Package ‘RoughSetKnowledgeReduction’

August 29, 2016

Type Package

Title Simplification of Decision Tables using Rough Sets
Version 0.1

Date 2012-03-13

Author Alber Sanchez

Maintainer Alber Sanchez <a.sanchez@uni-muenster.de>

Description Rough Sets were introduced by Zdzislaw Pawlak on his book ““Rough Sets: Theoreti-
cal Aspects of Reasoning About Data". Rough Sets provide a formal method to approxi-
mate crisp sets when the set-element belonging relationship is either known or undeter-
mined. This enables the use of Rough Sets for reasoning about incomplete or contradic-
tory knowledge. A decision table is a prescription of the decisions to make given some condi-
tions. Such decision tables can be reduced without losing prescription ability. This package pro-
vides the classes and methods for knowledge reduction from decision tables as pre-
sented in the chapter 7 of the aforementioned book. This package provides functions for calculat-
ing the both the discernibility matrix and the essential parts of decision tables.

License MIT + file LICENSE
Depends methods

Collate DecisionTable.R ConditionReduct.R DiscernibilityMatrix.R
ValueReduct.R

NeedsCompilation no
Repository CRAN
Date/Publication 2014-12-18 09:11:32

R topics documented:

rs-package L L 3
checkConsiStency o . e e e 3
checkConsistency-methods 4
classifyDecisionTable e 5
classifyDecisionTable-methods 6
computeConsistencyMatrix Lo 6
computeConsistencyMatrix-methods oL 7

R topics documented:

computeCore o i e e e e e e e e e e e e e e e e 7
computeCore-methods Lo 8
computeDiscernibilityMatrix L 9
computeDiscernibilityMatrix-methods 0oL 10
computeSupportConsiStencyo i e e e e e e 10
computeSupportConsistency-methodso 11
computeValueReduct L 12
computeValueReduct-methods 13
conditionReduct L 13
ConditionReduct-class 14
decisionTable 15
DecisionTable-class 16
discernibilityMatrix 17
DiscernibilityMatrix-class 18
findAllReductsFromCore 19
findAllReductsFromCore-methods L. 20
findFirstConditionReduct 21
findFirstConditionReduct-methods 22
findSmallestReductFamilyFromCore 22
findSmallestReductFamilyFromCore-methods 23
getColumnlds L 23
getColumnlds-methods 24
getCondition L 25
getCondition-methods L 26
getConditionReduct 26
getConditionReduct-methods 27
getConditionReductDecisionTable 27
getConditionReductDecisionTable-methods 28
getDecision e e e e 28
getDecision-methods oL oo 29
getDecisionTable 29
getDecisionTable-methods 30
getDiscernibilityMatrixo 31
getDiscernibilityMatrix-methods oL 32
getRule oL 32
getRule-methods L 33
getValueReduct 33
getValueReduct-methods o 34
getValueReductConditionReduct 34
getValueReductConditionReduct-methods 35
initialize-methods 35
isConditionReduct 36
isConditionReduct-methods oL o 37
print-methods 37
removeDuplicatedRulesCR L 37
removeDuplicatedRulesCR-methods, 38
removeDuplicatedRulesDT o o 39

removeDuplicatedRulesDT-methods 40

checkConsistency 3

removeDuplicatedRulesVR oL 40
removeDuplicatedRulesVR-methods L. 41
show-methods L 41
simplifyDecisionTable 42
simplifyDecisionTable-methods 43
valueReduct L 43
ValueReduct-class 44

Index 46

rs-package Simplification of Decision Tables using Rough Sets
Description

Rough sets theory can be applied to reduce knowledge from decision tables. This package includes
a few S4 classes for doing so.

Details
Package: 18
Type: Package
Version: 0.1
Date: 2012-03-13
License: GPL (>=2)
Depends: methods
Author(s)

Alber Sanchez <alber.sanchez @uni-muenster.de>

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

checkConsistency CHECK CONSISTENCY

Description

It checks if the rules in a Decision Table object are consistent or inconsistent. A couple of rules are
inconsistent if they have the same conditions and different decision; if they have the same decision
they are consistent; if they have different conditions no matter the decision they are consistent.

4 checkConsistency-methods

Usage

checkConsistency(object)

Arguments

object A Decision Table object

Value
It returns a boolean vector indicating which rules are inconsistent or contradictory in the decision
table given. It is a summary of the consistency matrix.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

DecisionTable-class,computeConsistencyMatrix

Examples

exampleMatrixl <- matrix(c(1,90,2,1,1,2,2,0,0,1,0,1,0,2,1,
1,2,1,0,0,2,0,1,1,2,1,1,2,0,1,1,0,0,2,1,2,1,1,2,1),ncol = 5)

ruleConsistencyDT <- new(Class="DecisionTable",decisionTable = exampleMatrix1)
ruleConsistencyResults <- checkConsistency(ruleConsistencyDT)

checkConsistency-methods
Methods for Function checkConsistency

Description

Methods for function checkConsistency

Methods

signature(object = "DecisionTable”) This method reports which rules in a Decision Table
object are consistent. A rule in a Decision Table object is consistent if there is no other rule
with the same conditions and a different decision. This method does not specify which pair of
rules are consistent or not, for obtaining that information use computeConsistencyMatrix.

classifyDecisionTable 5

classifyDecisionTable CLASSIFY DECISION TABLE

Description

It applies the Value Reduct object rules to a Decision Table object. It returns an object with new
decisions for the rules in the Decision Table object.

Usage

classifyDecisionTable(object, decisionTable)

Arguments

object A Value Reduct object

decisionTable A Decision Table object

Value

It returns a Decision Table object which rules have the same conditions of input DT object but the
rule decisions of the Value Reduct rules where they match.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

ValueReduct-class,DecisionTable-class

Examples

exampleMatrixl <- matrix(c(1,0,2,1,1,2,2,0,0,1,0,1,0,2,1,
1,2,1,0,0,2,0,1,1,2,1,1,2,0,1,1,0,0,2,1,2,1,1,2,1),ncol = 5)

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,0,
0,0,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

dt1 <- new(Class="DecisionTable"”,decisionTable = exampleMatrix1)

dt2 <- new(Class="DecisionTable",decisionTable = exampleMatrix2)

vr1l <- simplifyDecisionTable(dt1)

dt3 <- classifyDecisionTable(vr1,dt2)#It classifies dt2 with the rules obtained from dt1
dt3 <- removeDuplicatedRulesDT(dt3)

6 computeConsistencyMatrix

classifyDecisionTable-methods
Methods for Function classifyDecisionTable

Description

Methods for function classifyDecisionTable

Methods

signature(object = "ValueReduct”) This method uses the reduced rules in a Value Reduct
object for classifying the rules in a Decision Table object. It returns a Decision Table object
with the same original rule conditions but with the decision of the Value Reduct object which

apply.

computeConsistencyMatrix
COMPUTE CONSISTENCY MATRIX

Description

It computes the consistency matrix of a decision table object. A Consistency Matrix object is
made of each rule consistency check against the other rules in a Decision Table object. A couple
of rules are inconsistent if they have the same conditions and different decision; if they have the
same decision they are consistent; if they have different conditions no matter the decision they are
consistent.

