRXODE 38
rnvehisq o . 39
rxAddReturn L 39
rxAllowUnload e 40
rXAssignPtr 40
IXCL4 . e e 41
rxChain e 41
rxClean e e e 42
rxCompile e 42
rxControl L e 44
IXCOIES . . . o o o o e e e e e 52
rxDelete e 53
rxDIdy . . . e e e 53
rxXEvid . .. e e 54
rxFoExpandEta L 55
rxGetRXODE e 55
rxHtml . . . e 56
rxInv . . e e 56
rxISCurrent e e 57
rXLhs . . o e 57
rxLock e e 58
IXNOITIL o o e e e e e e e e e e e 58
RXODE e e e e 59
rXOptEXpr e e 64
IXOPLIONS o o e e e 64
rxParams L L e 65
rXPermissive L e 68
rxProgress 69

rxRateDur e 70

4 .clearPipe
rxSetlniO L L 70
rxSetProd 71
rxSetProgressBar oL 72
TXSEtSUM L o e e e 72
rxShiny L 73
rxSimThetaOmega 74
rXStack . ..o 76
IXSEALE . . . o o o e 76
rxSumProdModel 77
rxSymInvChol e 78
rxSymPyFix e e 79
rxSymPySensitivity L Lo 79
rxSymPyVersiono 80
rXSyncOpHONS o o o e e e e e e e 81
rxTempDir o 81
rxTrans oL e 81
rxUnloadAll o o 83
TXUSE . . o o 83
rxUseRadixSort e 84
rxValidate L e 84
rxWinPythonSetup L 85
rxWInSetup 85
summary.RXODE 86
tibble e 86

Index 88

.clearPipe Clear/Set pipeline

Description

Clear/Set pipeline
Usage

.clearPipe(

x = NULL,

inits = NULL,
events = NULL,
params = NULL,
iCov = NULL,
keep = NULL,
thetaMat = NULL,
omega = NULL,
sigma
dfObs
dfSub

NULL,
NULL,
NULL,

.rxFindPow

nSub = NULL,
nStud = NULL
)
Arguments

rx RxODE object

inits a vector of initial values of the state variables (e.g., amounts in each compart-
ment), and the order in this vector must be the same as the state variables (e.g.,
PK/PD compartments);

events an eventTable object describing the input (e.g., doses) to the dynamic system
and observation sampling time points (see eventTable);

params a numeric named vector with values for every parameter in the ODE system; the
names must correspond to the parameter identifiers used in the ODE specifica-
tion;

iCov A data frame of individual non-time varying covariates to combine with the
params to form a parameter data.frame.

keep Columns to keep from either the input dataset or the iCov dataset. With the iCov
dataset, the column is kept once per line. For the input dataset, if any records
are added to the data LOCF (Last Observation Carried forward) imputation is
performed.

thetaMat Named theta matrix.

omega Estimate of Covariance matrix. When omega is a list, assume it is a block matrix
and convert it to a full matrix for simulations.

sigma Named sigma covariance or Cholesky decomposition of a covariance matrix.
The names of the columns indicate parameters that are simulated. These are
simulated for every observation in the solved system.

dfObs Degrees of freedom to sample the unexplained variability matrix from the in-
verse Wishart distribution (scaled) or scaled inverse chi squared distribution.

dfSub Degrees of freedom to sample the between subject variability matrix from the
inverse Wishart distribution (scaled) or scaled inverse chi squared distribution.

nSub Number between subject variabilities (ETAs) simulated for every realization of
the parameters.

nStud Number virtual studies to characterize uncertainty in estimated parameters.

.rxFindPow Find power THETAs for appropriate scaling
Description

Find power THETAs for appropriate scaling

Usage

.rxFindPow(x)

Arguments

X RxODE model that can be access by rxNorm

Value

THETA numbers of xtheta

Author(s)

Matthew L. Fidler

.IXxRmPrint

.rxRmPrint Remove print statements

Description

Remove print statements

Usage

.rXRmPrint(x)

Arguments

X RxODE lines to remove

Value

RxODE with print lines removed.

Author(s)

Matthew L. Fidler

.rxRmSens

.rxkRmSens Remove sensitivity equations

Description

Remove sensitivity equations

Usage

.rxRmSens(x)

Arguments

X RxODE lines to remove

Value

Lines with d/dt(rx_sens_...._) removed.

Author(s)
Matthew L. Fidler

.rxSymPyJacobian Calculate the full Jacobian for a model

Description

This expand the model to calculate the Jacobian. This requires rSymPy.

Usage
.rxSymPyJacobian(model)

Arguments

model RxODE family of objects

Value

RxODE syntax for model with Jacobian specified.

Author(s)
Matthew L. Fidler

8 .setWarnldSort

.rxWinRtoolsPath Setup Rtools path

Description

Setup Rtools path

Usage
.rxWinRtoolsPath(rm.rtools = TRUE, rm.python = TRUE, retry = FALSE)

Arguments

rm.rtools Remove the Rtools from the current path specs.

rm.python Remove Python from the current path specs.

retry Should you retry to find Rtools? If NA, don’t throw an error if it isn’t found.
Author(s)

Matthew L. Fidler

.setWarnIdSort Turn on/off warnings for ID sorting.

Description

Turn on/off warnings for ID sorting.

Usage

.setWarnIdSort(warnIdSort = TRUE)

Arguments

warnIdSort Boolean for if the sorting warning is turned on or off.

Value

Nothing

Author(s)
Matthew Fidler

add.dosing 9

add.dosing Add dosing to eventTable

Description

This adds a dosing event to the event table. This is provided for piping syntax through magrittr

Usage

add.dosing(
eventTable,
dose,
nbr.doses = 1L,
dosing.interval = 24,
dosing.to = 1L,
rate = NULL,
amount.units = NA_character_,
start.time = 0,
do.sampling = FALSE,
time.units = NA_character_,

)
Arguments
eventTable eventTable object
dose numeric scalar, dose amount in amount.units;
nbr.doses integer, number of doses;

dosing.interval

required numeric scalar, time between doses in time.units, defaults to 24 of
time.units="hours";

dosing.to integer, compartment the dose goes into (first compartment by default);
rate for infusions, the rate of infusion (default is NULL, for bolus dosing;

amount.units optional string indicating the dosing units. Defaults to NA to indicate as per the
original EventTable definition.

start.time required dosing start time;

do.sampling logical, should observation sampling records be added at the dosing times? De-
faults to FALSE.

time.units optional string indicating the time units. Defaults to "hours” to indicate as per
the original EventTable definition.

Other parameters passed to et.

Value

eventTable with updated dosing (note the event table will be updated anyway)

10 add.dosing

Author(s)

Matthew L. Fidler
Matthew L Fidler, Wenping Wang

References

Wang W, Hallow K, James D (2015). "A Tutorial on RxODE: Simulating Differential Equation
Pharmacometric Models in R." CPT: Pharmacometrics \& Systems Pharmacology, 5(1), 3-10. ISSN
2163-8306, <URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728294/>.

See Also

eventTable, add. sampling, add.dosing, et, etRep, etRbind, RxODE
Examples

Model from RxODE tutorial
mod1 <-RxODE ({
KA=2.94E-01;
CL=1.86E+01;
V2=4.02E+01;
Q=1.05E+01;
V3=2.97E+02;
Kin=1;
Kout=1;
EC50=200;
C2 = centr/V2;
C3 = peri/V3;
d/dt(depot) =-KAxdepot;
d/dt(centr) = KA*depot - CL*C2 - QxC2 + Q*C3;
d/dt(peri) = Q*C2 - Q*C3;
d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;
DH

These are making the more complex regimens of the RxODE tutorial
bid for 5 days
bid <- et(timeUnits="hr") %>%
et(amt=10000,ii=12,until=set_units(5, "days"))
qd for 5 days
qd <- et(timeUnits="hr") %>%
et (amt=20000,ii=24,until=set_units(5, "days"))
bid for 5 days followed by qd for 5 days
et <- seq(bid,qd) %>% et(seq(@,11x24,length.out=100));

bidQd <- rxSolve(modl, et)

add.sampling 11

plot(bidQd, C2)

Now Infusion for 5 days followed by oral for 5 days
note you can dose to a named compartment instead of using the compartment number
infusion <- et(timeUnits = "hr") %>%
et (amt=10000, rate=5000, ii=24, until=set_units(5, "days"), cmt="centr")
qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(5, "days"), cmt="depot")
et <- seq(infusion,qd)
infusionQd <- rxSolve(mod1, et)
plot(infusionQd, C2)
2wk-on, Twk-off
qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")

et <- seq(qd, set_units(1,"weeks"), qd) %>%
add. sampling(set_units(seq(@, 5.5,by=0.005),weeks))

wkOnOff <- rxSolve(modl, et)

plot(wkOnOff, C2)

You can also repeat the cycle easily with the rep function

qd <-et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")

et <- etRep(qd, times=4, wait=set_units(1,"weeks")) %>%
add.sampling(set_units(seq(@, 12.5,by=0.005),weeks))

repCycle4 <- rxSolve(modl, et)

plot(repCycle4, C2)

add.sampling Add sampling to eventTable

Description

This adds a dosing event to the event table. This is provided for piping syntax through magrittr

12 add.sampling

Usage

add.sampling(eventTable, time, time.units = NA)

Arguments
eventTable An eventTable object
time a vector of time values (in time.units).
time.units an optional string specifying the time units. Defaults to the units specified when
the EventTable was initialized.
Value

eventTable with updated sampling. (Note the event table will be updated even if you don’t reassign
the eventTable)

Author(s)
Matthew L Fidler, Wenping Wang

References

Wang W, Hallow K, James D (2015). "A Tutorial on RxODE: Simulating Differential Equation
Pharmacometric Models in R." CPT: Pharmacometrics \& Systems Pharmacology, 5(1), 3-10. ISSN
2163-8306, <URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728294/>.

See Also

eventTable, add. sampling, add.dosing, et, etRep, etRbind, RxODE

Examples

Model from RxODE tutorial
mod1 <-RxODE ({
KA=2.94E-01;
CL=1.86E+01;
V2=4.02E+01;
Q=1.05E+01;
V3=2.97E+02;
Kin=1;
Kout=1;
EC50=200;
C2 = centr/V2;
C3 = peri/Vs;
d/dt(depot) =-KAxdepot;
d/dt(centr) = KAxdepot - CL*C2 - QxC2 + Q%C3;
d/dt(peri) = Q*C2 - Q*C3;
d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;
D

add.sampling 13

These are making the more complex regimens of the RxODE tutorial
bid for 5 days
bid <- et(timeUnits="hr") %>%
et(amt=10000,ii=12,until=set_units(5, "days"))
gd for 5 days
qd <- et(timeUnits="hr") %>%
et(amt=20000,ii=24,until=set_units(5, "days"))
bid for 5 days followed by qd for 5 days
et <- seq(bid,qd) %>% et(seq(@,11%x24,length.out=100));
bidQd <- rxSolve(modl, et)

plot(bidQd, C2)

Now Infusion for 5 days followed by oral for 5 days
note you can dose to a named compartment instead of using the compartment number
infusion <- et(timeUnits = "hr") %>%
et(amt=10000, rate=5000, ii=24, until=set_units(5, "days"”), cmt="centr")
qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(5, "days"), cmt="depot")
et <- seq(infusion,qd)
infusionQd <- rxSolve(mod1, et)
plot(infusionQd, C2)
2wk-on, Twk-off
qd <- et(timeUnits = "hr") %>% et (amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")

et <- seq(qd, set_units(1,"weeks"), qd) %>%
add.sampling(set_units(seq(@, 5.5,by=0.005),weeks))

wkOnOff <- rxSolve(modl, et)

plot(wkOnOff, C2)

You can also repeat the cycle easily with the rep function

qd <-et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")

et <- etRep(qd, times=4, wait=set_units(1,"weeks")) %>%
add.sampling(set_units(seq(@, 12.5,by=0.005),weeks))

repCycle4 <- rxSolve(modl, et)

14 as.et

plot(repCycle4, C2)

as.data.table.rxEt Convert an event table to a data.table

Description

Convert an event table to a data.table

Usage

as.data.table.rxEt(x, keep.rownames = FALSE, ...)
Arguments

X An R object.

keep.rownames Default is FALSE. If TRUE, adds the input object’s names as a separate column
named "rn". keep.rownames = "id" names the column "id" instead.

Additional arguments to be passed to or from other methods.

as.et Coerce object to data.frame

Description

Coerce object to data.frame

Usage

as.et(x, ...)

Default S3 method:
as.et(x, ...)

Arguments

X Object to coerce to et.

Other parameters

as_tibble.rxEt

as_tibble.rxEt Convert to tbl

Description

Convert to tbl

Usage
as_tibble.rxEt(x, ...)
as.tbl.rxEt(x, ...)

Arguments

X RxODE event table

Other arguments to as. tbl

Value

tibble

coef.RxODE Return the RxODE coefficients

Description

This returns the parameters , state variables

Usage

S3 method for class 'RxODE'
coef(object, ...)

S3 method for class 'RxCompilationManager
coef(...)

S3 method for class 'solveRxODE'
coef(object, ...)

S3 method for class 'rxD11'
coef(...)

