
Package ‘Rmpfr’
January 24, 2020

Title R MPFR - Multiple Precision Floating-Point Reliable

Version 0.8-1

Date 2020-01-14

DateNote Previous CRAN version 0.7-2 on 2019-01-18

Type Package

SystemRequirements gmp (>= 4.2.3), mpfr (>= 3.0.0)

SystemRequirementsNote 'MPFR' (MP Floating-Point Reliable Library,
http://mpfr.org/) and 'GMP' (GNU Multiple Precision library,
http://gmplib.org/), see >> README.md

Depends gmp (>= 0.5-8), R (>= 3.3.0)

Imports stats, utils, methods

Suggests MASS, Bessel, polynom, sfsmisc (>= 1.0-20), Matrix

SuggestsNote MASS, polynom, sfsmisc: only for vignette; Matrix:
test-tools

URL http://rmpfr.r-forge.r-project.org/

Description Arithmetic (via S4 classes and methods) for
arbitrary precision floating point numbers, including transcendental
(``special'') functions. To this end, the package interfaces to
the 'LGPL' licensed 'MPFR' (Multiple Precision Floating-Point Reliable) Library
which itself is based on the 'GMP' (GNU Multiple Precision) Library.

License GPL (>= 2)

Encoding UTF-8

NeedsCompilation yes

Author Martin Maechler [aut, cre] (<https://orcid.org/0000-0002-8685-9910>),
Richard M. Heiberger [ctb] (formatHex(), *Bin, *Dec)

Maintainer Martin Maechler <maechler@stat.math.ethz.ch>

Repository CRAN

Date/Publication 2020-01-24 14:30:13 UTC

1

http://rmpfr.r-forge.r-project.org/

2 R topics documented:

R topics documented:

Rmpfr-package . 3
array_or_vector-class . 6
asNumeric-methods . 7
atomicVector-class . 8
Bernoulli . 8
Bessel_mpfr . 10
bind-methods . 11
chooseMpfr . 12
factorialMpfr . 14
formatHex . 15
formatMpfr . 18
gmp-conversions . 20
hjkMpfr . 21
igamma . 24
integrateR . 25
is.whole . 28
Mnumber-class . 29
mpfr . 30
mpfr-class . 32
mpfr-distr-etc . 37
mpfr-special-functions . 39
mpfr-utils . 40
mpfr.utils . 44
mpfrArray . 46
mpfrMatrix . 47
mpfrMatrix-utils . 50
optimizeR . 52
pbetaI . 54
pmax . 56
Rmpfr-workarounds . 57
roundMpfr . 58
sapplyMpfr . 58
seqMpfr . 59
str.mpfr . 60
sumBinomMpfr . 61
unirootR . 63

Index 67

Rmpfr-package 3

Rmpfr-package R MPFR - Multiple Precision Floating-Point Reliable

Description

Rmpfr provides S4 classes and methods for arithmetic including transcendental ("special") func-
tions for arbitrary precision floating point numbers, here often called “mpfr - numbers”. To this
end, it interfaces to the LGPL’ed MPFR (Multiple Precision Floating-Point Reliable) Library which
itself is based on the GMP (GNU Multiple Precision) Library.

Details

Package: Rmpfr
Title: R MPFR - Multiple Precision Floating-Point Reliable
Version: 0.8-1
Date: 2020-01-14
DateNote: Previous CRAN version 0.7-2 on 2019-01-18
Type: Package
Authors@R: c(person("Martin","Maechler", role = c("aut","cre"), email = "maechler@stat.math.ethz.ch", comment = c(ORCID="0000-0002-8685-9910")) , person(c("Richard", "M."), "Heiberger", role = "ctb", email="rmh@temple.edu", comment = "formatHex(), *Bin, *Dec"))
SystemRequirements: gmp (>= 4.2.3), mpfr (>= 3.0.0)
SystemRequirementsNote: ’MPFR’ (MP Floating-Point Reliable Library, http://mpfr.org/) and ’GMP’ (GNU Multiple Precision library, http://gmplib.org/), see » README.md
Depends: gmp (>= 0.5-8), R (>= 3.3.0)
Imports: stats, utils, methods
Suggests: MASS, Bessel, polynom, sfsmisc (>= 1.0-20), Matrix
SuggestsNote: MASS, polynom, sfsmisc: only for vignette; Matrix: test-tools
URL: http://rmpfr.r-forge.r-project.org/
Description: Arithmetic (via S4 classes and methods) for arbitrary precision floating point numbers, including transcendental ("special") functions. To this end, the package interfaces to the ’LGPL’ licensed ’MPFR’ (Multiple Precision Floating-Point Reliable) Library which itself is based on the ’GMP’ (GNU Multiple Precision) Library.
License: GPL (>= 2)
Encoding: UTF-8
Author: Martin Maechler [aut, cre] (<https://orcid.org/0000-0002-8685-9910>), Richard M. Heiberger [ctb] (formatHex(), *Bin, *Dec)
Maintainer: Martin Maechler <maechler@stat.math.ethz.ch>