Usage

computeConsistencyMatrix(object)

Arguments

object A Decision Table object

Value
It returns a boolean diagonal matrix indicating inconsistency between rules. It must be interpreted
by columns.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

computeConsistencyMatrix-methods 7

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

DecisionTable-class,checkConsistency

Examples

exampleMatrixl <- matrix(c(1,0,2,1,1,2,2,0,0,1,0,1,0,2,1,1,
2,1,0,0,2,0,1,1,2,1,1,2,0,1,1,0,0,2,1,2,1,1,2,1),ncol = 5)

conMatDT <- new(Class="DecisionTable"”,decisionTable = exampleMatrix1)
conMat <- computeConsistencyMatrix(conMatDT)

computeConsistencyMatrix-methods
Methods for Function computeConsistencyMatrix

Description

Methods for function computeConsistencyMatrix

Methods

signature(object = "DecisionTable”) This method checks the consistency between each pos-
sible pair of rules in a Decision Table object. For any pair of rules, they are consistent if the
same conditions imply the same decision. The method checkConsistency is a summary of this
method, reporting if a rule is consistent but it is not specific about the pair of rules tested.

computeCore COMPUTE CORE

Description

It computes the core conditions of a Decision Table object using a Discernibility Matrix object.

Usage

computeCore(object)

Arguments

object A Discernibility Matrix object

8 computeCore-methods

Value

It returns a numeric vector indicating the columns ids which are the core of the Decision Table
object from which the Discernibility Matrix object was created.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

DiscernibilityMatrix-class,computeDiscernibilityMatrix,findFirstConditionReduct,findSmallestReductFan

Examples

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,
0,0,0,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

disMatDT <- new(Class="DecisionTable"”,decisionTable = exampleMatrix2)
dm <- computeDiscernibilityMatrix(disMatDT)

core <- computeCore(dm)

computeCore-methods Methods for Function computeCore

Description

Methods for function computeCore

Methods

signature(object = "DiscernibilityMatrix”) This method computes the core of a Decision
Table object; the core is computed using the discernibility matrix method. The core a set of
conditions which are present in all the condition reducts of a decision table; in other words the
core is the intersections of the conditions of all the condition reducts in a decision table.

computeDiscernibilityMatrix 9

computeDiscernibilityMatrix
COMPUTE DISCERNIBILITY MATRIX

Description

It computes the Discernibility Matrix object of a Decision Table object. The Discernibility Matrix
object is made of rule condition differences on a Decision Table object.

Usage

computeDiscernibilityMatrix(object)

Arguments

object A Decision Table object

Value

It returns an object of the class DiscernibilityMatrix.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

DecisionTable-class,DiscernibilityMatrix-class,computeCore

Examples

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,
0,0,0,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

disMatDT <- new(Class="DecisionTable"”,decisionTable = exampleMatrix2)
dm <- computeDiscernibilityMatrix(disMatDT)

10 computeSupportConsistency

computeDiscernibilityMatrix-methods
Methods for Function computeDiscernibilityMatrix

Description

Methods for function computeDiscernibilityMatrix

Methods

signature(object = "DecisionTable") This method computes the discernibility matrix of a
Decision Table object. A Discernibility Matrix object is a 3 dimension boolean array where
each element represents if there is a difference in the same condition of each pair of rules in a
Decision Table object. A discernibility matrix is useful for calculating the core of a decision
table.

computeSupportConsistency
COMPUTE SUPPORT CONSISTENCY

Description

It computes the support and consistency of the rules in the Value Reduct object. For each rule in
the Value Reduct object, support is the number of decision table rules to which the value reduct
rule conditions apply divided by the number of rules in the decision table object. For each rule in
the Value Reduct object, consistency is the number of rules to which the value reduct condition and
decision applies divided by the number of rules of the Decision Table object to which the value
reduct rule conditions apply.

Usage

computeSupportConsistency(object, decisionTable)

Arguments

object A Value Reduct object

decisionTable A Decision Table object

Value

It returns a numeric matrix which contains the Value Reduct object representation and the support
and consistency values of each rule.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

computeSupportConsistency-methods 11

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

ValueReduct-class,classifyDecisionTable

Examples

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,
0,0,0,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

dt <- new(Class="DecisionTable",decisionTable = exampleMatrix2)

dtUnique <- removeDuplicatedRulesDT(dt)

cr <- new(Class="ConditionReduct”,decisionTable = dtUnique,columnIds=c(1,2,4,5))
cr <- removeDuplicatedRulesCR(cr)

vr <- computeValueReduct(cr)

vr <- removeDuplicatedRulesVR(vr)

mat <- computeSupportConsistency(vr,dt)

print(mat)

computeSupportConsistency-methods
Methods for Function computeSupportConsistency

Description

Methods for function computeSupportConsistency

Methods

signature(object = "ValueReduct") Support and Consistency are measures of the fitness of a
rule respect to a Decision Table object. Support is the ability of a rule to classify the rules in
a Decision Table object and Consistency is the correctness of the rule in the Decision Table
object. For a single rule, Support counts the number of rules in the Decision Table with the
same conditions divided by the total number of rules and Consistency is the number of times
the rule, including its decision is found in the decision table.

12 compute ValueReduct

computeValueReduct COMPUTE VALUE REDUCT

Description

It computes the Value Reduct object of the Condition Reduct object. In other words, it removes the
superfluous conditions of each rule in the Condition Reduct object.

Usage

computeValueReduct (object)

Arguments

object A Condition Reduct object

Value

It returns an object of type ValueReduct.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

ConditionReduct-class,ValueReduct-class,classifyDecisionTable

Examples

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,
0,0,0,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

dt <- new(Class="DecisionTable",decisionTable = exampleMatrix2)

cr <- new(Class="ConditionReduct”,decisionTable = dt,columnIds=c(1,2,4,5))
vr <- computeValueReduct(cr)

compute ValueReduct-methods 13

computeValueReduct-methods
Methods for Function computeValueReduct

Description

Methods for function computeValueReduct

Methods

signature(object = "ConditionReduct") This method takes a Condition Reduct object and
reduces its rules at the condition level and returns a Value Reduct object.

conditionReduct CONDITION REDUCT

Description
User friendly constructor of an instance of the class Condition Reduct. Objects of this class can be
created by the user or by objects of the class Decision Table.

Usage

conditionReduct(theDecisionTable, theColumnIds)

Arguments

theDecisionTable
A decision table object

theColumnIds A numeric vector representing the column Ids of the decision table which con-
form the reduct. The decision Id columns is needed, which is always the last
column.

Value

It returns a Condition Reduct object.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

14 ConditionReduct-class

See Also

ConditionReduct-class

Examples

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,
0,0,0,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

dt <- new(Class="DecisionTable",decisionTable = exampleMatrix2)

crl <- conditionReduct(dt,c(1,2,4,5))

isConditionReduct(cr1) == TRUE# Test if crl1 actually is a condition reduct of dt

cr2 <- findFirstConditionReduct(dt)# Gets the first found condition reduct in dt

listCr1 <- findSmallestReductFamilyFromCore(dt)# Gets a set of the least condition reducts of dt
listCr2 <- findAllReductsFromCore(dt)# Gets all the reducts from dt

ConditionReduct-class Class "ConditionReduct”

Description

A condition reduct is a decision table where the superfluous conditions have been removed. This
object can be created by the users, but it suggested its creation by the use of the methods provided
by a Decision Table object.