16 cvPost

Arguments
object is an RxODE object
ignored arguments
Value

a rxCoef object with the following

params is a list of strings for parameters for the RxXODE object
state is a list of strings for the names of each state in the RxODE object.
ini is the model specified default values for the parameters.
RxODE is the referring RxODE object
Author(s)
Matthew L.Fidler
cvPost Sample a covariance Matrix from the Posterior Inverse Wishart distri-
bution.
Description

Note this Inverse wishart rescaled to match the original scale of the covariance matrix.

Usage

cvPost(nu, omega, n = 1L, omegalsChol = FALSE, returnChol = FALSE)

Arguments
nu Degrees of Freedom (Number of Observations) for covariance matrix simula-
tion.
omega Estimate of Covariance matrix.
n Number of Matrices to sample. By default this is 1.
omegalsChol is an indicator of if the omega matrix is in the Cholesky decomposition.
returnChol Return the Cholesky decomposition of the covariance matrix sample.
Details

If your covariance matrix is a 1x1 matrix, this uses an scaled inverse chi-squared which is equivalent
to the Inverse Wishart distribution in the uni-directional case.

Value

a matrix (n=1) or a list of matrices (n > 1)

et

Author(s)
Matthew L.Fidler & Wenping Wang

Examples

Sample a single covariance.
drawl <- cvPost(3, matrix(c(1,.3,.3,1),2,2))

Sample 3 covariances
set.seed(42)
draw3 <- cvPost(3, matrix(c(1,.3,.3,1),2,2), n=3)

Sample 3 covariances, but return the cholesky decomposition
set.seed(42)
draw3c <- cvPost(3, matrix(c(1,.3,.3,1),2,2), n=3, returnChol=TRUE)

et Event Table Function

Description

Event Table Function

Usage

et(x, ..., envir = parent.frame())

S3 method for class 'RxODE'
et(x, ..., envir = parent.frame())

S3 method for class 'rxSolve'
et(x, ..., envir = parent.frame())

S3 method for class 'rxParams'
et(x, ..., envir = parent.frame())

Default S3 method:
et(

X,

time,

amt,

evid,

cmt,

ii,

addl,

ss,

18

rate,

dur,

until,

id,
amountUnits,
timeUnits,
addSampling,

et

envir = parent.frame(),

by = NULL,

length.out = NULL

Arguments

X

envir

time

amt

evid

cmt

ii

addl

SS

This is the first argument supplied to the event table. This is named to allow et
to be used in a pipe-line with arbitrary objects.

Times or event tables. They can also be one of the named arguments below.

the environment in which expr is to be evaluated. May also be NULL, a list, a
data frame, a pairlist or an integer as specified to sys.call.

Time is the time of the dose or the sampling times. This can also be unspecified
and is determined by the object type (list or numeric/integer).

Amount of the dose. If specified, this assumes a dosing record, instead of a
sampling record.

Event ID; This can be:

* 0 An observation. This can also be specified as evid=obs
* 1 A dose observation. This can also be specified as evid=dose
* 2 A non-dose event. This can also be specified as evid=other.

* 3 Areset event. A reset event resets all the compartment values to zero and
turns off all infusions. This can also be specified as evid=reset.

* 4 Dose and reset event. This can also be specified as evid=doseReset or
evid=resetDose

Compartment name or number. If a number, this is an integer starting at 1. Neg-
ative compartments are not supported (there is no way to turn off a compartment
currently). If the compartment is a name, the compartment name is changed to
the correct state/compartment number before running the simulation.

Can also specify cmt as dosing. to, dose. to, doseTo, dosingTo, and state.

When specifying a dose, this is the inter-dose interval for ss, addl and until
options (described below).

The number of additional doses at a inter-dose interval after one dose.
Steady state flag; It can be one of:

0 This dose is not a steady state dose

* 1 This dose is a steady state dose with the between/inter dose interval of ii

et

rate

dur

until

id

amountUnits

timeUnits

addSampling

by

length.out

Value

A new event table

Author(s)

19

» 2 This is a steady state dose that uses the super-position principle to allow
more complex steady states, like 10 mg in the morning and 20 mg at night,
or dosing at 8 am 12 pm and 8 pm instead of every 12 hours. Since it uses
the super positioning principle, it only makes sense when you know the
kinetics are linear.

All other values of SS are currently invalid.
When positive, this is the rate of infusion. Otherwise:

¢ 0 No infusion is on this record.
* -1 Rate of this record is modeled by rate(cmt) = in the RxODE model.
You may also specify type or rate by rate=model

* -2 Duration of this record is modeled by dur (cmt) = in the RxODE model.
You may also specify this type of rate by dur=model or rate=dur.

When a modeled bioavailability is applied to positive rates (rate > 0), the dura-
tion of infusion is changed. This is because the data specify the rate and amount,
the only think ghat modeled bioavailability can affect is duration.

If instead you want the modeled bioavailability to increase the rate of infusion
instead of the duration of infusion, specify the dur instead or model the duration
with rate=2.

Duration of infusion. When amt and dur are specified the rate is calculated from
the two data items. When dur is specified instead of rate, the bioavailability
changes will increase rate instead of duration.

This is the time until the dosing should end. It can be an easier way to figure out
how many additional doses are needed over your sampling period.

A integer vector of IDs to add or remove from the event table. If the event table
is identical for each ID, then you may expand it to include all the IDs in this
vector. All the negative IDs in this vector will be removed.

The units for the dosing records (amt)
The units for the time records (time)

This is a boolean indicating if a sampling time should be added at the same time
as a dosing time. By default this is FALSE.

‘When there are no observations in the event table, this is the amount to increment
for the observations between from and to.

The number of observations to create if there isn’t any observations in the event
table. By default this is 200.

Matthew L Fidler, Wenping Wang

20 et

References

Wang W, Hallow K, James D (2015). "A Tutorial on RXODE: Simulating Differential Equation
Pharmacometric Models in R." CPT: Pharmacometrics \& Systems Pharmacology, 5(1), 3-10. ISSN
2163-8306, <URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728294/>.

See Also

eventTable, add. sampling, add.dosing, et, etRep, etRbind, RxODE
Examples

Model from RxODE tutorial
mod1 <-RxODE ({
KA=2.94E-01;
CL=1.86E+01;
V2=4.02E+01;
Q=1.05E+01;
V3=2.97E+02;
Kin=1;
Kout=1;
EC50=200;
C2 = centr/V2;
C3 = peri/V3;
d/dt(depot) =-KAxdepot;
d/dt(centr) = KA*depot - CL*C2 - QxC2 + Qx*C3;
d/dt(peri) = Q*C2 - Q*C3;
d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;
s

These are making the more complex regimens of the RxODE tutorial
bid for 5 days
bid <- et(timeUnits="hr") %>%
et(amt=10000,ii=12,until=set_units(5, "days"))
qd for 5 days
qd <- et(timeUnits="hr") %>%
et (amt=20000,ii=24,until=set_units(5, "days"))
bid for 5 days followed by qd for 5 days
et <- seq(bid,qd) %>% et(seq(@,11x24,length.out=100));
bidQd <- rxSolve(modl, et)

plot(bidQd, C2)

Now Infusion for 5 days followed by oral for 5 days

note you can dose to a named compartment instead of using the compartment number

etExpand 21

infusion <- et(timeUnits = "hr") %>%
et (amt=10000, rate=5000, ii=24, until=set_units(5, "days"), cmt="centr")
qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(5, "days"), cmt="depot")
et <- seq(infusion,qd)
infusionQd <- rxSolve(mod1, et)
plot(infusionQd, C2)
2wk-on, Twk-off
qd <- et(timeUnits = "hr") %>% et (amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")

et <- seq(qd, set_units(1,"weeks"), qd) %>%
add. sampling(set_units(seq(@, 5.5,by=0.005),weeks))

wkOnOff <- rxSolve(modl, et)

plot(wkOnOff, C2)

You can also repeat the cycle easily with the rep function

qd <-et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")

et <- etRep(qd, times=4, wait=set_units(1,"weeks")) %>%
add.sampling(set_units(seq(@, 12.5,by=0.005),weeks))

repCycle4 <- rxSolve(modl, et)

plot(repCycle4, C2)

etExpand Expand additional doses

Description

Expand additional doses

Usage

etExpand(et)

Arguments

et Event table to expand additional doses for.

22 etRbind

Value

New event table with ‘addl‘ doses expanded

Author(s)
Matthew Fidler

Examples

ev <- et(amt=3,ii=24,until=240);

print(ev)

etExpand(ev) # expands event table, but doesn't modify it
print(ev)

ev$expand() ## Expands the current event table and saves it in ev

etRbind Combining event tables

Description

Combining event tables

Usage
etRbind(
samples = c("use”, "clear"),
waitIl = c("smart”, "+ii"),
id = c("merge”, "unique")
)
S3 method for class 'rxEt'
rbind(..., deparse.level = 1)
Arguments

The event tables and optionally time between event tables, called waiting times
in this help document.

samples How to handle samples when repeating an event table. The options are:

¢ "clear" Clear sampling records before combining the datasets
* "use" Use the sampling records when combining the datasets

waitlII This determines how waiting times between events are handled. The options
are:

etRbind 23

e "smart” This "smart" handling of waiting times is the default option. In
this case, if the waiting time is above the last observed inter-dose interval
in the first combined event table, then the actual time between doses is
given by the wait time. If it is smaller than the last observed inter-dose
interval, the time between event tables is given by the inter-dose interval +
the waiting time between event tables.

e "+11" In this case, the wait time is added to the inter-dose interval no matter
the length of the wait time or inter-dose interval
id This is how rbind will handle IDs. There are two different types of options:
* merge with id="merge", the IDs are merged together, overlapping IDs
would be merged into a single event table.
* unique with id="unique”, the IDs will be renumbered so that the IDs in all
the event tables are not overlapping.

deparse.level The deparse.level of a traditional rbind is ignored.

Value

An event table

Author(s)

Matthew L Fidler
Matthew L Fidler, Wenping Wang

References

Wang W, Hallow K, James D (2015). "A Tutorial on RxODE: Simulating Differential Equation
Pharmacometric Models in R." CPT: Pharmacometrics \& Systems Pharmacology, 5(1), 3-10. ISSN
2163-8306, <URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728294/>.

See Also

eventTable, add. sampling, add.dosing, et, etRep, etRbind, RxODE

Examples

Model from RxODE tutorial
mod1 <-RxODE ({
KA=2.94E-01;
CL=1.86E+01;
V2=4.02E+01;
Q=1.05E+01;
V3=2.97E+02;
Kin=1;
Kout=1;
EC50=200;
C2 = centr/V2;
C3 = peri/Vs;

24

etRbind

d/dt(depot) =-KAxdepot;

d/dt(centr) KAxdepot - CL*C2 - Q*C2 + Q*C3;
d/dt(peri) Q*C2 - Q*C3;
d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;

s

These are making the more complex regimens of the RxODE tutorial
bid for 5 days
bid <- et(timeUnits="hr") %>%

et(amt=10000,ii=12,until=set_units(5, "days"))
gd for 5 days
qd <- et(timeUnits="hr") %>%

et (amt=20000,1ii=24,until=set_units(5, "days"))

bid for 5 days followed by qd for 5 days
et <- seq(bid,qd) %>% et(seq(@,11%x24,length.out=100));
bidQd <- rxSolve(modl, et)

plot(bidQd, C2)

Now Infusion for 5 days followed by oral for 5 days
note you can dose to a named compartment instead of using the compartment number
infusion <- et(timeUnits = "hr") %>%
et(amt=10000, rate=5000, ii=24, until=set_units(5, "days"”), cmt="centr")
qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(5, "days"), cmt="depot")
et <- seq(infusion,qd)
infusionQd <- rxSolve(mod1, et)
plot(infusionQd, C2)
2wk-on, Twk-off
qd <- et(timeUnits = "hr") %>% et (amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")

et <- seq(qd, set_units(1,"weeks"), qd) %>%
add.sampling(set_units(seq(@, 5.5,by=0.005),weeks))

wkOnOff <- rxSolve(modl, et)
plot(wkOnOff, C2)

You can also repeat the cycle easily with the rep function

etRep

qd <-et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2,

et <- etRep(qd, times=4, wait=set_units(1,"weeks")) %>%
add.sampling(set_units(seq(@, 12.5,by=0.005),weeks))

repCycle4 <- rxSolve(modl, et)

plot(repCycle4, C2)

25

"weeks"), cmt="depot")

etRep Repeat an RxODE event table

Description

Repeat an RxODE event table

Usage
etRep(
X ’
times = 1,
length.out = NA,
each = NA,
n = NULL,
wait = 0,
id = integer(0),
samples = c("clear”, "use"),
waitIl = c("smart”, "+ii"),
ii = 24
)
S3 method for class 'rxEt'
rep(x, ...)
Arguments
X An RxODE event table
times Number of times to repeat the event table
length.out Invalid with RxODE event tables, will throw an error if used.
each Invalid with RxODE event tables, will throw an error if used.
n The number of times to repeat the event table. Overrides times.
wait Waiting time between each repeated event table. By default there is no waiting,

or wait=0

26 etRep

id A integer vector of IDs to add or remove from the event table. If the event table
is identical for each ID, then you may expand it to include all the IDs in this
vector. All the negative IDs in this vector will be removed.

samples How to handle samples when repeating an event table. The options are:

¢ "clear" Clear sampling records before combining the datasets
* "use" Use the sampling records when combining the datasets

waitlIl This determines how waiting times between events are handled. The options
are:

e "smart” This "smart" handling of waiting times is the default option. In
this case, if the waiting time is above the last observed inter-dose interval
in the first combined event table, then the actual time between doses is
given by the wait time. If it is smaller than the last observed inter-dose
interval, the time between event tables is given by the inter-dose interval +
the waiting time between event tables.

e "+ii" In this case, the wait time is added to the inter-dose interval no matter
the length of the wait time or inter-dose interval

ii When specifying a dose, this is the inter-dose interval for ss, add1l and until
options (described below).