Index of help topics:

.bigq2mpfr Conversion Utilities gmp <-> Rmpfr
Bernoulli Bernoulli Numbers in Arbitrary Precision
Bessel_mpfr Bessel functions of Integer Order in multiple

precisions
Mnumber-class Class "Mnumber" and "mNumber" of "mpfr" and

regular numbers and arrays from them
Rmpfr-package R MPFR - Multiple Precision Floating-Point

Reliable
array_or_vector-class Auxiliary Class "array_or_vector"
asNumeric-methods Methods for 'asNumeric(<mpfr>)'
atomicVector-class Virtual Class "atomicVector" of Atomic Vectors

4 Rmpfr-package

c.mpfr MPFR Number Utilities
cbind "mpfr" '...' - Methods for Functions cbind(),

rbind()
chooseMpfr Binomial Coefficients and Pochhammer Symbol aka

Rising Factorial
determinant.mpfrMatrix

Functions for mpfrMatrix Objects
factorialMpfr Factorial 'n!' in Arbitrary Precision
formatHex Flexibly Format Numbers in Binary, Hex and

Decimal Format
formatMpfr Formatting MPFR (multiprecision) Numbers
getPrec Rmpfr - Utilities for Precision Setting,

Printing, etc
hjkMpfr Hooke-Jeeves Derivative-Free Minimization R

(working for MPFR)
igamma Incomplete Gamma Function
integrateR One-Dimensional Numerical Integration - in pure

R
is.whole.mpfr Whole ("Integer") Numbers
mpfr Create "mpfr" Numbers (Objects)
mpfr-class Class "mpfr" of Multiple Precision Floating

Point Numbers
mpfrArray Construct "mpfrArray" almost as by 'array()'
mpfrMatrix-class Classes "mpfrMatrix" and "mpfrArray"
optimizeR High Precision One-Dimensional Optimization
outer Base Functions etc, as an Rmpfr version
pbetaI Accurate Incomplete Beta / Beta Probabilities

For Integer Shapes
pmax Parallel Maxima and Minima
pnorm Distribution Functions etc (MPFR)
roundMpfr Rounding to Binary bits, "mpfr-internally"
sapplyMpfr Apply a Function over a "mpfr" Vector
seqMpfr "mpfr" Sequence Generation
str.mpfr Compactly Show STRucture of Rmpfr Number Object
sumBinomMpfr (Alternating) Binomial Sums via Rmpfr
unirootR One Dimensional Root (Zero) Finding - in pure R
zeta Special Mathematical Functions (MPFR)

Further information is available in the following vignettes:

Maechler_useR_2011-abstr useR-2011-abstract (source)
Rmpfr-pkg Arbitrarily Accurate Computation with R Package Rmpfr (source)
log1mexp-note Accurately Computing log(1 - exp(.)) – Assessed by Rmpfr (source)

The following (help pages) index does not really mention that we provide many methods for mathe-

Rmpfr-package 5

matical functions, including gamma, digamma, etc, namely, all of R’s (S4) Math group (with the only
exception of trigamma), see the list in the examples. Additionally also pnorm, the “error function”,
and more, see the list in zeta, and further note the first vignette (below).