Objects from the Class

Objects can be created by calls of the form new("ConditionReduct”, decisionTable, columnIds).
A decisionTable is a numeric matrix where each row is a rule. The matrix last column is the decision
of the rules and the remaining columns are rule conditions. The columnlds is a numeric vector with
the position of the column which conform the condition reduct. This object can be created by the
users, but it is preferred its creation by the use of the methods provided by a Decision Table object.

Slots

decisionTable: Object of class "DecisionTable”

columnIds: Object of class "numeric”

Methods

computeValueReduct signature(object = "ConditionReduct”): ...
getColumnlds signature(object = "ConditionReduct”): ...
getConditionReduct signature(object = "ConditionReduct"”): ...
getConditionReductDecisionTable signature(object = "ConditionReduct”): ...
initialize signature(.Object = "ConditionReduct”): ...

isConditionReduct signature(object = "ConditionReduct”): ...

print signature(x = "ConditionReduct”): ...

removeDuplicatedRulesCR signature(object = "ConditionReduct”): ...

show signature(object = "ConditionReduct"”): ...

decisionTable 15

Note

This is not a complete implementation of Rough Set theory; instead it is just the application of the
theory to decision table simplification also known as knowledge reduction.

Author(s)
Alber Sanchez

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

DecisionTable DiscernibilityMatrix ValueReduct

Examples

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,
0,0,0,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

dt <- new(Class="DecisionTable"”,decisionTable = exampleMatrix2)

crl <- conditionReduct(dt,c(1,2,4,5))

isConditionReduct(cr1) == TRUE# Test if crl1 actually is a condition reduct of dt

cr2 <- findFirstConditionReduct(dt)# Gets the first found condition reduct in dt

listCr1 <- findSmallestReductFamilyFromCore(dt)# Gets a set of the least condition reducts of dt
listCr2 <- findAllReductsFromCore(dt)# Gets all the reducts from dt

decisionTable DECISION TABLE

Description

User friendly constructor of an instance of the class Decision Table.

Usage

decisionTable(theDecisionTable)

Arguments
theDecisionTable
A numeric matrix representing a decision table
Value

It returns a Decision Table object.

16 DecisionTable-class

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

DecisionTable-class

Examples

exampleMatrix1 <- matrix(c(1,0,2,1,1,2,2,0,0,1,0,1,0,2,1,
1,2,1,0,0,2,0,1,1,2,1,1,2,0,1,1,0,0,2,1,2,1,1,2,1),ncol = 5)
dt <- decisionTable(exampleMatrix1)

DecisionTable-class Class "DecisionTable”

Description

A decision table is a set of rules with the same number of conditions and only one decision.

Objects from the Class

Objects can be created by calls of the form new("DecisionTable”, decisionTable). A deci-
sionTable is a numeric matrix where each row is a ruleThe matrix last column is the decision of the
rules and the remaining columns are rule conditions.

Slots

decisionTable: Object of class "matrix”

Methods
checkConsistency signature(object = "DecisionTable"): ...
computeConsistencyMatrix signature(object = "DecisionTable”): ...
computeDiscernibilityMatrix signature(object = "DecisionTable"): ...

findAllIReductsFromCore signature(object = "DecisionTable"): ...
findFirstConditionReduct signature(object = "DecisionTable”): ...
findSmallestReductFamilyFromCore signature(object = "DecisionTable”): ...
getCondition signature(object = "DecisionTable"): ...

getDecision signature(object = "DecisionTable"): ...

discernibilityMatrix 17

getDecisionTable signature(object = "DecisionTable"): ...

getRule signature(object = "DecisionTable”): ...

initialize signature(.Object = "DecisionTable"): ...

print signature(x = "DecisionTable"): ...
removeDuplicatedRulesDT signature(object = "DecisionTable"): ...
show signature(object = "DecisionTable"): ...

simplifyDecisionTable signature(object = "DecisionTable"): ...

Note
This is not a complete implementation of Rough Set theory; instead it is just the application of the
theory to decision table simplification also known as knowledge reduction.

Author(s)
Alber Sanchez

References
Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

DiscernibilityMatrix ConditionReduct ValueReduct

Examples

exampleMatrixl <- matrix(c(1,0,2,1,1,2,2,0,0,1,0,1,0,2,1,
1,2,1,0,0,2,0,1,1,2,1,1,2,0,1,1,0,0,2,1,2,1,1,2,1),ncol = 5)
dt <- decisionTable(exampleMatrix1)

discernibilityMatrix DISCERNIBILITY MATRIX

Description
Objects of this class are not meant to be directly created by users; instead, they are created by the
objects of the class Discernibility Matrix.

Usage

discernibilityMatrix(theDiscernibilityMatrix)

Arguments

theDiscernibilityMatrix
A boolean 3 dimension array

18 DiscernibilityMatrix-class

Value

It returns a Discernibility Matrix object.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

DiscernibilityMatrix-class

Examples

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,0,0,
0,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

dt <- new(Class="DecisionTable",decisionTable = exampleMatrix2)
dm <- computeDiscernibilityMatrix(dt)

DiscernibilityMatrix-class
Class "DiscernibilityMatrix”

Description

A discernibility matrix identifies the differences in condition values for each pair of rules in a
decision table. Its main function is to help in the calculation of the core of the decision table rules.
Objects of this class are not meant to be built by users, instead they should be created using a
Decision Table object and the method computeDiscernibilityMatrix.

Objects from the Class

Objects can be created by calls of the form new("DiscernibilityMatrix”, discernibilityMatrix).
Objects of this class are not meant to be built by users, instead they should be created using a Deci-
sion Table object and the method computeDiscernibilityMatrix.

Slots

discernibilityMatrix: Object of class "array”

findAllReductsFromCore 19

Methods

computeCore signature(object = "DiscernibilityMatrix”): ...
getDiscernibilityMatrix signature(object = "DiscernibilityMatrix”): ...
initialize signature(.Object = "DiscernibilityMatrix”): ...

print signature(x = "DiscernibilityMatrix"): ...

show signature(object = "DiscernibilityMatrix"): ...

Note

This is not a complete implementation of Rough Set theory; instead it is just the application of the
theory to decision table simplification also known as knowledge reduction.

Author(s)
Alber Sanchez

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

DecisionTable ConditionReduct ValueReduct

Examples

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,0,0,
0,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

dt <- new(Class="DecisionTable",decisionTable = exampleMatrix2)
dm <- computeDiscernibilityMatrix(dt)

findAl1lReductsFromCore
FIND ALL REDUCTS FROM CORE

Description
It computes all the condition reduct of a Decision Table object taking as a starting point the core
conditions of a Decision Table object.