Times or event tables. They can also be one of the named arguments below.

Author(s)
Matthew L Fidler, Wenping Wang

References

Wang W, Hallow K, James D (2015). "A Tutorial on RxODE: Simulating Differential Equation
Pharmacometric Models in R." CPT: Pharmacometrics \& Systems Pharmacology, 5(1), 3-10. ISSN
2163-8306, <URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728294/>.

See Also

eventTable, add.sampling, add.dosing, et, etRep, etRbind, RxODE

Examples

Model from RxODE tutorial
mod1 <-RxODE ({
KA=2.94E-01;
CL=1.86E+01;
V2=4.02E+01;
Q=1.05E+01;
V3=2.97E+02;
Kin=1;
Kout=1;
EC50=200;
C2 = centr/V2;

etRep 27

C3 = peri/V3;
d/dt(depot) =-KAxdepot;
d/dt(centr) = KA*depot - CL*C2 - QxC2 + Q*C3;
d/dt(peri) = QxC2 - Q*C3;
d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;
D
These are making the more complex regimens of the RxODE tutorial
bid for 5 days
bid <- et(timeUnits="hr") %>%
et(amt=10000,ii=12,until=set_units(5, "days"))
qd for 5 days
qd <- et(timeUnits="hr") %>%
et (amt=20000,1ii=24,until=set_units(5, "days"))
bid for 5 days followed by qd for 5 days
et <- seq(bid,qd) %>% et(seq(@,11x24,length.out=100));
bidQd <- rxSolve(modl, et)

plot(bidQd, C2)

Now Infusion for 5 days followed by oral for 5 days
note you can dose to a named compartment instead of using the compartment number
infusion <- et(timeUnits = "hr") %>%
et (amt=10000, rate=5000, ii=24, until=set_units(5, "days"), cmt="centr")
qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(5, "days"), cmt="depot")
et <- seq(infusion,qd)
infusionQd <- rxSolve(mod1l, et)
plot(infusionQd, C2)
2wk-on, Twk-off
qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")

et <- seq(qd, set_units(1,"weeks"), qd) %>%
add.sampling(set_units(seq(@, 5.5,by=0.005),weeks))

wkOnOff <- rxSolve(modl, et)
plot(wkOnOff, C2)

You can also repeat the cycle easily with the rep function

28 etSeq

qd <-et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")

et <- etRep(qd, times=4, wait=set_units(1,"weeks")) %>%
add.sampling(set_units(seq(@, 12.5,by=0.005),weeks))

repCycle4 <- rxSolve(modl, et)

plot(repCycle4, C2)

etSeq Sequence of event tables

Description

This combines a sequence of event tables.

Usage

etSeq(..., samples = c("clear”, "use"), waitlIl = c("smart”, "+ii"), ii = 24)

S3 method for class 'rxEt'
seq(...)

Arguments

The event tables and optionally time between event tables, called waiting times
in this help document.

samples How to handle samples when repeating an event table. The options are:

* "clear" Clear sampling records before combining the datasets
* "use" Use the sampling records when combining the datasets

waitIl This determines how waiting times between events are handled. The options
are:

e "smart” This "smart" handling of waiting times is the default option. In
this case, if the waiting time is above the last observed inter-dose interval
in the first combined event table, then the actual time between doses is
given by the wait time. If it is smaller than the last observed inter-dose
interval, the time between event tables is given by the inter-dose interval +
the waiting time between event tables.

e "+i1" In this case, the wait time is added to the inter-dose interval no matter
the length of the wait time or inter-dose interval

ii If there was no inter-dose intervals found in the event table, assume that the
interdose interval is given by this ii value. By default this is 24.

etSeq 29

Details

This sequences all the event tables in added in the argument list By default when combining
the event tables the offset is at least by the last inter-dose interval in the prior event table (or ii). If
you separate any of the event tables by a number, the event tables will be separated at least the wait
time defined by that number or the last inter-dose interval.

Author(s)
Matthew L Fidler, Wenping Wang

References

Wang W, Hallow K, James D (2015). "A Tutorial on RxODE: Simulating Differential Equation
Pharmacometric Models in R." CPT: Pharmacometrics \& Systems Pharmacology, 5(1), 3-10. ISSN
2163-8306, <URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728294/>.

See Also

eventTable, add.sampling, add.dosing, et, etRep, etRbind, RxODE

Examples

Model from RxODE tutorial
mod1 <-RxODE ({
KA=2.94E-01;
CL=1.86E+01;
V2=4.02E+01;
Q=1.05E+01;
V3=2.97E+02;
Kin=1;
Kout=1;
EC50=200;
C2 = centr/V2;
C3 = peri/Vs;
d/dt(depot) =-KAxdepot;
d/dt(centr) = KAxdepot - CL*C2 - QxC2 + Qx%C3;
d/dt(peri) Q*C2 - Q*C3;
d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;
DH

These are making the more complex regimens of the RxODE tutorial

bid for 5 days
bid <- et(timeUnits="hr") %>%
et(amt=10000,ii=12,until=set_units(5, "days"))

qd for 5 days
qd <- et(timeUnits="hr") %>%
et(amt=20000,1i=24,until=set_units(5, "days"))

30

eventTable

bid for 5 days followed by qd for 5 days
et <- seq(bid,qd) %>% et(seq(@,11x24,length.out=100));
bidQd <- rxSolve(modl, et)

plot(bidQd, C2)

Now Infusion for 5 days followed by oral for 5 days
note you can dose to a named compartment instead of using the compartment number
infusion <- et(timeUnits = "hr") %>%
et(amt=10000, rate=5000, ii=24, until=set_units(5, "days"”), cmt="centr")
qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(5, "days"), cmt="depot")
et <- seq(infusion,qd)
infusionQd <- rxSolve(mod1, et)
plot(infusionQd, C2)
2wk-on, Twk-off
qd <- et(timeUnits = "hr") %>% et (amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")

et <- seq(qd, set_units(1,"weeks"), qd) %>%
add. sampling(set_units(seq(@, 5.5,by=0.005),weeks))

wkOnOff <- rxSolve(modl, et)

plot(wkOnOff, C2)

You can also repeat the cycle easily with the rep function

qd <-et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")

et <- etRep(qd, times=4, wait=set_units(1,"weeks")) %>%
add.sampling(set_units(seq(@, 12.5,by=0.005),weeks))

repCycle4 <- rxSolve(modl, et)

plot(repCycle4, C2)

eventTable Create an event table object

eventTable 31

Description

Initializes an object of class ‘EventTable’ with methods for adding and querying dosing and obser-
vation records

Usage

eventTable(amount.units = NA, time.units = NA)

Arguments

amount.units string denoting the amount dosing units, e.g., “mg”, “ug”. Default to NA to
denote unspecified units. It could also be a solved RxODE object. In that case,
eventTable(obj) returns the eventTable that was used to solve the RxODE object.
time.units string denoting the time units, e.g., “hours”, “days”. Default to "hours".
An eventTable is an object that consists of a data.frame storing ordered time-

stamped events of an (unspecified) PK/PD dynamic system, units (strings) for
dosing and time records, plus a list of functions to add and extract event records.

Currently, events can be of two types: dosing events that represent inputs to the
system and sampling time events that represent observations of the system with
‘amount.units’ and ‘time.units’, respectively. In the future, additional events
may include resetting of state variables (compartments), for instance, to indicate
time after “wash-out”, etc.

Value

A modified data.frame with the following accessible functions:

get.EventTable returns the current event table.

add.dosing adds dosing records to the event table.
Its arguments are
dose: numeric scalar, dose amount in amount.units;
nbr.doses: integer, number of doses;

dosing.interval: required numeric scalar, time between doses in time.units,
defaults to 24 of time.units="hours";

dosing.to: integer, compartment the dose goes into (first compartment by de-
fault);

rate: for infusions, the rate of infusion (default is NULL, for bolus dosing;
start.time: required dosing start time;

do.sampling: logical, should observation sampling records be added at the
dosing times? Defaults to FALSE.

amount.units: optional string indicating the dosing units. Defaults to NA to
indicate as per the original EventTable definition.

time.units: optional string indicating the time units. Defaults to "hours” to
indicate as per the original EventTable definition.

get.dosing returns a data.frame of dosing records.

clear.dosing clears or deletes all dosing from event table

32 eventTable

add.sampling adds sampling time observation records to the event table. Its arguments are
time a vector of time values (in time.units).

time.units an optional string specifying the time units. Defaults to the units
specified when the EventTable was initialized.

get.sampling returns a data.frame of sampled observation records.

clear.sampling removes all sampling from event table.

get.obs.rec returns a logical vector indicating whether each event record represents an ob-
servation or not.

get.nobs returns the number of observation (not dosing) records.

get.units returns a two-element character vector with the dosing and time units, respec-
tively.

copy makes a copy of the current event table. To create a copy of an event table object

use qd2 <-qd$copy ().
expand Expands the event table for multi-subject solving. This is done by qd$expand(400)

for a 400 subject data expansion
Author(s)
Matthew Fidler, Melissa Hallow and Wenping Wang

See Also

et, RxODE

Examples

create dosing and observation (sampling) events
QD 50mg dosing, 5 days followed by 25mg 5 days

#

gd <- eventTable(amount.units = "mg"”, time.units = "days")

#

gd$add.dosing(dose=5@, nbr.doses=5, dosing.interval = 1, do.sampling=FALSE)
#

sample the system's drug amounts hourly the first day, then every 12 hours
for the next 4 days

gd$add.sampling(seq(from = @, to = 1, by = 1/24))
gd$add.sampling(seq(from = 1, to = 5, by = 12/24))

#

#print(qd$get.dosing()) # table of dosing records
print(qd$get.nobs()) # number of observation (not dosing) records
#

BID dosing, 5 days
bid <- eventTable("mg"”, "days”) # only dosing
bid$add.dosing(dose=10000, nbr.doses=2%5,

dosing.interval = 12, do.sampling=FALSE)
#
Use the copy() method to create a copy (clone) of an existing
event table (simple assignments just create a new reference to
the same event table object (closure)).

forderForceBase 33

#
bid.ext <- bid$copy() # three-day extension for a 2nd cohort
bid.ext$add.dosing(dose = 5000, nbr.doses = 2%3,

start.time = 120, dosing.interval = 12, do.sampling = FALSE)

You can also use the Piping operator to create a table

qd2 <- eventTable(amount.units="mg", time.units="days") %>%
add.dosing(dose=50, nbr.doses=5, dosing.interval=1, do.sampling=FALSE) %>%
add.sampling(seq(from=0, to=1, by=1 / 24)) %>%
add.sampling(seq(from=1, to=5, by=12 / 24))

#print(qd2$get.dosing()) # table of dosing records

print(qd2$get.nobs()) # number of observation (not dosing) records

Note that piping with %>% will update the original table.
qd3 <- qd2 %>% add.sampling(seq(from=5, to=10, by=6 / 24))

print(qd2$get.nobs())
print(qd3$get.nobs())

forderForceBase Force using base order for RxODE radix sorting

Description

Force using base order for RxODE radix sorting

Usage

forderForceBase(forceBase = FALSE)

Arguments
forceBase boolean indicating if RXODE should use R’s order for radix sorting instead of
data.table’s parallel radix sorting.
Examples
Not run:

forderForceBase(TRUE) # Use base ‘order® for RxODE sorts
forderForceBase(FALSE) # Use base ‘data.table‘ for RxODE sorts

End(Not run)

34 genShinyApp.template

genShinyApp.template Generate an example (template) of a dosing regimen shiny app

Description

Create a complete shiny application for exploring dosing regimens given a (hardcoded) PK/PD
model.

Usage

genShinyApp.template(
appDir = "shinyExample”,
verbose = TRUE,
ODE.config = list(ode = "model”, params = c(KA = 0.294), inits = c(eff = 1), method =
"lsoda”, atol = 1e-08, rtol = 1e-06)
)

write.template.server(appDir)
write.template.ui(appDir, statevars)

Arguments

appDir a string with a directory where to store the shiny app, by default is "shinyExample”.
The directory appDir will be created if it does not exist.

verbose logical specifying whether to write messages as the shiny app is generated. De-
faults to TRUE.

ODE.config model name compiled and list of parameters sent to rxSolve.
statevars List of statevars passed to to the write.template.ui function. This usually
isn’t called directly.