Partial index:

mpfr Create "mpfr" Numbers (Objects)
mpfrArray Construct "mpfrArray" almost as by array()
mpfr-class Class "mpfr" of Multiple Precision Floating Point Numbers
mpfrMatrix-class Classes "mpfrMatrix" and "mpfrArray"

Bernoulli Bernoulli Numbers in Arbitrary Precision
Bessel_mpfr Bessel functions of Integer Order in multiple precisions
c.mpfr MPFR Number Utilities
cbind "mpfr" ... - Methods for Functions cbind(), rbind()
chooseMpfr Binomial Coefficients and Pochhammer Symbol aka

Rising Factorial
factorialMpfr Factorial ’n!’ in Arbitrary Precision
formatMpfr Formatting MPFR (multiprecision) Numbers
getPrec Rmpfr - Utilities for Precision Setting, Printing, etc
roundMpfr Rounding to Binary bits, "mpfr-internally"
seqMpfr "mpfr" Sequence Generation
sumBinomMpfr (Alternating) Binomial Sums via Rmpfr
zeta Special Mathematical Functions (MPFR)

integrateR One-Dimensional Numerical Integration - in pure R
unirootR One Dimensional Root (Zero) Finding - in pure R
optimizeR High Precisione One-Dimensional Optimization
hjkMpfr Hooke-Jeeves Derivative-Free Minimization R (working for MPFR)

Further information is available in the following vignettes:

Rmpfr-pkg Rmpfr (source, pdf)
log1mexp-note Acccurately Computing log(1 - exp(.)) – Assessed by Rmpfr (source, pdf)

Author(s)

Martin Maechler

References

MPFR (MP Floating-Point Reliable Library), http://mpfr.org/

GMP (GNU Multiple Precision library), http://gmplib.org/

and see the vignettes mentioned above.

http://mpfr.org/
http://gmplib.org/

6 array_or_vector-class

See Also

The R package gmp for big integer and rational numbers (bigrational) on which Rmpfr now
depends.

Examples

Using "mpfr" numbers instead of regular numbers...
n1.25 <- mpfr(5, precBits = 256)/4
n1.25

and then "everything" just works with the desired chosen precision:hig
n1.25 ^ c(1:7, 20, 30) ## fully precise; compare with
print(1.25 ^ 30, digits=19)

exp(n1.25)

Show all math functions which work with "MPFR" numbers (1 exception: trigamma)
getGroupMembers("Math")

We provide *many* arithmetic, special function, and other methods:
showMethods(classes = "mpfr")
showMethods(classes = "mpfrArray")

array_or_vector-class Auxiliary Class "array_or_vector"

Description

"array_or_vector" is the class union of c("array","matrix","vector") and exists for its use
in signatures of method definitions.

Details

Using "array_or_vector" instead of just "vector" in a signature makes an important difference:
E.g., if we had setMethod(crossprod,c(x="mpfr",y="vector"),function(x,y) CPR(x,y)), a
call crossprod(x,matrix(1:6,2,3)) would extend into a call of CPR(x,as(y,"vector")) such
that CPR()’s second argument would simply be a vector instead of the desired 2× 3 matrix.

Objects from the Class

A virtual Class: No objects may be created from it.

Examples

showClass("array_or_vector")

asNumeric-methods 7

asNumeric-methods Methods for asNumeric(<mpfr>)

Description

Methods for function asNumeric (in package gmp).

Usage

S4 method for signature 'mpfrArray'
asNumeric(x)

Arguments

x a “number-like” object, here, a mpfr or typically mpfrArrayone.

Value

an R object of type (typeof) "numeric", a matrix or array if x had non-NULL dimension dim().

Methods

signature(x = "mpfrArray") this method also dispatches for mpfrMatrix and returns a numeric
array.

signature(x = "mpfr") for non-array/matrix, asNumeric(x) is basically the same as as.numeric(x).

Author(s)

Martin Maechler

See Also

our lower level (non-generic) toNum(). Further, asNumeric (package gmp), standard R’s as.numeric().

Examples

x <- (0:7)/8 # (exact)
X <- mpfr(x, 99)
stopifnot(identical(asNumeric(x), x),

identical(asNumeric(X), x))

m <- matrix(1:6, 3,2)
(M <- mpfr(m, 99) / 5) ##-> "mpfrMatrix"
asNumeric(M) # numeric matrix
stopifnot(all.equal(asNumeric(M), m/5),

identical(asNumeric(m), m))# remains matrix

8 Bernoulli

atomicVector-class Virtual Class "atomicVector" of Atomic Vectors

Description

The class "atomicVector" is a virtual class containing all atomic vector classes of base R, as also
implicitly defined via is.atomic.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

In the Matrix package, the "atomicVector" is used in signatures where typically “old-style” "ma-
trix" objects can be used and can be substituted by simple vectors.

Extends

The atomic classes "logical", "integer", "double", "numeric", "complex", "raw" and "character"
are extended directly. Note that "numeric" already contains "integer" and "double", but we want
all of them to be direct subclasses of "atomicVector".