Usage

findAllReductsFromCore(object)

20 findAlIReductsFromCore-methods

Arguments

object A Decision Table object

Value

It returns a list of ConditionReduct objects representing all the reducts found in the Decision Table
object.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

DecisionTable-class,findFirstConditionReduct,findSmallestReductFamilyFromCore,computeCore

Examples

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,
0,0,0,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

dt <- new(Class="DecisionTable",decisionTable = exampleMatrix2)
listCr <- findAllReductsFromCore(dt)

findAl1lReductsFromCore-methods
Methods for Function findAl1ReductsFromCore

Description

Methods for function findAl1ReductsFromCore

Methods

signature(object = "DecisionTable”) This method seeks all the condition reducts in a De-
cision Table object. For doing this, it uses the core as an starting point and adds condition
combinations until all the conditions in the Decision Table object has been added.

findFirstConditionReduct 21

findFirstConditionReduct
FIND FIRST CONDITION REDUCT

Description

Of the many possible condition reducts in a Decision Table, it returns the first found.

Usage

findFirstConditionReduct(object)

Arguments

object A Decision Table object

Value

It returns one condition reduct object with the least number of conditions. This reduct belongs to
the family of the smallest reducts of the decision table. It may be the only one.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

DecisionTable-class,findSmallestReductFamilyFromCore,findAl11ReductsFromCore,computeCore

Examples

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,0,0,
0,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

dt <- new(Class="DecisionTable",decisionTable = exampleMatrix2)
c2 <- findFirstConditionReduct(dt)

22 findSmallestReductFamilyFromCore

findFirstConditionReduct-methods
Methods for Function findFirstConditionReduct

Description

Methods for function findFirstConditionReduct

Methods

signature(object = "DecisionTable”) This method returns the smallest first found condition
reduct in a Decision Table object. For doing this, it uses the core as a starting point and adds
condition combinations until it obtains a condition reduct.

findSmallestReductFamilyFromCore
FIND SMALLEST REDUCT FAMILY FROM CORE

Description

It returns a set of condition reducts found in a Decision Table object. The Condition Reduct objects
returned have the same number of conditions which is the smallest number of condition on a reduct
for the given Decision Table object.

Usage

findSmallestReductFamilyFromCore(object)

Arguments

object A Decision Table object

Value
It returns a list of Condition Reduct objects representing the smallest reducts, all of them with the
same number of conditions.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

findSmallestReductFamilyFromCore-methods 23

See Also

DecisionTable-class,findFirstConditionReduct,findAl1ReductsFromCore,computeCore

Examples

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,0,0,
0,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

dt <- new(Class="DecisionTable",decisionTable = exampleMatrix2)
listCr <- findSmallestReductFamilyFromCore(dt)

findSmallestReductFamilyFromCore-methods

Methods for Function findSmallestReductFamilyFromCore

Description

Methods for function findSmallestReductFamilyFromCore

Methods

signature(object = "DecisionTable”) This method returns a list of Condition Reduct objects

found in a Decision Table object. All the Condition Reduct objects have the same number of
conditions and at the same time are the condition reducts with the least number of conditions
possible. For doing this, the method uses the core as a starting point and adds condition
combinations until it obtains a condition reduct.This method returns a list of Condition Reduct
objects found in a Decision Table object. All the Condition Reduct objects have the same
number of conditions and at the same time are the condition reducts with the least number of
conditions possible. For doing this, the method uses the core as an starting point and adds
condition combinations until it obtains a condition reduct.

getColumnIds GET COLUMN IDS

Description

Accessor method for the column ids which compose a slot of a Condition Reduct object.

Usage

getColumnIds(object)

Arguments

object A Condition Reduct object

24 getColumnlds-methods

Value

It returns the numeric vector column Ids.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

ConditionReduct-class

Examples

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,0,0,
0,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

dt <- new(Class="DecisionTable",decisionTable = exampleMatrix2)
cr <- findFirstConditionReduct(dt)

cids <- getColumnIds(cr)

getColumnIds-methods Methods for Function getColumnIds

Description

Methods for function getColumnIds

Methods

signature(object = "ConditionReduct”) This method returns the column ids of the condi-
tions of a Decision Table object which are thought of being part of a condition reduct. To be
sure if it really is a condition reduct the isConditionReduct method could be used.

getCondition 25

getCondition GET CONDITION

Description

Method for obtaining the conditions of the rules in a Decision Table object.

Usage

getCondition(object)
Arguments

object A Decision Table object
Value

It returns the conditions of the decision table as a numeric matrix.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

DecisionTable-class

Examples

exampleMatrixl <- matrix(c(1,90,2,1,1,2,2,0,0,1,0,1,0,2,1,1,2,
1,0,0,2,0,1,1,2,1,1,2,0,1,1,0,0,2,1,2,1,1,2,1),ncol = 5)

dt <- decisionTable(exampleMatrix1)

condDt <- getCondition(dt)

26 getConditionReduct

getCondition-methods Methods for Function getCondition

Description

Methods for function getCondition

Methods

signature(object = "DecisionTable”) This method returns the conditions of all rules in a
Decision Table object.

getConditionReduct GET CONDITION REDUCT

Description
Accessor method for a slot of a Condition Reduct object which returns a numeric matrix represent-
ing the object.

Usage

getConditionReduct (object)

Arguments

object A Condition Reduct object

Value

It returns the Condition Reduct object inflated as a numeric matrix.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References
Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

ConditionReduct-class

getConditionReduct-methods 27

Examples

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,0,0,
0,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

dt <- new(Class="DecisionTable",decisionTable = exampleMatrix2)
cr <- findFirstConditionReduct(dt)

getCr <- getConditionReduct(cr)

getConditionReduct-methods
Methods for Function getConditionReduct

Description

Methods for function getConditionReduct

Methods

signature(object = "ConditionReduct”) This method returns a numeric matrix as a represen-
tation of a Condition Reduct object.

getConditionReductDecisionTable
GET CONDITION REDUCT’S DECISION TABLE

Description

Accessor method for obtaining the Decision Table object of a slot of a Condition Reduct object.

Usage

getConditionReductDecisionTable(object)

Arguments

object A Condition Reduct object

Value

It returns the Decision Table object of the Condition Reduct object.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

28 getDecision

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

ConditionReduct-class

Examples

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,0,0,
0,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

dt <- new(Class="DecisionTable",decisionTable = exampleMatrix2)

cr <- new(Class="ConditionReduct”,decisionTable = dt,columnIds=c(1,2,3,4,5))
crdt <- getConditionReductDecisionTable(cr)

getConditionReductDecisionTable-methods
Methods for Function getConditionReductDecisionTable

Description

Methods for function getConditionReductDecisionTable

Methods

signature(object = "ConditionReduct”) This method returns the Decision Table object of a
Condition Reduct object.

getDecision GET DECISION

Description

Method for obtaining the decision of the rules in a Decision Table object.

Usage

getDecision(object)
Arguments

object A Decision Table object
Value

It returns the decision of the Decision Table object as a numeric vector.

getDecision-methods 29

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References
Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

DecisionTable-class

Examples

exampleMatrix1 <- matrix(c(1,90,2,1,1,2,2,0,0,1,0,1,0,2,1,1,2,
1,0,0,2,0,1,1,2,1,1,2,0,1,1,0,0,2,1,2,1,1,2,1),ncol = 5)

dt <- decisionTable(exampleMatrix1)

desDt <- getDecision(dt)

getDecision-methods Methods for Function getDecision

Description

Methods for function getDecision

Methods

signature(object = "DecisionTable”) This method returns a numeric vector as a representa-
tion of the decision of the rules in a Decision Table object.

getDecisionTable GET DECISION TABLE

Description

Accessor method for obtaining the numeric matrix which represents a slot of Decision Table object.