A PK/PD model is defined using RxODE, and a set of parameters and initial values
are defined. Then the appropriate R scripts for the shiny’s user interface ui.R
and the server logic server.R are created in the directory appDir.
The function evaluates the following PK/PD model by default:

C2 = centr/V2;

C3 = peri/V3;

d/dt(depot) =-KA*depot;

d/dt(centr) = KAxdepot - CL*C2 - Q*C2 + Q*C3;

d/dt(peri) = Q*C2 - QxC3;

d/dt(eff) = Kin - Koutx(1-C2/(EC50+C2))*eff;
This can be changed by the ODE . config parameter.
To launch the shiny app, simply issue the runApp (appDir) R command.

Value

None, these functions are used for their side effects.

guide_none

Note

35

These functions create a simple, but working example of a dosing regimen simulation web applica-
tion. Users may want to modify the code to experiment creating shiny applications for their specific

RxODE models.

See Also

RXODE,eventTable, and the package shiny (https://shiny.rstudio.com).

Examples

Not run:

create the shiny app example (template)
genShinyApp.template(appDir = "myapp”)
run the shiny app

runApp("myapp")

End(Not run)

guide_none

Empty Guide

Description

This empty guide draws nothing; It is included in RxODE for compatibility with ggplot 3.2

Usage

guide_none(title = waiver(), position = waiver())

Arguments

title

position

A character string or expression indicating a title of guide. If NULL, the title is
not shown. By default (waiver()), the name of the scale object or the name
specified in 1abs() is used for the title.

Where this guide should be drawn: one of top, bottom, left, or right.

https://shiny.rstudio.com

36

is.rxSolve

is.rxEt Check to see if this is an rxEt object.

Description

Check to see if this is an rxEt object.

Usage

is.rxEt(x)

Arguments

X object to check to see if it is rxEt

If this is an rxEt object that has expired strip all rxEt information.

Author(s)

Matthew L.Fidler

is.rxSolve Check to see if this is an rxSolve object.

Description

Check to see if this is an rxSolve object.

Usage

is.rxSolve(x)

Arguments
X object to check to see if it is rxSolve
If this is an rxSolve object that has expired strip all rxSolve information.
Author(s)

Matthew L.Fidler

pillar_shaft

pillar_shaft Re export of pillar_shaft

Description

Re export of pillar_shaft

Usage
pillar_shaft(x, ...)
Arguments
X A vector to format

Unused, for extensibility.

pillar_shaft.rxRateDur
Pillar shaft for rxRateDur

Description

Pillar shaft for rxRateDur

Usage

S3 method for class 'rxRateDur'
pillar_shaft(x, ...)

Arguments

X A vector to format

Unused, for extensibility.

38

print. RxODE

print.rxCoefSolve Print the rxCoefSolve object

Description

This prints out the user supplied arguments for the rxCoef object

Usage
S3 method for class 'rxCoefSolve'
print(x, ...)

Arguments

X rxCoefSolve object

Other (ignored) parameters.

Author(s)
Matthew L.Fidler

print.RxODE Print information about the RxODE object.

Description

This prints the model name and its status for being able to be solved

Usage
S3 method for class 'RxODE'
print(x, ...)
Arguments
X An rxode object
Ignored parameters
Author(s)

Matthew L.Fidler

rinvchisq

39

rinvchisq Scaled Inverse Chi Squared distribution

Description

Scaled Inverse Chi Squared distribution

Usage

rinvchisq(n = 1L, nu = 1, scale = 1)

Arguments

n Number of random samples

nu degrees of freedom of inverse chi square

scale Scale of inverse chi squared distribution (default is 1).
Value

a vector of inverse chi squared deviates .

Examples
rinvchisq(3, 4, 1) ## Scale = 1, degrees of freedom = 4
rinvchisq(2, 4, 2) ## Scale = 2, degrees of freedom = 4
rxAddReturn Add a return statement to a function.
Description
Add a return statement to a function.
Usage
rxAddReturn(fn, ret = TRUE)
Arguments
fn Function to deparse
ret boolean stating if a return statement will be added.
Value

Function with parens removed and add a return statement.

40 rxAssignPtr

Author(s)
Matthew L. Fidler

rxAllowUnload Allow unloading of dlls

Description

Allow unloading of dlls

Usage
rxAllowUnload(allow)

Arguments

allow boolean indicating if garbage collection will unload of RxODE dlls.

Author(s)
Matthew Fidler

Examples

Garbage collection will not unload un-used RxODE dlls
rxAllowUnload (FALSE);

Garbage collection will unload unused RxODE dlls
rxAllowUnload(TRUE);

rxAssignPtr Assign pointer based on model variables

Description

Assign pointer based on model variables

Usage

rxAssignPtr(object = NULL)

Arguments

object RxODE family of objects

rxCl14

41

rxC14 Setup C++14 support in windows (required for nlmixr)

Description

Setup C++14 support in windows (required for nlmixr)

Usage
rxC14()

Value

nothing

rxChain rxChain Chain or add item to solved system of equations

Description

Add item to solved system of equations

Usage
rxChain(obj1, obj2)

S3 method for class 'solveRxDI1'

obj1 + obj2
Arguments

obj1 Solved object.

obj2 New object to be added/piped/chained to solved object.
Value

When newObject is an event table, return a new solved object with the new event table.

Author(s)
Matthew L. Fidler

42 rxCompile

rxClean Cleanup anonymous DLLs by unloading them

Description

This cleans up any RxODE loaded DLLs

Usage

rxClean(wd)

Arguments

wd What directory should be cleaned; (DEPRECIATED), this no longer does any-
thing.
This unloads all RxODE anonymous dlls.
Value

TRUE if successful

Author(s)
Matthew L. Fidler

rxCompile Compile a model if needed

Description

This is the compilation workhorse creating the RxODE model DLL files.

Usage

rxCompile(

model,

dir,

prefix,

extraC = NULL,
force = FALSE,
modName = NULL,
package = NULL,

)

S3 method for class 'character'

rxCompile

rxCompile(
model,

dir = NULL,

43

prefix = NULL,
extraC = NULL,
FALSE,

force =
modName
package

)...

NULL,
NULL,

S3 method for class 'rxD1l1'
rxCompile(model, ...)

S3 method for class 'RxODE'
rxCompile(model, ...)

Arguments

model

dir

prefix

extraC

force

modName

package

This is the ODE model specification. It can be:

* a string containing the set of ordinary differential equations (ODE) and

other expressions defining the changes in the dynamic system.

* afile name where the ODE system equation is contained

* An ODE expression enclosed in { }
(see also the filename argument). For details, see the sections “Details” and
“RxODE Syntax” below.
This is the model directory where the C file will be stored for compiling.
If unspecified, the C code is stored in a temporary directory, then the model is
compiled and moved to the current directory. Afterwards the C code is removed.
If specified, the C code is stored in the specified directory and then compiled in
that directory. The C code is not removed after the DLL is created in the same
directory. This can be useful to debug the c-code outputs.

is a string indicating the prefix to use in the C based functions. If missing, it is
calculated based on file name, or md5 of parsed model.

Extra ¢ code to include in the model. This can be useful to specify functions in
the model. These C functions should usually take double precision arguments,
and return double precision values.

is a boolean stating if the (re)compile should be forced if RxODE detects that
the models are the same as already generated.

a string to be used as the model name. This string is used for naming various
aspects of the computations, including generating C symbol names, dynamic
libraries, etc. Therefore, it is necessary that modName consists of simple ASCII
alphanumeric characters starting with a letter.

Package name for pre-compiled binaries.

Other arguments sent to the rxTrans function.

44

Value

An rxDIl object that has the following components

rxControl

dll DLL path
model model specification
.C A function to call C code in the correct context from the DLL using the .C
function.
.call A function to call C code in the correct context from the DLL using the .Call
function.
args A list of the arguments used to create the rxDII object.
Author(s)
Matthew L.Fidler
See Also
RxODE
rxControl Solving \& Simulation of a ODE/solved system (and solving options)
equation
Description

This uses RxODE family of objects, file, or model specification to solve a ODE system.

Usage

rx

Control(
scale = NULL,

method = c(”liblsoda”, "lsoda", "dop853"),

transitAbs = NULL,

atol = 1e-08,

rtol = 1e-06,
maxsteps = 70000L,
hmin = oL,

hmax = NA,

hmaxSd = o,

hini = 9,

maxordn = 12L,
maxords = 5L,

L

cores,

covsInterpolation = c("locf"”, "linear"”, "nocb"”, "midpoint"”),

addCov = FALSE,

rxControl 45

matrix = FALSE,

sigma = NULL,

sigmaDf = NULL,

sigmalLower = -Inf,
sigmaUpper = Inf,

nCoresRV = 1L,

sigmalsChol = FALSE,
nDisplayProgress = 10000L,
amountUnits = NA_character_,

timeUnits = "hours”,
stiff,
theta = NULL,

thetaLower = -Inf,
thetaUpper = Inf,

eta = NULL,

addDosing = FALSE,
stateTrim = Inf,
updateObject = FALSE,
omega = NULL,

omegaDf = NULL,
omegalsChol = FALSE,

omegalLower = -Inf,
omegaUpper = Inf,
nSub = 1L,

thetaMat = NULL,
thetaDf = NULL,
thetaIsChol = FALSE,

nStud = 1L,
dfSub = 0,
dfObs = 0,

returnType = c("rxSolve”, "matrix”, "data.frame"”, "data.frame.TBS", "data.table",
"tbl", "tibble"),

seed = NULL,
nsim = NULL,
minSS = 10L,

maxSS = 1000L,

infSSstep = 12,

strictSS = TRUE,

params = NULL,

events = NULL,
istateReset = TRUE,
subsetNonmem = TRUE,
linLog = FALSE,
maxAtolRtolFactor = 0.1,

from = NULL,
to = NULL,
by = NULL,

length.out = NULL,

rxControl

iCov = NULL,
keep = NULL,
drop = NULL,
idFactor = TRUE,
mxhnil = 0,

hmxi = @,

warnIdSort = TRUE,
warnDrop = TRUE,
ssAtol = 1e-08,
ssRtol = 1e-06,
safeZero = TRUE

)
rxSolve(object, ...)

Default S3 method:
rxSolve(object, params = NULL, events = NULL, inits = NULL, ...)

S3 method for class 'rxSolve'
update(object, ...)

S3 method for class 'RxODE'
predict(object, ...)

S3 method for class 'rxSolve'
predict(object, ...)

S3 method for class 'rxEt'
predict(object, ...)

S3 method for class 'rxParams'
predict(object, ...)

S3 method for class 'RxODE'
simulate(object, nsim = 1L, seed = NULL, ...)

S3 method for class 'rxSolve'

simulate(object, nsim = 1L, seed = NULL, ...)
S3 method for class 'rxParams'
simulate(object, nsim = 1L, seed = NULL, ...)

S3 method for class 'rxSolve'
solve(a, b, ...)

S3 method for class 'RxODE'
solve(a, b, ...)

rxControl

47

S3 method for class 'rxParams'

solve(a, b,

L)

S3 method for class 'rxEt'

solve(a, b,

Arguments

scale

method

transitAbs

atol

rtol

maxsteps

hmin

hmax

hmaxSd

hini

maxordn

maxords

)

a numeric named vector with scaling for ode parameters of the system. The
names must correspond to the parameter identifiers in the ODE specification.
Each of the ODE variables will be divided by the scaling factor. For example
scale=c(center=2) will divide the center ODE variable by 2.

The method for solving ODEs. Currently this supports:

* "liblsoda” thread safe Isoda. This supports parallel thread-based solving,
and ignores user Jacobian specification.

e "lsoda"” — LSODA solver. Does not support parallel thread-based solving,
but allows user Jacobian specification.

* "dop853" — DOP853 solver. Does not support parallel thread-based solving
nor user Jacobain specification

boolean indicating if this is a transit compartment absorption

a numeric absolute tolerance (1e-8 by default) used by the ODE solver to deter-
mine if a good solution has been achieved; This is also used in the solved linear
model to check if prior doses do not add anything to the solution.

a numeric relative tolerance (1e-6 by default) used by the ODE solver to deter-
mine if a good solution has been achieved. This is also used in the solved linear
model to check if prior doses do not add anything to the solution.

maximum number of (internally defined) steps allowed during one call to the
solver. (5000 by default)

The minimum absolute step size allowed. The default value is 0.

The maximum absolute step size allowed. When hmax=NA (default), uses the av-
erage difference (+hmaxSd*sd) in times and sampling events. When hmax=NULL
RxODE uses the maximum difference in times in your sampling and events. The
value 0 is equivalent to infinite maximum absolute step size.

The number of standard deviations of the time difference to add to hmax. The
default is O

The step size to be attempted on the first step. The default value is determined
by the solver (when hini = 0)

The maximum order to be allowed for the nonstiff (Adams) method. The default
is 12. It can be between 1 and 12.

The maximum order to be allowed for the stiff (BDF) method. The default value
is 5. This can be between 1 and 5.

Other arguments including scaling factors for each compartment. This includes
S# = numeric will scale a compartment # by a dividing the compartment amount
by the scale factor, like NONMEM.

48

cores

rxControl

Number of cores used in parallel ODE solving. This defaults to the number or
system cores determined by rxCores for methods that support parallel solving
(ie thread-safe methods like "liblsoda").

covsInterpolation

addCov

matrix

sigma

sigmaDf

sigmalower
sigmaUpper

nCoresRVY

sigmalsChol

specifies the interpolation method for time-varying covariates. When solving
ODE:s it often samples times outside the sampling time specified in events.
When this happens, the time varying covariates are interpolated. Currently this
can be:

e "linear” interpolation (the default), which interpolates the covariate by
solving the line between the observed covariates and extrapolating the new
covariate value.