Author(s)

Martin Maechler

See Also

is.atomic, integer, numeric, complex, etc.

Examples

showClass("atomicVector")

Bernoulli Bernoulli Numbers in Arbitrary Precision

Description

Computes the Bernoulli numbers in the desired (binary) precision. The computation happens via
the zeta function and the formula

Bk = −kζ(1− k),

and hence the only non-zero odd Bernoulli number is B1 = +1/2. (Another tradition defines it,
equally sensibly, as −1/2.)

Bernoulli 9

Usage

Bernoulli(k, precBits = 128)

Arguments

k non-negative integer vector

precBits the precision in bits desired.

Value

an mpfr class vector of the same length as k, with i-th component the k[i]-th Bernoulli number.

Author(s)

Martin Maechler

References

http://en.wikipedia.org/wiki/Bernoulli_number

See Also

zeta is used to compute them.

Examples

Bernoulli(0:10)
plot(as.numeric(Bernoulli(0:15)), type = "h")

curve(-x*zeta(1-x), -.2, 15.03, n=300,
main = expression(-x %.% zeta(1-x)))

legend("top", paste(c("even","odd "), "Bernoulli numbers"),
pch=c(1,3), col=2, pt.cex=2, inset=1/64)

abline(h=0,v=0, lty=3, col="gray")
k <- 0:15; k[1] <- 1e-4
points(k, -k*zeta(1-k), col=2, cex=2, pch=1+2*(k%%2))

They pretty much explode for larger k :
k2 <- 2*(1:120)
plot(k2, abs(as.numeric(Bernoulli(k2))), log = "y")
title("Bernoulli numbers exponential growth")

Bernoulli(10000)# - 9.0494239636 * 10^27677

http://en.wikipedia.org/wiki/Bernoulli_number

10 Bessel_mpfr

Bessel_mpfr Bessel functions of Integer Order in multiple precisions

Description

Bessel functions of integer orders, provided via arbitrary precision algorithms from the MPFR li-
brary.

Note that the computation can be very slow when n and x are large (and of similar magnitude).

Usage

Ai(x)
j0(x)
j1(x)
jn(n, x, rnd.mode = c("N","D","U","Z","A"))
y0(x)
y1(x)
yn(n, x, rnd.mode = c("N","D","U","Z","A"))

Arguments

x a numeric or mpfr vector.

n non-negative integer (vector).

rnd.mode a 1-letter string specifying how rounding should happen at C-level conversion
to MPFR, see mpfr.

Value

Computes multiple precision versions of the Bessel functions of integer order, Jn(x) and Yn(x),
and—when using MPFR library 3.0.0 or newer—also of the Airy function Ai(x). Note that cur-
rently Ai(x) is very slow to compute for large x.

See Also

besselJ, and besselY compute the same bessel functions but for arbitrary real order and only
precision of a bit more than ten digits.

Examples

x <- (0:100)/8 # (have exact binary representation)
stopifnot(all.equal(besselY(x, 0), bY0 <- y0(x))

, all.equal(besselJ(x, 1), bJ1 <- j1(x))
, all.equal(yn(0,x), bY0)
, all.equal(jn(1,x), bJ1)
)

if(mpfrVersion() >= "3.0.0") { ## Ai() not available previously

bind-methods 11

print(aix <- Ai(x))
plot(x, aix, log="y", type="l", col=2)
stopifnot(

all.equal(Ai (0) , 1/(3^(2/3) * gamma(2/3)))
, # see http://dlmf.nist.gov/9.2.ii
all.equal(Ai(100), mpfr("2.6344821520881844895505525695264981561e-291"), tol=1e-37)

)
two3rd <- 2/mpfr(3, 144)
print(all.equal(Ai(0), 1/(3^two3rd * gamma(two3rd)), tol=0)) # 1.7e-40
if(Rmpfr:::doExtras()) { # slowish:

system.time(ai1k <- Ai(1000)) # 1.4 sec (on 2017 lynne)
stopifnot(all.equal(log10(ai1k),

-9157.031193409585185582, tol=1e-16))
}

} # ver >= 3.0

bind-methods "mpfr" ’...’ - Methods for Functions cbind(), rbind()

Description

cbind and rbind methods for signature ... (see dotsMethods are provided for class Mnumber, i.e.,
for binding numeric vectors and class "mpfr" vectors and matrices ("mpfrMatrix") together.