Usage

getDecisionTable(object)

Arguments

object A Decision Table object

30 getDecisionTable-methods

Value

It returns the Decision Table object as a numeric matrix.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

DecisionTable-class

Examples

exampleMatrixl1 <- matrix(c(1,0,2,1,1,2,2,0,0,1,0,1,0,2,1,1,2,
1,0,0,2,0,1,1,2,1,1,2,0,1,1,0,0,2,1,2,1,1,2,1),ncol = 5)

dt <- decisionTable(exampleMatrix1)

dtMat <- getDecisionTable(dt)

getDecisionTable-methods
Methods for Function getDecisionTable

Description

Methods for function getDecisionTable

Methods

signature(object = "DecisionTable”) This method returns a numeric matrix as a representa-
tion of a Decision Table object.

getDiscernibilityMatrix 31

getDiscernibilityMatrix
GET DISCERNIBILITY MATRIX

Description

Accessor method for obtaining the boolean array which represents a slot of a Discernibility Matrix
object.

Usage

getDiscernibilityMatrix(object)

Arguments

object A Discernibility Matrix object

Value

It returns the Decision Table object as a boolean array of 3 dimensions.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

DiscernibilityMatrix-class

Examples

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,0,0,
9,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

dt <- new(Class="DecisionTable",decisionTable = exampleMatrix2)
dm <- computeDiscernibilityMatrix(dt)

dmArray <- getDiscernibilityMatrix(dm)

32 getRule

getDiscernibilityMatrix-methods
Methods for Function getDiscernibilityMatrix

Description

Methods for function getDiscernibilityMatrix

Methods

signature(object = "DiscernibilityMatrix") This method returns a 3 dimension boolean
array representing a Discernibility Matrix object.

getRule GET RULE

Description

Method for obtaining a rule of a Decision Table object as a numeric vector.

Usage

getRule(object, rulelndex)

Arguments

object A Decision Table object

ruleIndex A numeric vector made of the row indexes of the rules wanted
Value

It returns a subset of rules as numeric matrix; each rule is a row.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References
Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

DecisionTable-class

getRule-methods 33

Examples

exampleMatrixl <- matrix(c(1,90,2,1,1,2,2,0,0,1,0,1,0,2,1,1,2,
1,0,0,2,0,1,1,2,1,1,2,0,1,1,0,0,2,1,2,1,1,2,1),ncol = 5)

dt <- decisionTable(exampleMatrix1)

ruleIndex <- ¢(1,2,4,7,8)

ruleSet <- getRule(dt,rulelndex)

getRule-methods Methods for Function getRule

Description

Methods for function getRule

Methods
signature(object = "DecisionTable"”) This method returns a set of rules from a Decision Ta-
ble object.
getValueReduct GET VALUE REDUCT
Description

Accessor method for obtaining a numeric matrix representation of a Value Reduct object.

Usage

getValueReduct (object)

Arguments

object A Value Reduct object

Value

It returns the value reduct as a numeric matrix.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

34 getValueReductConditionReduct

See Also

ValueReduct-class

Examples

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,0,0,
0,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

dt <- new(Class="DecisionTable"”,decisionTable = exampleMatrix2)

cr <- new(Class="ConditionReduct”,decisionTable = dt,columnIds=c(1,2,4,5))
vr <- computeValueReduct(cr)

getVr <- getValueReduct(vr)

getValueReduct-methods
Methods for Function getValueReduct

Description

Methods for function getValueReduct

Methods

signature(object = "ValueReduct") This method returns a numeric matrix representing a Value
Reduct object.

getValueReductConditionReduct
GET VALUE REDUCT’S CONDITION REDUCT

Description

Accessor method for obtaining a Condition Reduct object of a slot of a Value Reduct object.

Usage

getValueReductConditionReduct(object)

Arguments

object A Value Reduct object

Value

It returns the condition reduct object of the Value Reduct object.

getValueReductConditionReduct-methods 35

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

ValueReduct-class,ConditionReduct-class

Examples

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,0,0,
0,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

dt <- new(Class="DecisionTable",decisionTable = exampleMatrix2)

cr <- new(Class="ConditionReduct”,decisionTable = dt,columnIds=c(1,2,4,5))
vr <- computeValueReduct(cr)

vrcr <- getValueReductConditionReduct(vr)

getValueReductConditionReduct-methods
Methods for Function getValueReductConditionReduct

Description

Methods for function getValueReductConditionReduct

Methods
signature(object = "ValueReduct") This method returns the Condition Reduct object of a
Value Reduct object.
initialize-methods Methods for Function initialize
Description

Methods for function initialize

Methods
signature(.Object = "ConditionReduct”) Constructor for a Condition Reduct object.
signature(.Object = "DecisionTable"”) Constructor for a Decision Table object.
signature(.Object = "DiscernibilityMatrix”) Constructor for a Discernibility Matrix ob-
ject.

signature(.Object = "ValueReduct"”) Constructor for a Value Reduct object.

36 isConditionReduct

isConditionReduct IS CONDITION REDUCT

Description

It tests if a Condition Reduct object is a condition reduct of its Decision Table object.

Usage

isConditionReduct(object)

Arguments

object A Condition Reduct object

Value

It returns a boolean indicating if the Condition Reduct object is a condition reduct of the Decision
Table object.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

ConditionReduct-class

Examples

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,0,0,
9,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

dt <- new(Class="DecisionTable",decisionTable = exampleMatrix2)

crl <- new(Class="ConditionReduct”,decisionTable = dt,columnlds=c(1,2,4,5))
cr2 <- new(Class="ConditionReduct”,decisionTable = dt,columnIds=c(1,2,5))
isConditionReduct(cr1) == TRUE

isConditionReduct(cr2) == FALSE

isConditionReduct-methods 37

isConditionReduct-methods
Methods for Function isConditionReduct

Description

Methods for function isConditionReduct

Methods

signature(object = "ConditionReduct”) This method returns a boolean indicating if a Con-
dition Reduct object actually is a condition reduct of its Decision Table object.

print-methods Methods for Function print

Description

Methods for function print

Methods
signature(x = "ConditionReduct”) It prints a Condition Reduct object.
signature(x = "DecisionTable") It prints a Decision Table object.
signature(x = "DiscernibilityMatrix”) Itprints a user friendly Discernibility Matrix object.

signature(x = "ValueReduct") It prints a Value Reduct object.

removeDuplicatedRulesCR
REMOVE DUPLICATED RULES FROM CONDITION REDUCT

Description
It returns a new Conditions Reduct object without the Decision Table object rules which are dupli-
cated in the Condition Reduct object.