* "constant” — Last observation carried forward.

e "NOCB" — Next Observation Carried Backward. This is the same method
that NONMEM uses.

e "midpoint” Last observation carried forward to midpoint; Next observa-
tion carried backward to midpoint.

A boolean indicating if covariates should be added to the output matrix or data
frame. By default this is disabled.

A boolean indicating if a matrix should be returned instead of the RxODE’s
solved object.

Named sigma covariance or Cholesky decomposition of a covariance matrix.
The names of the columns indicate parameters that are simulated. These are
simulated for every observation in the solved system.

Degrees of freedom of the sigma t-distribution. By default it is equivalent to
Inf, or a normal distribution.

Lower bounds for simulated unexplained variability (by default -Inf)
Upper bounds for simulated unexplained variability (by default Inf)

Number of cores used for the simulation of the sigma variables. By default this
is 1. This uses the package rmvn and rmvt. To reproduce the results you need
to run on the same platform with the same number of cores. This is the reason
this is set to be one, regardless of what the number of cores are used in threaded
ODE solving.

Boolean indicating if the sigma is in the Cholesky decomposition instead of a
symmetric covariance

nDisplayProgress

amountUnits

timeUnits

stiff

An integer indicating the minimum number of c-based solves before a progress
bar is shown. By default this is 10,000.

This supplies the dose units of a data frame supplied instead of an event table.
This is for importing the data as an RXODE event table.

This supplies the time units of a data frame supplied instead of an event table.
This is for importing the data as an RXODE event table.
a logical (TRUE by default) indicating whether the ODE system is stiff or not.

For stiff ODE systems (stiff = TRUE), RxODE uses the LSODA (Livermore
Solver for Ordinary Differential Equations) Fortran package, which implements

rxControl

theta
thetalLower
thetaUpper
eta

addDosing

stateTrim

updateObject

omega

omegaDf

omegalsChol

omegalower
omegalpper
nSub

49

an automatic method switching for stiff and non-stiff problems along the inte-
gration interval, authored by Hindmarsh and Petzold (2003).

For non-stiff systems (stiff = FALSE), RxODE uses DOP853, an explicit Runge-
Kutta method of order 8(5, 3) of Dormand and Prince as implemented in C by
Hairer and Wanner (1993).

A vector of parameters that will be named THETA[#] and added to parameters
Lower bounds for simulated population parameter variability (by default -Inf)
Upper bounds for simulated population unexplained variability (by default Inf)
A vector of parameters that will be named ETA[#] and added to parameters
Boolean indicating if the solve should add RxODE EVID and related columns.
This will also include dosing information and estimates at the doses. Be default,
RxODE only includes estimates at the observations. (default FALSE). When
addDosing is NULL, only include EVID=0 on solve and exclude any model-
times or EVID=2. If addDosing is NA the classic RxODE EVID events. When
addDosing is TRUE add the event information in NONMEM-style format; If

subsetNonmem=FALSE RxODE will also extra event types (EVID) for ending in-
fusion and modeled times:

e EVID=-1 when the modeled rate infusions are turned off (matches rate=-1)

e EVID=-2 When the modeled duration infusions are turned off (matches
rate=-2)

* EVID=-10 When the specified rate infusions are turned off (matches rate>0)

* EVID=-20 When the specified dur infusions are turned off (matches dur>0)

e EVID=101,102,103, ... Modeled time where 101 is the first model time,
102 is the second etc.

When amounts/concentrations in one of the states are above this value, trim
them to be this value. By default Inf. Also trims to -stateTrim for large neg-
ative amounts/concentrations. If you want to trim between a range say ‘c(0,
2000000)‘ you may specify 2 values with a lower and upper range to make sure
all state values are in the reasonable range.

This is an internally used flag to update the RxODE solved object (when supply-
ing an RxODE solved object) as well as returning a new object. You probably
should not modify it’s FALSE default unless you are willing to have unexpected
results.

Estimate of Covariance matrix. When omega is a list, assume it is a block matrix
and convert it to a full matrix for simulations.

The degrees of freedom of a t-distribution for simulation. By default this is NULL
which is equivalent to Inf degrees, or to simulate from a normal distribution
instead of a t-distribution.

Indicates if the omega supplied is a Cholesky decomposed matrix instead of the
traditional symmetric matrix.

Lower bounds for simulated ETAs (by default -Inf)
Upper bounds for simulated ETAs (by default Inf)

Number between subject variabilities (ETAs) simulated for every realization of
the parameters.

50

thetaMat

thetaDf

thetaIsChol

nStud
dfSub

dfObs

returnType

seed

nsim

minSS
maxSS
infSSstep

strictSS

params

events

rxControl

Named theta matrix.

The degrees of freedom of a t-distribution for simulation. By default this is NULL
which is equivalent to Inf degrees, or to simulate from a normal distribution
instead of a t-distribution.

Indicates if the theta supplied is a Cholesky decomposed matrix instead of the
traditional symmetric matrix.

Number virtual studies to characterize uncertainty in estimated parameters.

Degrees of freedom to sample the between subject variability matrix from the
inverse Wishart distribution (scaled) or scaled inverse chi squared distribution.

Degrees of freedom to sample the unexplained variability matrix from the in-
verse Wishart distribution (scaled) or scaled inverse chi squared distribution.

This tells what type of object is returned. The currently supported types are:

* "rxSolve" (default) will return a reactive data frame that can change easily
change different pieces of the solve and update the data frame. This is the

currently standard solving method in RxODE, is used for rxSolve(object,. ..

solve(object,...),

* "data.frame” — returns a plain, non-reactive data frame; Currently very
slightly faster than returnType="matrix"

* "matrix” —returns a plain matrix with column names attached to the solved
object. This is what is used object$run as well as object$solve

* "data.table” —returns a data. table; The data. table is created by ref-
erence (ie setDt()), which should be fast.

e "tbl" or "tibble" returns a tibble format.

an object specifying if and how the random number generator should be initial-
ized

represents the number of simulations. For RxODE, if you supply single subject
event tables (created with eventTable)

Minimum number of iterations for a steady-state dose
Maximum number of iterations for a steady-state dose

Step size for determining if a constant infusion has reached steady state. By
default this is large value, 420.

Boolean indicating if a strict steady-state is required. If a strict steady-state is
(TRUE) required then at least minSS doses are administered and the total number
of steady states doses will continue until maxSS is reached, or atol and rtol
for every compartment have been reached. However, if ODE solving problems
occur after the minSS has been reached the whole subject is considered an invalid
solve. If strictSS is FALSE then as long as minSS has been reached the last good
solve before ODE solving problems occur is considered the steady state, even
though either atol, rtol or maxSS have not been achieved.

a numeric named vector with values for every parameter in the ODE system; the
names must correspond to the parameter identifiers used in the ODE specifica-
tion;

an eventTable object describing the input (e.g., doses) to the dynamic system
and observation sampling time points (see eventTable);

rxControl

51

istateReset When TRUE, reset the ISTATE variable to 1 for lsoda and liblsoda with doses,
like deSolve; When FALSE, do not reset the ISTATE variable with doses.

subsetNonmem subset to NONMEM compatible EVIDs only. By default TRUE.

linLog Boolean indicating if linear compartment models be calculated more accurately
in the log-space (slower) By default this is off (FALSE)

maxAtolRtolFactor
The maximum atol/rtol that FOCEi and other routines may adjust to. By
default 0.1

from When there is no observations in the event table, start observations at this value.
By default this is zero.

to ‘When there is no observations in the event table, end observations at this value.
By default this is 24 + maximum dose time.

by ‘When there are no observations in the event table, this is the amount to increment
for the observations between from and to.

length.out The number of observations to create if there isn’t any observations in the event
table. By default this is 200.

iCov A data frame of individual non-time varying covariates to combine with the
params to form a parameter data.frame.

keep Columns to keep from either the input dataset or the iCov dataset. With the iCov
dataset, the column is kept once per line. For the input dataset, if any records
are added to the data LOCF (Last Observation Carried forward) imputation is
performed.

drop Columns to drop from the output

idFactor This boolean indicates if original ID values should be maintained. This changes
the default sequentially ordered ID to a factor with the original ID values in the
original dataset. By default this is enabled.

mxhnil maximum number of messages printed (per problem) warning that T+ H=T
on a step (H = step size). This must be positive to result in a non-default value.
The default value is O (or infinite).

hmx i inverse of the maximum absolute value of H to be used. hmxi = 0.0 is allowed
and corresponds to an infinite hmax (default). hmin and hmxi may be changed
at any time, but will not take effect until the next change of H is considered.
This option is only considered with method=liblsoda.

warnIdSort Warn if the ID is not present and RXODE assumes the order of the parame-
ters/iCov are the same as the order of the parameters in the input dataset.

warnDrop Warn if column(s) were supposed to be dropped, but were not present.

ssAtol Steady state atol convergence factor. Can be a vector based on each state.

ssRtol Steady state rtol convergence factor. Can be a vector based on each state.

safeZero Use safe zero divide and log routines. By default this is turned on but you may
turn it off if you wish.

object is a either a RxODE family of objects, or a file-name with a RxODE model

specification, or a string with a RxODE model specification.

52

inits

Value

rxCores

a vector of initial values of the state variables (e.g., amounts in each compart-
ment), and the order in this vector must be the same as the state variables (e.g.,
PK/PD compartments);

when using solve, this is equivalent to the object argument. If you specify
object later in the argument list it overwrites this parameter.

when using solve, this is equivalent to the params argument. If you specify
params as a named argument, this overwrites the output

An “rxSolve” solve object that stores the solved value in a matrix with as many rows as there
are sampled time points and as many columns as system variables (as defined by the ODEs and
additional assignments in the RXODE model code). It also stores information about the call to
allow dynamic updating of the solved object.

The operations for the object are similar to a data-frame, but expand the $ and [[""]] access op-
erators and assignment operators to resolve based on different parameter values, initial conditions,
solver parameters, or events (by updating the time variable).

You can call the eventTable methods on the solved object to update the event table and resolve the
system of equations.

Author(s)

Matthew Fidler, Melissa Hallow and Wenping Wang

References

Hindmarsh, A. C. ODEPACK, A Systematized Collection of ODE Solvers. Scientific Computing, R.
S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pp. 55-64.

Petzold, L. R. Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary
Differential Equations. Siam J. Sci. Stat. Comput. 4 (1983), pp. 136-148.

Hairer, E., Norsett, S. P.,, and Wanner, G. Solving ordinary differential equations I, nonstiff problems.
2nd edition, Springer Series in Computational Mathematics, Springer-Verlag (1993).

See Also
RxODE

rxCores

Get the number of cores in a system

Description

Get the number of cores in a system

Usage

rxCores()

rxDelete

53

rxDelete Delete the DLL for the model

Description

This function deletes the DLL, but doesn’t delete the model information in the object.

Usage
rxDelete(obj)

Arguments

obj RxODE family of objects

Value

A boolean stating if the operation was successful.

Author(s)
Matthew L.Fidler

rxDfdy Jacobian and parameter derivatives

Description

Return Jacobain and parameter derivatives

Usage
rxDfdy (obj)

Arguments

obj RxODE family of objects

Value

A list of the jacobian parameters defined in this RxODE object.

Author(s)
Matthew L. Fidler

54 rxEvid

rxeEvid EVID formatting for tibble and other places.

Description

This is to make an EVID more readable by non pharmacometricians. It displays what each means
and allows it to be displayed in a tibble.

Usage
rxevid(x)
as.rxEvid(x)

S3 method for class 'rxEvid'
c(x, ...)

S3 method for class 'rxEvid'
x[...]

S3 method for class 'rxEvid'
as.character(x, ...)

S3 method for class 'rxEvid'
format(x, ...)

S3 method for class 'rxEvid'
print(x, ...)

S3 method for class 'rxEvid'
x[[...1]

S3 method for class 'rxEvid'
type_sum(x)

S3 method for class 'rxEvid'
pillar_shaft(x, ...)

Arguments
X Item to be converted to a RxODE EVID specification.
Other parameters
Examples

rxeEvid(1:7)

rxFoExpandEta

55

rxFoExpandEta First Order Expansion of ETA

Description

First Order Expansion of ETA

Usage

rxFoExpandEta(expr)
Arguments

expr RxODE model
Value

Return a RxODE model with first order Taylor expansion around ETA

Author(s)

Matthew L. Fidler

rxGetRxODE Get RxODE model from object

Description

Get RxODE model from object

Usage

rxGetRxODE (obj)

Arguments

obj RxODE family of objects

56 rxInv

rxHtml Format rxSolve and related objects as html.

Description

Format rxSolve and related objects as html.

Usage

rxHtml(x, ...)

S3 method for class 'rxSolve'
rxHtml(x, ...)

Arguments

X RxODE object

Extra arguments sent to kable

Author(s)

Matthew L. Fidler

rxInv Invert matrix using RcppArmadillo.

Description

Invert matrix using ReppArmadillo.

Usage

rxInv(matrix)

Arguments

matrix matrix to be inverted.