Usage

cbind(..., deparse.level = 1)
rbind(..., deparse.level = 1)

Arguments

... matrix-/vector-like R objects to be bound together, see the base documentation,
cbind.

deparse.level integer determining under which circumstances column and row names are built
from the actual arguments’ ‘expression’, see cbind.

Value

typically a ‘matrix-like’ object, here typically of class "mpfrMatrix".

Methods

... = "Mnumber" is used to (c|r)bind multiprecision “numbers” (inheriting from class "mpfr")
together, maybe combined with simple numeric vectors.

... = "ANY" reverts to cbind and rbind from package base.

Author(s)

Martin Maechler

12 chooseMpfr

See Also

cbind2, cbind, Documentation in base R’s methods package

Examples

cbind(1, mpfr(6:3, 70)/7, 3:0)

chooseMpfr Binomial Coefficients and Pochhammer Symbol aka Rising Factorial

Description

Compute binomial coefficients, chooseMpfr(a,n) being mathematically the same as choose(a,n),
but using high precision (MPFR) arithmetic.

chooseMpfr.all(n) means the vector choose(n,1:n), using enough bits for exact computation
via MPFR. However, chooseMpfr.all() is now deprecated in favor of chooseZ from package
gmp, as that is now vectorized.

pochMpfr() computes the Pochhammer symbol or “rising factorial”, also called the “Pochhammer
function”, “Pochhammer polynomial”, “ascending factorial”, “rising sequential product” or “upper
factorial”,

x(n) = x(x+ 1)(x+ 2) · · · (x+ n− 1) =
(x+ n− 1)!

(x− 1)!
=

Γ(x+ n)

Γ(x)
.

Usage

chooseMpfr (a, n, rnd.mode = c("N","D","U","Z","A"))
chooseMpfr.all(n, precBits=NULL, k0=1, alternating=FALSE)
pochMpfr(a, n, rnd.mode = c("N","D","U","Z","A"))

Arguments

a a numeric or mpfr vector.

n an integer vector; if not of length one, n and a are recycled to the same length.

rnd.mode a 1-letter string specifying how rounding should happen at C-level conversion
to MPFR, see mpfr.

precBits integer or NULL for increasing the default precision of the result.

k0 integer scalar

alternating logical, for chooseMpfr.all(), indicating if alternating sign coefficients should
be returned, see below.

chooseMpfr 13

Value

For

chooseMpfr(), pochMpfr(): an mpfr vector of length max(length(a),length(n));

chooseMpfr.all(n, k0): a mpfr vector of length n-k0+1, of binomial coefficients Cn,m or, if
alternating is true, (−1)m · Cn,m for m ∈ k0:n.

Note

If you need high precision choose(a,n) (or Pochhammer(a,n)) for large n, maybe better work with
the corresponding factorial(mpfr(..)), or gamma(mpfr(..)) terms.

See Also

choose(n,m) (base R) computes the binomial coefficient Cn,m which can also be expressed via
Pochhammer symbol as Cn,m = (n−m+ 1)(m)/m!.

chooseZ from package gmp; for now, factorialMpfr.

For (alternating) binomial sums, directly use sumBinomMpfr, as that is potentially more efficient.

Examples

pochMpfr(100, 4) == 100*101*102*103 # TRUE
a <- 100:110
pochMpfr(a, 10) # exact (but too high precision)
x <- mpfr(a, 70)# should be enough
(px <- pochMpfr(x, 10)) # the same as above (needing only 70 bits)
stopifnot(pochMpfr(a, 10) == px,

px[1] ==prod(mpfr(100:109, 100)))# used to fail

(c1 <- chooseMpfr(1000:997, 60)) # -> automatic "correct" precision
stopifnot(all.equal(c1, choose(1000:997, 60), tolerance=1e-12))

--- Experimenting & Checking
n.set <- c(1:10, 20, 50:55, 100:105, 200:203, 300:303, 500:503,

699:702, 999:1001)
if(!Rmpfr:::doExtras()) { ## speed up: smaller set

n. <- n.set[-(1:10)]
n.set <- c(1:10, n.[c(TRUE, diff(n.) > 1)])