Usage

removeDuplicatedRulesCR(object)

Arguments

object A Condition Reduct object

38 removeDuplicatedRulesCR-methods

Value

It returns a Condition Reduct object without duplicated rules in its Decision Table object from the
condition reduct perspective.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

ConditionReduct-class

Examples

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,0,0,
0,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

dt <- new(Class="DecisionTable"”,decisionTable = exampleMatrix2)

dtUnique <- removeDuplicatedRulesDT(dt)

cr <- new(Class="ConditionReduct"”,decisionTable = dtUnique,columnIds=c(1,2,4,5))
cr <- removeDuplicatedRulesCR(cr)

removeDuplicatedRulesCR-methods
Methods for Function removeDuplicatedRulesCR

Description

Methods for function removeDuplicatedRulesCR

Methods

signature(object = "ConditionReduct”) This method removes the duplicated rules of a Con-
dition Reduct object. For accomplishing this, the method removes rules from the Decision
Table of the Condition Reduct object which are duplicated in the column ids that makes the
condition reduct.

removeDuplicatedRulesDT 39

removeDuplicatedRulesDT
REMOVE DUPLICATED RULES FROM DECISION TABLE

Description

It returns a new Decision Table object without duplicated rules.

Usage

removeDuplicatedRulesDT (object)

Arguments

object A Decision Table object

Value

It returns a Decision Table object without duplicated rules.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

ConditionReduct-class

Examples

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,0,0,
0,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

dt <- new(Class="DecisionTable",decisionTable = exampleMatrix2)
dtUnique <- removeDuplicatedRulesDT(dt)

40 removeDuplicatedRulesVR

removeDuplicatedRulesDT-methods
Methods for Function removeDuplicatedRulesDT

Description

Methods for function removeDuplicatedRulesDT

Methods

signature(object = "DecisionTable”) This method removes the duplicated rules in a Deci-
sion Table object.

removeDuplicatedRulesVR
REMOVE DUPLICATED RULES FROM VALUE REDUCT

Description

It returns a new Value Reduct object without duplicated rules.

Usage

removeDuplicatedRulesVR(object)

Arguments

object A Value Reduct object

Value

It returns a Value Reduct object without duplicated rules.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References
Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

ValueReduct-class

removeDuplicatedRules VR-methods 41

Examples

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,0,0,
0,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

dt <- new(Class="DecisionTable",decisionTable = exampleMatrix2)

dtUnique <- removeDuplicatedRulesDT(dt)

cr <- new(Class="ConditionReduct”,decisionTable = dtUnique,columnIds=c(1,2,4,5))
cr <- removeDuplicatedRulesCR(cr)

vr <- computeValueReduct(cr)

vr <- removeDuplicatedRulesVR(vr)

removeDuplicatedRulesVR-methods
Methods for Function removeDuplicatedRulesVR

Description

Methods for function removeDuplicatedRulesVR

Methods
signature(object = "ValueReduct") This method removes the duplicated rules in a Value Reduct
object.
show-methods Methods for Function show
Description

Methods for function show

Methods
signature(object = "ConditionReduct"”) It shows the first ten rules and conditions of a Con-
dition Reduct object.
signature(object = "DecisionTable”) Itshows the first ten rules and conditions of a Decision
Table object.
signature(object = "DiscernibilityMatrix") It shows the first ten rows and columns of a

Discernibility Matrix object.

signature(object = "ValueReduct”) It shows the first ten rules and conditions of a Value
Reduct object.

42 simplifyDecisionTable

simplifyDecisionTable SIMPLIFY DECISION TABLE

Description

It returns a Value Reduct object which is the smallest and first found on the Decision Table object.

Usage

simplifyDecisionTable(object)

Arguments

object A Decision Table object

Value

It returns a Value Reduct computed from the first condition reduct found in the decision table.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

DecisionTable-class

Examples

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,0,0,
0,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

dt <- new(Class="DecisionTable",decisionTable = exampleMatrix2)
vr <- simplifyDecisionTable(dt)

simplifyDecisionTable-methods 43

simplifyDecisionTable-methods
Methods for Function simplifyDecisionTable

Description

Methods for function simplifyDecisionTable

Methods

signature(object = "DecisionTable”) This method returns a Value Reduct object. It is a
shortcut for finding the first smallest condition reduct and after the value reduct.

valueReduct VALUE REDUCT

Description
Objects of this class are not meant to be directly created by users; instead, they are created by the
objects of the class Condition Reduct.

Usage

valueReduct(theConditionReduct, theValueReduct)

Arguments

theConditionReduct
A Condition Reduct object

theValueReduct A numeric matrix representing a value reduct

Value

It returns a Value Reduct object.

Author(s)

Alber Sanchez <alber.sanchez@uni-muenster.de>

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

ValueReduct-class

44 ValueReduct-class

Examples

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,
0,0,0,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

dt <- new(Class="DecisionTable",decisionTable = exampleMatrix2)

cr <- new(Class="ConditionReduct”,decisionTable = dt,columnIds=c(1,2,4,5))
vr <- computeValueReduct(cr)

ValueReduct-class Class "ValueReduct”

Description

Objects of this class are not meant to be created by users, instead a Condition Reduct object and
the method computeValueReduct should be used. A value reduct is a condition reduct where the
superfluous conditions of each rule has been removed.

Objects from the Class

Objects can be created by calls of the form new("ValueReduct”, conditionReduct, valueReduct).
Objects of this class are not meant to be created by users, instead a Condition Reduct object and the
method computeValueReduct should be used.

Slots

conditionReduct: Object of class "ConditionReduct”

valueReduct: Object of class "matrix”

Methods
classifyDecisionTable signature(object = "ValueReduct”): ...
computeSupportConsistency signature(object = "ValueReduct"): ...

getValueReduct signature(object = "ValueReduct”): ...
getValueReductConditionReduct signature(object = "ValueReduct"): ...
initialize signature(.Object = "ValueReduct"): ...

print signature(x = "ValueReduct"): ...

removeDuplicatedRulesVR signature(object = "ValueReduct”): ...

show signature(object = "ValueReduct”): ...

Note

This is not a complete implementation of Rough Set theory; instead it is just the application of the
theory to decision table simplification also known as knowledge reduction.

Author(s)
Alber Sanchez

ValueReduct-class 45

References

Pawlak, Zdzislaw 1991 Rough Sets: Theoretical Aspects of Reasoning About Data Dordrecht:
Kluwer Academic Publishing.

See Also

DecisionTable DiscernibilityMatrix ConditionReduct

Examples

exampleMatrix2 <- matrix(c(1,1,0,1,1,2,2,0,0,0,1,1,1,2,0,0,0,
0,0,0,2,1,0,0,1,2,2,2,1,1,0,0,2,2,2),ncol = 5)

dt <- new(Class="DecisionTable",decisionTable = exampleMatrix2)

cr <- new(Class="ConditionReduct”,decisionTable = dt,columnIds=c(1,2,4,5))
vr <- computeValueReduct(cr)

Index

*Topic classes

ConditionReduct-class, 14
DecisionTable-class, 16
DiscernibilityMatrix-class, 18
ValueReduct-class, 44