Value

inverse or pseudo inverse of matrix.

rxIsCurrent

rxIsCurrent Checks if the RxODE object was built with the current build

Description

Checks if the RxODE object was built with the current build

Usage

rxIsCurrent(obj)
Arguments

obj RxODE family of objects
Value

boolean indicating if this was built with current RxODE

rxLhs Left handed Variables

Description

This returns the model calculated variables

Usage
rxLhs (obj)

Arguments

obj RxODE family of objects

Value

a character vector listing the calculated parameters

Author(s)
Matthew L.Fidler

See Also
RxODE

58

rxNorm

rxLock

Lock/unlocking of RxODE dll file

Description

Lock/unlocking of RxODE dlIl file

Usage
rxLock(obj)

rxUnlock(obj)

Arguments

obj

A RxODE family of objects

rxNorm

Get the normalized model

Description

This get the syntax preferred model for processing

Usage

rxNorm(obj, condition = NULL, removelnis, removeJac, removeSens)

Arguments

obj

condition

removelnis
removeJac

removeSens

Value

RxODE family of objects

Character string of a logical condition to use for subsetting the normalized
model. When missing, and a condition is not set via rxCondition, return the
whole code with all the conditional settings intact. When a condition is set with
rxCondition, use that condition.

A boolean indicating if parameter initialization will be removed from the model
A boolean indicating if the Jacobians will be removed.
A boolean indicating if the sensitivities will be removed.

Normalized Normal syntax (no comments)

Author(s)
Matthew L. Fidler

RxODE 59

RxODE Create an ODE-based model specification

Description

Create a dynamic ODE-based model object suitably for translation into fast C code

Usage
RXODE (
model,
modName = basename(wd),
wd = getwd(),

filename = NULL,
extraC = NULL,

debug = FALSE,

calcJac = NULL,
calcSens = NULL,
collapseModel = FALSE,
package = NULL,

Arguments

model This is the ODE model specification. It can be:

* a string containing the set of ordinary differential equations (ODE) and
other expressions defining the changes in the dynamic system.

* a file name where the ODE system equation is contained
* An ODE expression enclosed in {}

(see also the filename argument). For details, see the sections “Details” and
“RX0ODE Syntax’ below.

modName a string to be used as the model name. This string is used for naming various
aspects of the computations, including generating C symbol names, dynamic
libraries, etc. Therefore, it is necessary that modName consists of simple ASCII
alphanumeric characters starting with a letter.

wd character string with a working directory where to create a subdirectory accord-
ing to modName. When specified, a subdirectory named after the “modName. d”
will be created and populated with a C file, a dynamic loading library, plus var-
ious other working files. If missing, the files are created (and removed) in the
temporary directory, and the RxODE DLL for the model is created in the current
directory named rx_????_platform, for example rx_129f8f97fb94a87ca49ca8dafe691ele_1386.d1]

filename A file name or connection object where the ODE-based model specification re-
sides. Only one of model or filename may be specified.

60

extraC

debug

calcJac

calcSens

collapseModel

package

Value

RxODE

Extra c code to include in the model. This can be useful to specify functions in
the model. These C functions should usually take double precision arguments,
and return double precision values.

is a boolean indicating if the executable should be compiled with verbose de-
bugging information turned on.

boolean indicating if RxXODE will calculate the Jacobain according to the spec-
ified ODEs.

boolean indicating if RXODE will calculate the sensitivities according to the
specified ODEs.

boolean indicating if RXODE will remove all LHS variables when calculating
sensitivities.

Package name for pre-compiled binaries.

ignored arguments.

The “Rx” in the name RxODE is meant to suggest the abbreviation Rx for a med-
ical prescription, and thus to suggest the package emphasis on pharmacometrics
modeling, including pharmacokinetics (PK), pharmacodynamics (PD), disease
progression, drug-disease modeling, etc.

The ODE-based model specification may be coded inside a character string or
in a text file, see Section RxODE Syntax below for coding details. An internal
RxODE compilation manager object translates the ODE system into C, compiles
it, and dynamically loads the object code into the current R session. The call to
RxODE produces an object of class RxODE which consists of a list-like structure
(closure) with various member functions (see Section Value below).

For evaluating RxODE models, two types of inputs may be provided: a required
set of time points for querying the state of the ODE system and an optional set
of doses (input amounts). These inputs are combined into a single event table
object created with the function eventTable.

An object (closure) of class “RxODE” (see Chambers and Temple Lang (2001)) consisting of the
following list of strings and functions:

modName
model

get.modelVars

solve

the name of the model (a copy of the input argument).
a character string holding the source model specification.

a function that returns a list with 3 character vectors, params, state, and 1hs of
variable names used in the model specification. These will be output when the
model is computed (i.e., the ODE solved by integration).

this function solves (integrates) the ODE. This is done by passing the code to
rxSolve. This is as if you called rxSolve(RxODEobject,...), but returns a
matrix instead of a rxSolve object.

params: a numeric named vector with values for every parameter in the ODE
system; the names must correspond to the parameter identifiers used in the ODE
specification;

events: an eventTable object describing the input (e.g., doses) to the dynamic
system and observation sampling time points (see eventTable);

RxODE

isvValid

version

dynLoad

dynUnload
delete

run
parse
compile
get.index
getObj

RxODE Syntax

61

inits: a vector of initial values of the state variables (e.g., amounts in each
compartment), and the order in this vector must be the same as the state variables
(e.g., PK/PD compartments);

stiff: alogical (TRUE by default) indicating whether the ODE system is stiff or
not.

For stiff ODE systems (stiff = TRUE), RxODE uses the LSODA (Livermore
Solver for Ordinary Differential Equations) Fortran package, which implements
an automatic method switching for stiff and non-stiff problems along the inte-
gration interval, authored by Hindmarsh and Petzold (2003).

For non-stiff systems (stiff = FALSE), RxODE uses DOP853, an explicit Runge-
Kutta method of order 8(5, 3) of Dormand and Prince as implemented in C by
Hairer and Wanner (1993).

trans_abs: a logical (FALSE by default) indicating whether to fit a transit ab-
sorption term (TODO: need further documentation and example);

atol: a numeric absolute tolerance (1e-08 by default);
rtol: a numeric relative tolerance (1e-06 by default).e

The output of “solve” is a matrix with as many rows as there are sampled time
points and as many columns as system variables (as defined by the ODEs and
additional assignments in the RxODE model code).

a function that (naively) checks for model validity, namely that the C object code
reflects the latest model specification.

a string with the version of the RxODE object (not the package).

a function with one force = FALSE argument that dynamically loads the object
code if needed.

a function with no argument that unloads the model object code.

removes all created model files, including C and DLL files. The model object is
no longer valid and should be removed, e.g., rm(m1).

deprecated, use solve.
deprecated.
deprecated.
deprecated.

internal (not user callable) function.

An RxODE model specification consists of one or more statements terminated by semi-colons, *;’,
and optional comments (comments are delimited by # and an end-of-line marker). NB: Comments
are not allowed inside statements.

A block of statements is a set of statements delimited by curly braces, ‘{ ... }’. Statements can
be either assignments or conditional if statements. Assignment statements can be: (1) “simple”
assignments, where the left hand is an identifier (i.e., variable), (2) special “time-derivative” as-
signments, where the left hand specifies the change of that variable with respect to time e.g.,
d/dt(depot), or (3) special “jacobian” assignments, where the left hand specifies the change of
of the ODE with respect to one of the parameters, e.g. df (depot)/dy(kel). The “jacobian” as-
signments are not required, and are only useful for very stiff differential systems.

62 RxODE

Expressions in assignment and ‘if’ statements can be numeric or logical (no character expressions
are currently supported). Numeric expressions can include the following numeric operators (‘+’,

C_v ¢

, %7, ¢/7,), and those mathematical functions defined in the C or the R math libraries (e.g.,
fabs, exp, log, sin). (Notice that the modulo operator ‘%’ is currently not supported.)

Identifiers in an RXODE model specification can refer to:
* state variables in the dynamic system (e.g., compartments in a pharmacokinetics/pharamcodynamics
model);

* implied input variable, t (time), podo (oral dose, for absorption models), and tlast (last time
point);

* model parameters, (ka rate of absorption, CL clearance, etc.);
* pi, for the constant pi.

* others, as created by assignments as part of the model specification.

[l

Identifiers consists of case-sensitive alphanumeric characters, plus the underscore ‘_
NB: the dot ‘.’ character is not a valid character identifier.

character.

The values of these variables at pre-specified time points are saved as part of the fitted/integrated/solved
model (see eventTable, in particular its member function add. sampling that defines a set of time
points at which to capture a snapshot of the system via the values of these variables).

The ODE specification mini-language is parsed with the help of the open source tool dparser,
Plevyak (2015).

Author(s)

Melissa Hallow, Wenping Wang and Matthew Fidler

References

Chamber, J. M. and Temple Lang, D. (2001) Object Oriented Programming in R. R News, Vol. 1,
No. 3, September 2001. https://cran.r-project.org/doc/Rnews/Rnews_2001-3. pdf.

Hindmarsh, A. C. ODEPACK, A Systematized Collection of ODE Solvers. Scientific Computing, R.
S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pp. 55-64.

Petzold, L. R. Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary
Differential Equations. Siam J. Sci. Stat. Comput. 4 (1983), pp. 136-148.

Hairer, E., Norsett, S. P.,, and Wanner, G. Solving ordinary differential equations I, nonstiff problems.
2nd edition, Springer Series in Computational Mathematics, Springer-Verlag (1993).

Plevyak, J. dparser, http://dparser.sourceforge.net. Web. 12 Oct. 2015.

See Also

eventTable, et, add. sampling, add.dosing

https://cran.r-project.org/doc/Rnews/Rnews_2001-3.pdf
http://dparser.sourceforge.net

RxODE

Examples

Step 1 - Create a model specification
ode <- "
A 4-compartment model, 3 PK and a PD (effect) compartment
(notice state variable names 'depot', 'centr', 'peri', 'eff')

C2 = centr/V2;

C3 = peri/V3;

d/dt(depot) =-KAxdepot;

d/dt(centr) = KAxdepot - CL*C2 - Q*C2 + QxC3;
d/dt(peri) = Q*C2 - Q*C3;

d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;
ml <- RxODE(model = ode)
print(m1)

Step 2 - Create the model input as an EventTable,
including dosing and observation (sampling) events

QD (once daily) dosing for 5 days.

qd <- eventTable(amount.units = "ug"”, time.units = "hours")
gd$add.dosing(dose = 10000, nbr.doses = 5, dosing.interval = 24)

Sample the system hourly during the first day, every 8 hours
then after

gd$add. sampling(0:24)
gd$add.sampling(seq(from = 24+8, to = 5%x24, by = 8))

Step 3 - set starting parameter estimates and initial
values of the state

theta <-
c(KA = .291, CL = 18.6,
V2 = 40.2, Q = 10.5, V3 = 297.0,
Kin = 1.0, Kout = 1.0, EC50 = 200.0)

init state variable
inits <- c(0, 0, 0, 1);

Step 4 - Fit the model to the data
gd.cp <- mi$solve(theta, events = qd, inits)
head(qd.cp)

This returns a matrix. Note that you can also
solve using name initial values. For example:

inits <- c(eff = 1);

63

64 rxOptions

qd.cp <- solve(ml, theta, events = qd, inits);
print(qd.cp)

plot(qd.cp)

rxOptExpr Optimize RxODE for computer evaluation

Description

This optimizes RxODE code for computer evaluation by only calculating redundant expressions
once.

Usage

rxOptExpr(x)

Arguments

X RxODE model that can be access by rxNorm

Value

Optimized RxODE model text. The order and type lhs and state variables is maintained while the
evaluation is sped up. While parameters names are maintained, their order may be modified.

Author(s)

Matthew L. Fidler

rxOptions Options for RxODE

Description

This is a backend for rxPermissive (with op.rx = 2) and rxStrict (with op.rx =1)

rxParams

Usage

rxOptions(

65

expr,
op.rx = NULL,

silent = .isTestthat(),
respect = FALSE,

cran = FALSE,
on.validate = FALSE,
test = NULL
)
Arguments
expr Expression to evaluate in the permissive/strict environment. If unspecified, set
the options for the current environment.
op.rx A numeric for strict (1) or permissive (2) syntax.
silent when true, also silence the syntax errors and interactive output (useful in test-
ing).
respect when TRUE, respect any options that are specified. This is called at startup, but
really should not be called elsewhere, otherwise the options are not changed.
cran When specified and true, run on CRAN. Otherwise it is skipped on CRAN.

on.validate

test

Details

When TRUE run only when validating.

When specified as a string, the enclosed test is skipped unless the environmental
variable "rxTest" equals this value.

When expr is missing and op. rx is NULL, this displays the current RxODE options.

Author(s)

Matthew L. Fidler

rxParams

Parameters specified by the model

Description

This returns the model’s parameters that are required to solve the ODE system, and can be used to
pipe parameters into an RxODE solve

66

Usage

rxParams(obj, ...)