}
C1 <- C2 <- numeric(length(n.set))
for(i.n in seq_along(n.set)) {

cat(n <- n.set[i.n],":")
C1[i.n] <- system.time(c.c <- chooseMpfr.all(n))[1]
C2[i.n] <- system.time(c.2 <- chooseMpfr(n, 1:n))[1]
stopifnot(is.whole(c.c), c.c == c.2,

if(n > 60) TRUE else all.equal(c.c, choose(n, 1:n), tolerance = 1e-15))
cat(" [Ok]\n")

}
matplot(n.set, cbind(C1,C2), type="b", log="xy",

xlab = "n", ylab = "system.time(.) [s]")

14 factorialMpfr

legend("topleft", c("chooseMpfr.all(n)", "chooseMpfr(n, 1:n)"),
pch=as.character(1:2), col=1:2, lty=1:2, bty="n")

Currently, chooseMpfr.all() is faster only for large n (>= 300)
That would change if we used C-code for the *.all() version

factorialMpfr Factorial ’n!’ in Arbitrary Precision

Description

Efficiently compute n! in arbitrary precision, using the MPFR-internal implementation. This is
mathematically (but not numerically) the same as Γ(n+ 1).

factorialZ (package gmp) should typically be used instead of factorialMpfr() nowadays.
Hence, factorialMpfr now is somewhat deprecated.

Usage

factorialMpfr(n, precBits = max(2, ceiling(lgamma(n+1)/log(2))),
rnd.mode = c("N","D","U","Z","A"))

Arguments

n non-negative integer (vector).

precBits desired precision in bits (“binary digits”); the default sets the precision high
enough for the result to be exact.

rnd.mode a 1-letter string specifying how rounding should happen at C-level conversion
to MPFR, see mpfr.

Value

a number of (S4) class mpfr.

See Also

factorial and gamma in base R.

factorialZ (package gmp), to replace factorialMpfr, see above.

chooseMpfr() and pochMpfr() (on the same page).

Examples

factorialMpfr(200)

n <- 1000:1010
f1000 <- factorialMpfr(n)
stopifnot(1e-15 > abs(as.numeric(1 - lfactorial(n)/log(f1000))))

formatHex 15

Note that---astonishingly--- measurements show only
small efficiency gain of ~ 10% : over using the previous "technique"
system.time(replicate(8, f1e4 <- factorialMpfr(10000)))
system.time(replicate(8, f.1e4 <- factorial(mpfr(10000,

prec=1+lfactorial(10000)/log(2)))))

formatHex Flexibly Format Numbers in Binary, Hex and Decimal Format

Description

Show numbers in binary, hex and decimal format. The resulting character-like objects can be back-
transformed to "mpfr" numbers via mpfr().

Usage

formatHex(x, precBits = min(getPrec(x)), style = "+", expAlign = TRUE)

formatBin(x, precBits = min(getPrec(x)), scientific = TRUE,
left.pad = "_", right.pad = left.pad, style = "+", expAlign = TRUE)

formatDec(x, precBits = min(getPrec(x)), digits = decdigits,
nsmall = NULL, scientific = FALSE, style = "+",
decimalPointAlign = TRUE, ...)

Arguments

x a numeric or mpfr R object.

precBits integer, the number of bits of precision, typically derived from x, see getPrec.
Numeric, i.e., double precision numbers have 53 bits. For more detail, see mpfr.

style a single character, to be used in sprintf’s format (fmt), immediately after the "
sets a sign in the output, i.e., "+" or "-", where as style = " " may seem more
standard.

expAlign logical indicating if for scientific (“exponential”) representations the expo-
nents should be aligned to the same width, i.e., zero-padded to the same number
of digits.

scientific logical indicating that formatBin should display the binary representation in
scientific notation (mpfr(3,5) is displayed as +0b1.1000p+1). When FALSE,
formatBin will display the binary representation in regular format shifted to
align binary points (mpfr(3,5) is displayed +0b11.000).

16 formatHex

... additional optional arguments.
formatHex, formatBin: precBits is the only ... argument acted on. Other
... arguments are ignored.
formatDec: precBits is acted on. Any argument accepted by format (except
nsmall) is acted on. Other ... arguments are ignored.

left.pad, right.pad

characters (one-character strings) that will be used for left- and right-padding of
the formatted string when scientific=FALSE. Do not change these unless for
display-only purpose !!

nsmall only used when scientific is false, then passed to format(). If NULL, the
default is computed from the range of the non-zero values of x.

digits integer; the number of decimal digits displayed is the larger of this argument
and the internally generated value that is a function of precBits. This is related
to but different than digits in format.

decimalPointAlign

logical indicating if padding should be used to ensure that the resulting strings
align on the decimal point (".").