+Topic logic

checkConsistency, 3
checkConsistency-methods, 4
classifyDecisionTable, 5
classifyDecisionTable-methods, 6
computeConsistencyMatrix, 6
computeConsistencyMatrix-methods
7
computeCore, 7
computeCore-methods, 8
computeDiscernibilityMatrix, 9
computeDiscernibilityMatrix-methods,
10
computeSupportConsistency, 10
computeSupportConsistency-methods,
11
computeValueReduct, 12
computeValueReduct-methods, 13
conditionReduct, 13
ConditionReduct-class, 14
decisionTable, 15
DecisionTable-class, 16
discernibilityMatrix, 17
DiscernibilityMatrix-class, 18
findAllReductsFromCore, 19
findAllReductsFromCore-methods, 20
findFirstConditionReduct, 21
findFirstConditionReduct-methods
22
findSmallestReductFamilyFromCore
22

findSmallestReductFamilyFromCore-methods

23
getColumnlds, 23

46

getColumnIds-methods, 24

getCondition, 25

getCondition-methods, 26

getConditionReduct, 26

getConditionReduct-methods, 27

getConditionReductDecisionTable,
27

getConditionReductDecisionTable-methods,

28
getDecision, 28
getDecision-methods, 29
getDecisionTable, 29
getDecisionTable-methods, 30
getDiscernibilityMatrix, 31
getDiscernibilityMatrix-methods,
32
getRule, 32
getRule-methods, 33
getValueReduct, 33
getValueReduct-methods, 34
getValueReductConditionReduct, 34
getValueReductConditionReduct-methods,
35
initialize-methods, 35
isConditionReduct, 36
isConditionReduct-methods, 37
print-methods, 37
removeDuplicatedRulesCR, 37
removeDuplicatedRulesCR-methods,
38
removeDuplicatedRulesDT, 39
removeDuplicatedRulesDT-methods,
40
removeDuplicatedRulesVR, 40
removeDuplicatedRulesVR-methods,
41
rs-package, 3
show-methods, 41
simplifyDecisionTable, 42

INDEX

simplifyDecisionTable-methods, 43
valueReduct, 43
ValueReduct-class, 44

*Topic methods
checkConsistency-methods, 4
classifyDecisionTable-methods, 6
computeConsistencyMatrix-methods

7

computeCore-methods, 8

computeDiscernibilityMatrix-methods,

10

computeSupportConsistency-methods,

11
computeValueReduct-methods, 13

findAllReductsFromCore-methods, 20

findFirstConditionReduct-methods
22

findSmallestReductFamilyFromCore-methods

23
getColumnIds-methods, 24
getCondition-methods, 26
getConditionReduct-methods, 27

getConditionReductDecisionTable-methods,

28
getDecision-methods, 29
getDecisionTable-methods, 30
getDiscernibilityMatrix-methods,
32
getRule-methods, 33
getValueReduct-methods, 34

getValueReductConditionReduct-methods,

35
initialize-methods, 35
isConditionReduct-methods, 37
print-methods, 37
removeDuplicatedRulesCR-methods,
38
removeDuplicatedRulesDT-methods,
40
removeDuplicatedRulesVR-methods,
41
show-methods, 41
simplifyDecisionTable-methods, 43
xTopic package
rs-package, 3
xTopic rough
checkConsistency, 3
checkConsistency-methods, 4

47

classifyDecisionTable, 5
classifyDecisionTable-methods, 6
computeConsistencyMatrix, 6
computeConsistencyMatrix-methods,
7
computeCore, 7
computeCore-methods, 8
computeDiscernibilityMatrix, 9
computeDiscernibilityMatrix-methods,
10
computeSupportConsistency, 10
computeSupportConsistency-methods,
11
computeValueReduct, 12
computeValueReduct-methods, 13
conditionReduct, 13
ConditionReduct-class, 14
decisionTable, 15
DecisionTable-class, 16
discernibilityMatrix, 17
DiscernibilityMatrix-class, 18
findAllReductsFromCore, 19
findAllReductsFromCore-methods, 20
findFirstConditionReduct, 21
findFirstConditionReduct-methods,
22
findSmallestReductFamilyFromCore,
22

findSmallestReductFamilyFromCore-methods,

23
getColumnIds, 23
getColumnIds-methods, 24
getCondition, 25
getCondition-methods, 26
getConditionReduct, 26
getConditionReduct-methods, 27
getConditionReductDecisionTable,

27

getConditionReductDecisionTable-methods,

28
getDecision, 28
getDecision-methods, 29
getDecisionTable, 29
getDecisionTable-methods, 30
getDiscernibilityMatrix, 31
getDiscernibilityMatrix-methods,
32
getRule, 32

48

getRule-methods, 33
getValueReduct, 33
getValueReduct-methods, 34
getValueReductConditionReduct, 34
getValueReductConditionReduct-methods,
35
initialize-methods, 35
isConditionReduct, 36
isConditionReduct-methods, 37
print-methods, 37
removeDuplicatedRulesCR, 37
removeDuplicatedRulesCR-methods,
38
removeDuplicatedRulesDT, 39
removeDuplicatedRulesDT-methods,
40
removeDuplicatedRulesVR, 40
removeDuplicatedRulesVR-methods,
41
rs-package, 3
show-methods, 41
simplifyDecisionTable, 42
simplifyDecisionTable-methods, 43
valueReduct, 43
ValueReduct-class, 44

*Topic set

checkConsistency, 3
checkConsistency-methods, 4
classifyDecisionTable, 5
classifyDecisionTable-methods, 6
computeConsistencyMatrix, 6
computeConsistencyMatrix-methods
7
computeCore, 7
computeCore-methods, 8
computeDiscernibilityMatrix, 9
computeDiscernibilityMatrix-methods,
10
computeSupportConsistency, 10
computeSupportConsistency-methods,
11
computeValueReduct, 12
computeValueReduct-methods, 13
conditionReduct, 13
ConditionReduct-class, 14
decisionTable, 15
DecisionTable-class, 16
discernibilityMatrix, 17

INDEX

DiscernibilityMatrix-class, 18
findAllReductsFromCore, 19
findAllReductsFromCore-methods, 20
findFirstConditionReduct, 21
findFirstConditionReduct-methods,
22
findSmallestReductFamilyFromCore,
22
findSmallestReductFamilyFromCore-methods,
23
getColumnIds, 23
getColumnIds-methods, 24
getCondition, 25
getCondition-methods, 26
getConditionReduct, 26
getConditionReduct-methods, 27
getConditionReductDecisionTable,
27
getConditionReductDecisionTable-methods,
28
getDecision, 28
getDecision-methods, 29
getDecisionTable, 29
getDecisionTable-methods, 30
getDiscernibilityMatrix, 31
getDiscernibilityMatrix-methods,
32
getRule, 32
getRule-methods, 33
getValueReduct, 33
getValueReduct-methods, 34
getValueReductConditionReduct, 34
getValueReductConditionReduct-methods,
35
initialize-methods, 35
isConditionReduct, 36
isConditionReduct-methods, 37
print-methods, 37
removeDuplicatedRulesCR, 37
removeDuplicatedRulesCR-methods,
38
removeDuplicatedRulesDT, 39
removeDuplicatedRulesDT-methods,
40
removeDuplicatedRulesVR, 40
removeDuplicatedRulesVR-methods,
41
rs-package, 3