S3 method for class
rxParams (

obj,
constants = TRUE,

L

params = NULL,

inits = NULL,
iCov = NULL,
keep = NULL,
thetaMat = NULL,
omega = NULL,
dfSub = NULL,
sigma = NULL,
dfObs = NULL,
nSub = NULL,
nStud = NULL

)

S3 method for class

rxParams (
obj,

constants = TRUE,

params = NULL,

inits = NULL,
iCov = NULL,
keep = NULL,
thetaMat = NULL,
omega = NULL,
dfSub = NULL,
sigma = NULL,
dfObs = NULL,
nSub = NULL,
nStud = NULL

)

S3 method for class

rxParams(
obj,

L

params = NULL,

inits = NULL,
iCov = NULL,
keep = NULL,

thetaMat = NULL,

"RxODE’

'rxSolve'

'rxEt'

rxParams

rxParams

omega
dfSub
sigma = NULL,
dfObs = NULL,
nSub = NULL,
nStud = NULL

NULL,
NULL,

rxParam(obj,

Arguments

obj

constants

params

inits

iCov

keep

thetaMat

omega

dfSub

sigma

dfObs

nSub

nStud

67

>

RxODE family of objects

Other arguments including scaling factors for each compartment. This includes
S# = numeric will scale a compartment # by a dividing the compartment amount
by the scale factor, like NONMEM.

is a boolean indicting if constants should be included in the list of parameters.
Currently RxODE parses constants into variables in case you wish to change
them without recompiling the RxODE model.

a numeric named vector with values for every parameter in the ODE system; the
names must correspond to the parameter identifiers used in the ODE specifica-
tion;

a vector of initial values of the state variables (e.g., amounts in each compart-
ment), and the order in this vector must be the same as the state variables (e.g.,
PK/PD compartments);

A data frame of individual non-time varying covariates to combine with the
params to form a parameter data.frame.

Columns to keep from either the input dataset or the iCov dataset. With the iCov
dataset, the column is kept once per line. For the input dataset, if any records
are added to the data LOCF (Last Observation Carried forward) imputation is
performed.

Named theta matrix.

Estimate of Covariance matrix. When omega is a list, assume it is a block matrix
and convert it to a full matrix for simulations.

Degrees of freedom to sample the between subject variability matrix from the
inverse Wishart distribution (scaled) or scaled inverse chi squared distribution.

Named sigma covariance or Cholesky decomposition of a covariance matrix.
The names of the columns indicate parameters that are simulated. These are
simulated for every observation in the solved system.

Degrees of freedom to sample the unexplained variability matrix from the in-
verse Wishart distribution (scaled) or scaled inverse chi squared distribution.

Number between subject variabilities (ETAs) simulated for every realization of
the parameters.

Number virtual studies to characterize uncertainty in estimated parameters.

68

Value

rxPermissive

When extracting the parameters from an RxODE model, a character vector listing the parameters in
the model.

Author(s)
Matthew L.Fidler

rxPermissive Permissive or Strict RxODE syntax options

Description

This sets the RXODE syntax to be permissive or strict

Usage

rxPermissive(

expr,
silent = .isTestthat(),
respect = FALSE,

cran = FALSE,
on.validate = FALSE,
test = NULL

rxStrict(

expr,
silent = .isTestthat(),
respect = FALSE,

cran = FALSE,
on.validate = FALSE

)
Arguments

expr Expression to evaluate in the permissive/strict environment. If unspecified, set
the options for the current environment.

silent when true, also silence the syntax errors and interactive output (useful in test-
ing).

respect when TRUE, respect any options that are specified. This is called at startup, but
really should not be called elsewhere, otherwise the options are not changed.

cran When specified and true, run on CRAN. Otherwise it is skipped on CRAN.

on.validate When TRUE run only when validating.

test

variable "rxTest" equals this value.

When specified as a string, the enclosed test is skipped unless the environmental

rxProgress 69

Author(s)

Matthew L. Fidler

rxProgress RxODE progress bar functions

Description

rxProgress sets up the progress bar

Usage

rxProgress(num, core = QL)

rxTick()
rxProgressStop(clear = TRUE)
rxProgressAbort(error = "Aborted calculation”)
Arguments
num Tot number of operations to track
core Number of cores to show. If below 1, don’t show number of cores
clear Boolean telling if you should clear the progress bar after completion (as if it
wasn’t displayed). By default this is TRUE
error With rxProgressAbort this is the error that is displayed
Details

rxTick is a progress bar tick
rxProgressStop stop progress bar

rxProgressAbort shows an abort if rxProgressStop wasn’t called.

Value

All return NULL invisibly.

Author(s)

Matthew L. Fidler

70 rxSetIni0
Examples
f <= function(){
on.exit({rxProgressAbort()});
rxProgress(100)
for (i in 1:100) {
rxTick()
Sys.sleep(1 / 100)
}
rxProgressStop();
}
Not run:
fO;
End(Not run)
rxRateDur Creates a rxRateDur object
Description
This is primarily to display information about rate
Usage
rxRateDur (x)
as.rxRateDur(x)
S3 method for class 'rxRateDur'
type_sum(x)
Arguments
X rxRateDur data
rxSetInio Set Initial conditions to time zero instead of the first observed/dosed
time
Description

Set Initial conditions to time zero instead of the first observed/dosed time

rxSetProd 71

Usage

rxSetIni@(ini@ = TRUE)

Arguments
ini@ When TRUE (default), set initial conditions to time zero. Otherwise the initial
conditions are the first observed time.
rxSetProd Choose the type of product to use in RxODE. These are used in the
RxODE prod blocks
Description

Choose the type of product to use in RxODE. These are used in the RxODE prod blocks

Usage

rxSetProd(type = c("long double”, "double"”, "logify"))

Arguments
type Product to use for prod() in RxODE blocks
long double converts to long double, performs the multiplication and then con-
verts back.
double uses the standard double scale for multiplication.
Value
nothing
Author(s)

Matthew L. Fidler

72 rxSetSum

rxSetProgressBar Set timing for progress bar

Description

Set timing for progress bar

Usage

rxSetProgressBar(seconds = 1)

Arguments
seconds This sets the number of seconds that need to elapse before drawing the next seg-
ment of the progress bar. When this is zero or below this turns off the progress
bar.
Author(s)
Matthew Fidler
rxSetSum Choose the type of sums to use for RxODE.
Description

Choose the types of sums to use in RxODE. These are used in the RxODE sum blocks and the rxSum

function
Usage
rxSetSum(type = c("pairwise”, "fsum”, "kahan", "neumaier”, "c"))
Arguments
type Sum type to use for rxSum and sum() in RxODE code blocks.
pairwise uses the pairwise sum (fast, default)
fsum uses Python’s fsum function (most accurate)
kahan uses kahan correction
neumaier uses Neumaier correction
¢ uses no correction, bud default/native summing
Value

nothing

rxShiny

Author(s)

Matthew L. Fidler

73

rxShiny

Use Shiny to help develop an RxODE model

Description

Use Shiny to help develop an RxODE model

Usage
rxShiny(
object,
params = c(),
events = NULL,

inits = c(),

data = data.frame()

)

S3 method for class 'rxSolve'

rxShiny(
object,
params = NULL
events = NULL
inits = c(),

’

’

data = data.frame()

’

)

Default S3 method:

rxShiny(
object = NULL
params = c(),
events = NULL

inits = c(Q),

’

data = data.frame()

Arguments

object

A RxODE family of objects. If not supplied a 2-compartment indirect effect
model is used. If it is supplied, use the model associated with the RxODE object

for the model exploration.

74

params
events

inits

data

Value

rxSimThetaOmega

Initial parameters for model

Event information (currently ignored)

Initial estimates for model

Other arguments passed to rxShiny. Currently doesn’t do anything.

Any data that you would like to plot. If the data has a time variable as well as
a compartment or calculated variable that matches the RxODE model, the data
will be added to the plot of a specific compartment or calculated variable.

Nothing; Starts a shiny server

Author(s)

Zufar Mulyukov and Matthew L. Fidler

rxSimThetaOmega

Simulate Parameters from a Theta/Omega specification

Description

Simulate Parameters from a Theta/Omega specification

Usage

rxSimThetaOmega(

params = NULL,
omega = NULL,
omegaDf = NULL,

omegaLower = as.numeric(c(R_NegInf)),
omegalpper = as.numeric(c(R_PosInf)),

omegalsChol = FALSE,
nSub = 1L,
thetaMat = NULL,

thetalLower = as.numeric(c(R_NegInf)),
thetaUpper = as.numeric(c(R_PosInf)),

thetaDf = NULL,
thetalsChol = FALSE,
nStud = 1L,

sigma = NULL,

sigmalower = as.numeric(c(R_NegInf)),
sigmaUpper = as.numeric(c(R_PosInf)),

sigmaDf = NULL,
sigmalsChol = FALSE,
nCoresRV = 1L,

nObs = 1L,

rxSimThetaOmega

dfSub = 0,
dfObs = 0,

75

simSubjects = TRUE

)

Arguments

params
omega

omegaDf

omegalower
omegalpper

omegalsChol

nSub

thetaMat
thetalLower
thetaUpper
thetaDf

thetaIsChol

nStud

sigma

sigmalower
sigmaUpper

sigmaDf

sigmalsChol

nCoresRVY

nObs
dfSub

Named Vector of RxODE model parameters
Named omega matrix.

The degrees of freedom of a t-distribution for simulation. By default this is NULL
which is equivalent to Inf degrees, or to simulate from a normal distribution
instead of a t-distribution.

Lower bounds for simulated ETAs (by default -Inf)
Upper bounds for simulated ETAs (by default Inf)

Indicates if the omega supplied is a Cholesky decomposed matrix instead of the
traditional symmetric matrix.

Number between subject variabilities (ETAs) simulated for every realization of
the parameters.

Named theta matrix.
Lower bounds for simulated population parameter variability (by default -Inf)
Upper bounds for simulated population unexplained variability (by default Inf)

The degrees of freedom of a t-distribution for simulation. By default this is NULL
which is equivalent to Inf degrees, or to simulate from a normal distribution
instead of a t-distribution.

Indicates if the theta supplied is a Cholesky decomposed matrix instead of the
traditional symmetric matrix.

Number virtual studies to characterize uncertainty in estimated parameters.

Matrix for residual variation. Adds a "NA" value for each of the individual
parameters, residuals are updated after solve is completed.

Lower bounds for simulated unexplained variability (by default -Inf)
Upper bounds for simulated unexplained variability (by default Inf)

Degrees of freedom of the sigma t-distribution. By default it is equivalent to
Inf, or a normal distribution.

Boolean indicating if the sigma is in the Cholesky decomposition instead of a
symmetric covariance

Number of cores used for the simulation of the sigma variables. By default this
is 1. This uses the package rmvn and rmvt. To reproduce the results you need
to run on the same platform with the same number of cores. This is the reason
this is set to be one, regardless of what the number of cores are used in threaded
ODE solving.

Number of observations to simulate (with sigma matrix)

Degrees of freedom to sample the between subject variability matrix from the
inverse Wishart distribution (scaled) or scaled inverse chi squared distribution.

76 rxState

dfObs Degrees of freedom to sample the unexplained variability matrix from the in-
verse Wishart distribution (scaled) or scaled inverse chi squared distribution.

simSubjects boolean indicated RxODE should simulate subjects in studies (TRUE, default) or
studies (FALSE)

Author(s)
Matthew L.Fidler

rxStack Stack a solved object for things like ggplot

Description

Stack a solved object for things like ggplot

Usage

rxStack(Data, vars = NULL)

Arguments
Data is a RXODE object to be stacked.
vars Variables to include in stacked data; By default this is all the variables when vars
is NULL.
Value

Stacked data with value and trt, where value is the values and trt is the state and 1hs variables.

Author(s)
Matthew Fidler

rxState State variables

Description

This returns the model’s compartments or states.

Usage

rxState(obj = NULL, state = NULL)

rxSumProdModel 77

Arguments

obj RxODE family of objects

state is a string indicating the state or compartment that you would like to lookup.
Value

If state is missing, return a character vector of all the states.

If state is a string, return the compartment number of the named state.

Author(s)
Matthew L.Fidler

See Also

RxODE

rxSumProdModel Recast model in terms of sum/prod

Description

Recast model in terms of sum/prod

Usage

rxSumProdModel (model, expand = FALSE, sum = TRUE, prod = TRUE)

Arguments
model RxODE model
expand Boolean indicating if the expression is expanded.
sum Use sum(...)
prod Use prod(...)
Value

model string with prod(.) and sum(.) for all these operations.

Author(s)
Matthew L. Fidler

78 rxSymlInvChol

rxSymInvChol Get Omega™-1 and derivatives

Description

Get Omega”-1 and derivatives

Usage

rxSymInvChol(
invObjOrMatrix,
theta = NULL,
type = "cholOmegalnv”,
thetaNumber = oL

Arguments

invObjoOrMatrix Object for inverse-type calculations. If this is a matrix, setup the object for
inversion by rxSymInvCholCreate with the default arguments and return a re-
active s3 object. Otherwise, use the inversion object to calculate the requested
derivative/inverse.

theta Thetas to be used for calculation. If missing (NULL), a special s3 class is created
and returned to access Omega™1 objects as needed and cache them based on the
theta that is used.

type The type of object. Currently the following types are supported:

* cholOmegalnv gives the Cholesky decomposition of the Omega Inverse
matrix.

* omegalnv gives the Omega Inverse matrix.

e d(omegalnv) gives the d(Omega”-1) withe respect to the theta parameter
specified in thetaNumber.