Details

For the hexadecimal representation, when the precision is not larger than double precision, sprintf()
is used directly, otherwise formatMpfr() is used and post processed. For the binary representation,
the hexadecimal value is calculated and then edited by substitution of the binary representation of
the hex characters coded in the HextoBin vector. For binary with scientific=FALSE, the result of
the scientific=TRUE version is edited to align binary points. For the decimal representation, the
hexadecimal value is calculated with the specified precision and then sent to the format function
for scientific=FALSE or to the sprintf function for scientific=TRUE.

Value

a character vector (or matrix) like x, say r, containing the formatted represention of x, with a class
(unless left.pad or right.pad were not "_"). In that case, formatHex() and formatBin() return
class "Ncharacter"; for that, mpfr(.) has a method and will basically return x, i.e., work as inverse
function.

Since Rmpfr version 0.6-2, the S3 class "Ncharacter" extends "character". (class(.) is
now of length two and class(.)[2] is "character".). There are simple [and print methods;
modifying or setting dim works as well.

Author(s)

Richard M. Heiberger <rmh@temple.edu>, with minor tweaking by Martin M.

References

R FAQ 7.31: Why doesn’t R think these numbers are equal? system.file("../../doc/FAQ")

See Also

mpfr, sprintf

formatHex 17

Examples

FourBits <- mpfr(matrix(0:31, 8, 4, dimnames = list(0:7, c(0,8,16,24))),
precBits=4) ## 4 significant bits

FourBits

formatHex(FourBits)
formatBin(FourBits, style = " ")
formatBin(FourBits, scientific=FALSE)
formatDec(FourBits)

as "Ncharacter" 'inherits from' "character", this now works too :
data.frame(Dec = c(formatDec(FourBits)), formatHex(FourBits),

Bin = formatBin(FourBits, style = " "))

FBB <- formatBin(FourBits) ; clB <- class(FBB)
(nFBB <- mpfr(FBB))
stopifnot(class(FBB)[1] == "Ncharacter",

all.equal(nFBB, FourBits, tol=0))

FBH <- formatHex(FourBits) ; clH <- class(FBH)
(nFBH <- mpfr(FBH))
stopifnot(class(FBH)[1] == "Ncharacter",

all.equal(nFBH, FourBits, tol=0))

Compare the different "formattings" (details will change, i.e. improve!)%% FIXME
M <- mpfr(c(-Inf, -1.25, 1/(-Inf), NA, 0, .5, 1:2, Inf), 3)
data.frame(fH = formatHex(M), f16 = format(M, base=16),

fB = formatBin(M), f2 = format(M, base= 2),
fD = formatDec(M), f10 = format(M), # base = 10 is default
fSci= format(M, scientific=TRUE),
fFix= format(M, scientific=FALSE))

Other methods ("[", t()) also work :
stopifnot(dim(F1 <- FBB[, 1, drop=FALSE]) == c(8,1), identical(class(F1), clB),

dim(t(F1)) == c(1,8), identical(class(t(F1)),clB),
is.null(dim(F.2 <- FBB[,2])), identical(class(F.2), clB),
dim(F22 <- FBH[1:2, 3:4]) == c(2,2), identical(class(F22), clH),
identical(class(FBH[2,3]), clH), is.null(dim(FBH[2,3])),
identical(FBH[2,3:4], F22[2,]),
identical(FBH[2,3], unname(FBH[,3][2])),
TRUE)

TenFrac <- matrix((1:10)/10, dimnames=list(1:10, expression(1/x)))
TenFrac9 <- mpfr(TenFrac, precBits=9) ## 9 significant bits
TenFrac9
formatHex(TenFrac9)
formatBin(TenFrac9)
formatBin(TenFrac9, scientific=FALSE)
formatDec(TenFrac9)
formatDec(TenFrac9, precBits=10)

18 formatMpfr

formatMpfr Formatting MPFR (multiprecision) Numbers

Description

Flexible formatting of “multiprecision numbers”, i.e., objects of class mpfr. formatMpfr() is also
the mpfr method of the generic format function.

The formatN() methods for mpfr numbers renders them differently than their double precision
equivalents, by appending "_M".

Function .mpfr2str() is the low level work horse for formatMpfr() and hence all print()ing of
"mpfr" objects.