INDEX 49

show-methods, 41 DiscernibilityMatrix-class, 18
simplifyDecisionTable, 42
simplifyDecisionTable-methods, 43 findAllReductsFromCore, 8, 19, 21, 23
valueReduct, 43 findAllReductsFromCore,DecisionTable-method
ValueReduct-class, 44 (findAl1lReductsFromCore-methods),
20
checkConsistency, 3, 7 findAllReductsFromCore-methods, 20
checkConsistency,DecisionTable-method findFirstConditionReduct, 8, 20, 21, 23

(checkConsistency-methods), 4 findFirstConditionReduct,DecisionTable-method

check;onsisFehcy—methods,4 (findFirstConditionReduct-methods),
classifyDecisionTable, 5, 11, 12 2

classifyDecisionTable,ValueReduct-method
(classifyDecisionTable-methods),
6

classifyDecisionTable-methods, 6

computeConsistencyMatrix, 4, 6

findFirstConditionReduct-methods, 22
findSmallestReductFamilyFromCore, 8, 20,
21,22
findSmallestReductFamilyFromCore,DecisionTable-method
(findSmallestReductFamilyFromCore-methods),

computeConsistencyMatrix,DecisionTable-method 23
gfomputeCon51stencyMatrlx—methodsL findSmallestReductFamilyFromCore-methods,

23
computeConsistencyMatrix-methods, 7

computeCore, 7, 9, 20, 21, 23
computeCore,DiscernibilityMatrix-method
(computeCore-methods), 8

computeCore-methods, 8
computeDiscernibilityMatrix, 8,9 getColumn;ds—methods,24
computeDiscernibilityMatrix,DecisionTable—met%%Hcond}t%on’25 o
(computeDiscernibilityMatrix—methods),getcondltlon’DecmlonTable_method
10 (getCondition-methods), 26
computeDiscernibilityMatrix-methods, getCondition-methods, 26
10 getConditionReduct, 26
getConditionReduct,ConditionReduct-method
(getConditionReduct-methods),

getColumnIds, 23
getColumnIds,ConditionReduct-method
(getColumnIds-methods), 24

computeSupportConsistency, 10
computeSupportConsistency,ValueReduct-method

(computeSupportConsistency-methods), 27

11 getConditionReduct-methods, 27
computeSupportConsistency-methods, 11 getConditionReductDecisionTable, 27
computeValueReduct, 12 getConditionReductDecisionTable,ConditionReduct-method
computeValueReduct,ConditionReduct-method (getConditionReductDecisionTable-methods),

(computeValueReduct-methods), 28

13 getConditionReductDecisionTable-methods,
computeValueReduct-methods, 13 . 28
ConditionReduct, 17, 19, 45 getDecision, 28
conditionReduct, 13 getDecision,DecisionTable-method
ConditionReduct-class, 14 (getDecision-methods), 29

getDecision-methods, 29

DecisionTable, 15, 19, 45 getDecisionTable, 29
decisionTable, 15 getDecisionTable,DecisionTable-method
DecisionTable-class, 16 (getDecisionTable-methods), 30
DiscernibilityMatrix, 15, 17,45 getDecisionTable-methods, 30

discernibilityMatrix, 17 getDiscernibilityMatrix, 31

50

INDEX

getDiscernibilityMatrix,DiscernibilityMatrix-membweeDuplicatedRulesDT,DecisionTable-method

(getDiscernibilityMatrix-methods),
32
getDiscernibilityMatrix-methods, 32
getRule, 32
getRule,DecisionTable-method
(getRule-methods), 33
getRule-methods, 33
getValueReduct, 33
getValueReduct,ValueReduct-method
(getValueReduct-methods), 34
getValueReduct-methods, 34
getValueReductConditionReduct, 34

getValueReductConditionReduct,ValueReduct-method

(removeDuplicatedRulesDT-methods),
40
removeDuplicatedRulesDT-methods, 40
removeDuplicatedRulesVR, 40
removeDuplicatedRulesVR, ValueReduct-method
(removeDuplicatedRulesVR-methods),
41
removeDuplicatedRulesVR-methods, 41
rs (rs-package), 3
rs-package, 3

show, ConditionReduct-method
(show-methods), 41

(getValueReductConditionReduct-method§fow,DecisionTable-method

35
getValueReductConditionReduct-methods,
35

initialize,ConditionReduct-method
(initialize-methods), 35
initialize,DecisionTable-method
(initialize-methods), 35
initialize,DiscernibilityMatrix-method
(initialize-methods), 35
initialize,ValueReduct-method
(initialize-methods), 35
initialize-methods, 35
isConditionReduct, 36
isConditionReduct,ConditionReduct-method
(isConditionReduct-methods), 37
isConditionReduct-methods, 37

print,ConditionReduct-method
(print-methods), 37
print,DecisionTable-method
(print-methods), 37
print,DiscernibilityMatrix-method
(print-methods), 37
print,ValueReduct-method
(print-methods), 37
print-methods, 37

removeDuplicatedRulesCR, 37

(show-methods), 41
show,DiscernibilityMatrix-method
(show-methods), 41
show, ValueReduct-method (show-methods),
41
show-methods, 41
simplifyDecisionTable, 42
simplifyDecisionTable,DecisionTable-method
(simplifyDecisionTable-methods),
43
simplifyDecisionTable-methods, 43

ValueReduct, 15,17, 19
valueReduct, 43
ValueReduct-class, 44

removeDuplicatedRulesCR,ConditionReduct-method

(removeDuplicatedRulesCR-methods),

38
removeDuplicatedRulesCR-methods, 38
removeDuplicatedRulesDT, 39

	rs-package
	checkConsistency
	checkConsistency-methods
	classifyDecisionTable
	classifyDecisionTable-methods
	computeConsistencyMatrix
	computeConsistencyMatrix-methods
	computeCore
	computeCore-methods
	computeDiscernibilityMatrix
	computeDiscernibilityMatrix-methods
	computeSupportConsistency
	computeSupportConsistency-methods
	computeValueReduct
	computeValueReduct-methods
	conditionReduct
	ConditionReduct-class
	decisionTable
	DecisionTable-class
	discernibilityMatrix
	DiscernibilityMatrix-class
	findAllReductsFromCore
	findAllReductsFromCore-methods
	findFirstConditionReduct
	findFirstConditionReduct-methods
	findSmallestReductFamilyFromCore
	findSmallestReductFamilyFromCore-methods
	getColumnIds
	getColumnIds-methods
	getCondition
	getCondition-methods
	getConditionReduct
	getConditionReduct-methods
	getConditionReductDecisionTable
	getConditionReductDecisionTable-methods
	getDecision
	getDecision-methods
	getDecisionTable
	getDecisionTable-methods
	getDiscernibilityMatrix
	getDiscernibilityMatrix-methods
	getRule
	getRule-methods
	getValueReduct
	getValueReduct-methods
	getValueReductConditionReduct
	getValueReductConditionReduct-methods
	initialize-methods
	isConditionReduct
	isConditionReduct-methods
	print-methods
	removeDuplicatedRulesCR
	removeDuplicatedRulesCR-methods
	removeDuplicatedRulesDT
	removeDuplicatedRulesDT-methods
	removeDuplicatedRulesVR
	removeDuplicatedRulesVR-methods
	show-methods
	simplifyDecisionTable
	simplifyDecisionTable-methods
	valueReduct
	ValueReduct-class
	Index