* d(D) gives the d(diagonal(Omega”-1)) with respect to the theta parameter
specified in the thetaNumber parameter

thetaNumber For types d(omegaInv) and d(D), the theta number that the derivative is taken
against. This must be positive from 1 to the number of thetas defining the Omega
matrix.
Value
Matrix based on parameters or environment with all the matrixes calculated in variables omega,
omegalnv, dOmega, dOmegalnv.
Author(s)
Matthew L. Fidler

rxSymPyFix

rxSymPyFix Fix SymPy expressions to be R parsable expressions

Description

Fix SymPy expressions to be R parsable expressions

Usage

rxSymPyFix(var)

Arguments

var sympy expression

Value

R valid expression

Author(s)

Matthew L. Fidler

rxSymPySensitivity Calculate the sensitivity equations for a model

Description

This expands the model to calculate sensitivities. This requires rSymPy.

Usage

rxSymPySensitivity(
model,
calcSens,
calcJac = FALSE,
keepState = NULL,
collapseModel = FALSE

80 rxSymPy Version

Arguments
model RxODE family of objects
calcSens Either a logical or list of sensitivity parameters to calculate. When TRUE, calcu-
late the sensitivities of all the known parameters. When FALSE raise an error.
calcJac A boolean that determines if the Jacobian should be calculated.
keepState State parameters to keep the sensitivities for.

collapseModel A boolean to collapse the model that each expression only depends on the un-
specified parameters (instead on LHS quantities).

Value

Model syntax that includes the sensitivity parameters.

Author(s)

Matthew L. Fidler

rxSymPyVersion Return the version of SymPy that is running

Description

Return the version of SymPy that is running

Usage

rxSymPyVersion(numeric = TRUE)

Arguments

numeric boolean that specifies if the major and minor release should be a number.

Value

Version of sympy that is running.

Author(s)

Matthew L. Fidler

rxSyncOptions 81

rxSyncOptions Sync options with RxODE variables

Description

Accessing RxODE options via getOption slows down solving. This allows the options to be synced
with variables.

Usage

rxSyncOptions()

Author(s)

Matthew L. Fidler

rxTempDir Get the RxODE temporary directory

Description

Get the RxODE temporary directory

Usage

rxTempDir ()

Value

RxODE temporary directory.

rxTrans Translate the model to C code if needed

Description

This function translates the model to C code, if needed

82 rxTrans
Usage
rxTrans(
model,
extraC = NULL,
modelPrefix = "",
md5 - n H,
modName = NULL,
modVars = FALSE,
)
Default S3 method:
rxTrans(
model,
extraC = NULL,
modelPrefix = "",
md5 - n H,
modName = NULL,
modVars = FALSE,
)
S3 method for class 'character'
rxTrans(
model,
extraC = NULL,
modelPrefix = "",
md5 —_— H,
modName = NULL,
modVars = FALSE,
)
Arguments
model This is the ODE model specification. It can be:
* a string containing the set of ordinary differential equations (ODE) and
other expressions defining the changes in the dynamic system.
* afile name where the ODE system equation is contained
* An ODE expression enclosed in { }
(see also the filename argument). For details, see the sections ‘“Details” and
“RxODE Syntax” below.
extraC Extra c code to include in the model. This can be useful to specify functions in
the model. These C functions should usually take double precision arguments,
and return double precision values.
modelPrefix Prefix of the model functions that will be compiled to make sure that multiple

RxODE objects can coexist in the same R session.

rxUnloadAll 83

md5 Is the md5 of the model before parsing, and is used to embed the md5 into DLL,
and then provide for functions like rxModelVars.

modName a string to be used as the model name. This string is used for naming various
aspects of the computations, including generating C symbol names, dynamic
libraries, etc. Therefore, it is necessary that modName consists of simple ASCII
alphanumeric characters starting with a letter.

modVars returns the model variables instead of the named vector of translated properties.

Ignored parameters.

Value

a named vector of translated model properties including what type of jacobian is specified, the C
function prefixes, as well as the C functions names to be called through the compiled model.

Author(s)
Matthew L.Fidler

See Also

RxODE, rxCompile.

rxUnloadAll Unload all RxODE Dllis that are not locked for solving.

Description

Unload all RxODE DlIs that are not locked for solving.

Usage
rxUnloadAll()

rxUse Use model object in your package

Description

Use model object in your package

Usage

rxUse(obj, overwrite = TRUE, compress = "bzip2"”, internal = FALSE)

84 rx Validate

Arguments
obj model to save.
overwrite By default, use_data() will not overwrite existing files. If you really want to
do so, set this to TRUE.
compress Choose the type of compression used by save(). Should be one of "gzip",
"bzip2", or "xz".
internal If this is run internally. By default this is FALSE
rxUseRadixSort Use Radix Sort when possible
Description

By default RxODE uses radix sort when possible.

Usage

rxUseRadixSort(useRadix = TRUE)

Arguments

useRadix Use order with method = radix when appropriate. Otherwise use timsort.

Author(s)
Matthew Fidler

rxValidate Validate RxODE

Description

This allows easy validation/qualification of nlmixr by running the testing suite on your system.

Usage
rxValidate(full = TRUE)

rxTest(full = TRUE)

Arguments

full Should a full validation be performed? (By default TRUE)

Author(s)
Matthew L. Fidler

rxWinPythonSetup

85

rxWinPythonSetup Setup Python and SymPy for windows

Description

Setup Python and SymPy for windows

Usage

rxWinPythonSetup()

Author(s)

Matthew L. Fidler

rxWinSetup Setup Windows components for RxODE

Description

Setup Windows components for RxODE

Usage

rxWinSetup(rm.rtools = TRUE, rm.python = TRUE)

Arguments
rm.rtools Remove the Rtools from the current path specs.
rm.python Remove Python from the current path specs.
Author(s)

Matthew L. Fidler

86 tibble

summary . RxODE Print expanded information about the RxODE object.

Description

This prints the expanded information about the RxODE object.

Usage
S3 method for class 'RxODE'
summary (object, ...)
Arguments
object RxODE object

Ignored parameters

Author(s)

Matthew L.Fidler

tibble type_sum function for units

Description

type_sum function for units

Usage
S3 method for class 'units'
type_sum(x, ...)
format_type_sum.type_sum_units(x, width, ...)

S3 method for class 'units'
pillar_shaft(x, ...)

S3 method for class 'mixed_units'
type_sum(x, ...)

S3 method for class 'mixed_units'
pillar_shaft(x, ...)

tibble

Arguments

X see type_sum
see type_sum

width see type_sum

87

Index

*Topic Internal
print.rxCoefSolve, 38

*Topic data
eventTable, 30

xTopic intenral
.clearPipe, 4

*Topic models
eventTable, 30
RxODE, 59

xTopic nonlinear
genShinyApp.template, 34
RxODE, 59

xTopic simulation
genShinyApp.template, 34

+.so0lveRxD11 (rxChain), 41

.C, 44

.Call, 44

.clearPipe, 4

.rxFindPow, 5

.rxRmPrint, 6

.rxRmSens, 7

.rxSymPyJacobian, 7

.rxWinRtoolsPath, 8

.setWarnIdSort, 8

[.rxEvid (rxgvid), 54

[[.rxEvid (rxEvid), 54

add.dosing, 9, 10, 12, 20, 23, 26, 29, 62
add.sampling, 10, 11, 12, 20, 23, 26, 29, 62
as.character.rxEvid (rxEvid), 54
as.data.table.rxEt, 14

as.et, 14

as.rxEvid (rxEvid), 54

as.rxRateDur (rxRateDur), 70
as.tbl.rxEt (as_tibble.rxEt), 15
as_tibble.rxEt, 15

c.rxEvid (rxgvid), 54
coef.RxCompilationManager (coef.RxODE),
15

coef.rxD11 (coef.RxODE), 15
coef.RxODE, 15

coef.solveRxODE (coef.RxODE), 15
cvPost, 16

environment, /8

et, 9, 10,12, 17, 20, 23, 26, 29, 32, 62

etExpand, 21

etRbind, 10, 12, 20, 22, 23, 26, 29

etRep, 10, 12, 20, 23, 25, 26, 29

etSeq, 28

eventTable, 5, 10, 12, 20, 23, 26, 29, 30, 35,
50, 52, 60, 62

forderForceBase, 33

format.rxEvid (rxeEvid), 54

format_type_sum.type_sum_units
(tibble), 86

genShinyApp.template, 34
guide_none, 35

is.rxEt, 36
is.rxSolve, 36

labs(), 35
order, 33

pillar_shaft, 37
pillar_shaft.mixed_units (tibble), 86
pillar_shaft.rxEvid (rxEvid), 54
pillar_shaft.rxRateDur, 37
pillar_shaft.units (tibble), 86
predict.rxEt (rxControl), 44
predict.RxODE (rxControl), 44
predict.rxParams (rxControl), 44
predict.rxSolve (rxControl), 44
print.rxCoefSolve, 38
print.rxEvid (rxgEvid), 54
print.RxODE, 38

INDEX

rbind.rxEt (etRbind), 22
rep.rxEt (etRep), 25
rinvchisq, 39
rmvn, 48, 75
rmvt, 48, 75
rxAddReturn, 39
rxAllowUnload, 40
rxAssignPtr, 40
rxC14, 41
rxChain, 41
rxClean, 42
rxCompile, 42, 83
rxControl, 44
rxCores, 48, 52
rxDelete, 53
rxDfdy, 53
rxEvid, 54
rxFoExpandEta, 55
rxGetRxODE, 55
rxHtml, 56
rxInv, 56
rxIsCurrent, 57
rxLhs, 57
rxLock, 58
rxModelVars, 83
rxNorm, 58
RxODE, 10, 12, 20, 23, 26, 29, 32, 34, 35, 44,
52,57,59,77,83
rxOptExpr, 64
rxOptions, 64
rxParam (rxParams), 65
rxParams, 65
rxPermissive, 68
rxProgress, 69
rxProgressAbort (rxProgress), 69
rxProgressStop (rxProgress), 69
rxRateDur, 70
rxSetInio, 70
rxSetProd, 71
rxSetProgressBar, 72
rxSetSum, 72
rxShiny, 73
rxSimThetaOmega, 74
rxSolve, 34, 60
rxSolve (rxControl), 44
rxStack, 76
rxState, 76
rxStrict (rxPermissive), 68

89

rxSumProdModel, 77
rxSymInvChol, 78
rxSymInvCholCreate, 78
rxSymPyFix, 79
rxSymPySensitivity, 79
rxSymPyVersion, 80
rxSyncOptions, 81
rxTempDir, 81

rxTest (rxValidate), 84
rxTick (rxProgress), 69
rxTrans, 43, 81
rxUnloadAll, 83
rxUnlock (rxLock), 58
rxUse, 83
rxUseRadixSort, 84
rxValidate, 84
rxWinPythonSetup, 85
rxWinSetup, 85

save(), 84

seq.rxEt (etSeq), 28
simulate.RxODE (rxControl), 44
simulate.rxParams (rxControl), 44
simulate.rxSolve (rxControl), 44
solve.rxEt (rxControl), 44
solve.RxODE (rxControl), 44
solve.rxParams (rxControl), 44
solve.rxSolve (rxControl), 44
summary . RxODE, 86

sys.call, I8

tibble, 86

type_sum, 87

type_sum.mixed_units (tibble), 86
type_sum.rxEvid (rxgEvid), 54
type_sum.rxRateDur (rxRateDur), 70
type_sum.units (tibble), 86

update.rxSolve (rxControl), 44

waiver(), 35
write.template.server
(genShinyApp.template), 34
write.template.ui, 34
write.template.ui
(genShinyApp. template), 34

	.clearPipe
	.rxFindPow
	.rxRmPrint
	.rxRmSens
	.rxSymPyJacobian
	.rxWinRtoolsPath
	.setWarnIdSort
	add.dosing
	add.sampling
	as.data.table.rxEt
	as.et
	as_tibble.rxEt
	coef.RxODE
	cvPost
	et
	etExpand
	etRbind
	etRep
	etSeq
	eventTable
	forderForceBase
	genShinyApp.template
	guide_none
	is.rxEt
	is.rxSolve
	pillar_shaft
	pillar_shaft.rxRateDur
	print.rxCoefSolve
	print.RxODE
	rinvchisq
	rxAddReturn
	rxAllowUnload
	rxAssignPtr
	rxC14
	rxChain
	rxClean
	rxCompile
	rxControl
	rxCores
	rxDelete
	rxDfdy
	rxEvid
	rxFoExpandEta
	rxGetRxODE
	rxHtml
	rxInv
	rxIsCurrent
	rxLhs
	rxLock
	rxNorm
	RxODE
	rxOptExpr
	rxOptions
	rxParams
	rxPermissive
	rxProgress
	rxRateDur
	rxSetIni0
	rxSetProd
	rxSetProgressBar
	rxSetSum
	rxShiny
	rxSimThetaOmega
	rxStack
	rxState
	rxSumProdModel
	rxSymInvChol
	rxSymPyFix
	rxSymPySensitivity
	rxSymPyVersion
	rxSyncOptions
	rxTempDir
	rxTrans
	rxUnloadAll
	rxUse
	rxUseRadixSort
	rxValidate
	rxWinPythonSetup
	rxWinSetup
	summary.RxODE
	tibble
	Index