Usage

formatMpfr(x, digits = NULL, trim = FALSE, scientific = NA,
maybe.full = !is.null(digits) && is.na(scientific),

base = 10, showNeg0 = TRUE, max.digits = Inf,
big.mark = "", big.interval = 3L,
small.mark = "", small.interval = 5L,

decimal.mark = ".",
exponent.char = if(base <= 14) "e" else if(base <= 36) "E" else "|e",
exponent.plus = TRUE,
zero.print = NULL, drop0trailing = FALSE, ...)

S3 method for class 'mpfr'
formatN(x, drop0trailing = TRUE, ...)

.mpfr2str(x, digits = NULL, maybe.full = !is.null(digits), base = 10L)

Arguments

x an MPFR number (vector or array).

digits how many significant digits (in the base chosen!) are to be used in the result.
The default, NULL, uses enough digits to represent the full precision, often one
or two digits more than “you” would expect. For bases 2,4,8,16, or 32, MPFR
requires digits at least 2. For such bases, digits = 1 is changed into 2, with a
message.

trim logical; if FALSE, numbers are right-justified to a common width: if TRUE the
leading blanks for justification are suppressed.

scientific either a logical specifying whether MPFR numbers should be encoded in scien-
tific format (“exponential representation”), or an integer penalty (see options("scipen")).
Missing values correspond to the current default penalty.

maybe.full logical, passed to .mpfr2str().

formatMpfr 19

base an integer in 2, 3, .., 62; the base (“basis”) in which the numbers should be repre-
sented. Apart from the default base 10, binary (base = 2) or hexadecimal (base
= 16) are particularly interesting.

showNeg0 logical indicating if “negative” zeros should be shown with a "-". The default,
TRUE is intentially different from format(<numeric>).

exponent.char the “exponent” character to be used in scientific notation. The default takes into
account that for base B ≥ 15, "e" is part of the (mantissa) digits and the same
is true for "E" when B ≥ 37.

exponent.plus logical indicating if "+" should be for positive exponents in exponential (aka
“scientific”) representation. This used to be hardcoded to FALSE; the new default
is compatible to R’s format()ing of numbers and helps to note visually when
exponents are in use.

max.digits a (large) positive number to limit the number of (mantissa) digits, notably when
digits is NULL (as by default). Otherwise, a numeric digits is preferred to
setting max.digits (which should not be smaller than digits).

big.mark, big.interval, small.mark, small.interval, decimal.mark, zero.print, drop0trailing

used for prettying decimal sequences, these are passed to prettyNum and that
help page explains the details.

... further arguments passed to or from other methods.

Value

a character vector or array, say cx, of the same length as x. Since Rmpfr version 0.5-3 (2013-09), if
x is an mpfrArray, then cx is a character array with the same dim and dimnames as x.

Note that in scientific notation, the integer exponent is always in decimal, i.e., base 10 (even when
base is not 10), but of course meaning base powers, e.g., in base 32, "u.giE3"is the same as
"ugi0" which is 323 times "u.gi". This is in contrast, e.g., with sprintf("%a",x) where the
powers after "p" are powers of 2.

Author(s)

Martin Maechler

References

The MPFR manual’s description of ‘mpfr_get_str()’ which is the C-internal workhorse for .mpfr2str()
(on which formatMpfr() builds).

See Also

mpfr for creation and the mpfr class description with its many methods. The format generic, and
the prettyNum utility on which formatMpfr is based as well. The S3 generic function formatN
from package gmp.

.mpfr_formatinfo(x) provides the (cheap) non-string parts of .mpfr2str(x); the (base 2) exp
exponents are also available via .mpfr2exp(x).

20 gmp-conversions

Examples

Printing of MPFR numbers uses formatMpfr() internally.
Note how each components uses the "necessary" number of digits:
(x3 <- c(Const("pi", 168), mpfr(pi, 140), 3.14))
format(x3[3], 15)
format(x3[3], 15, drop0 = TRUE)# "3.14" .. dropping the trailing zeros
x3[4] <- 2^30
x3[4] # automatically drops trailing zeros
format(x3[1], dig = 41, small.mark = "'") # (41 - 1 =) 40 digits after "."

rbind(formatN(x3, digits = 15),
formatN(as.numeric(x3), digits = 15))

(Zero <- mpfr(c(0,1/-Inf), 20)) # 0 and "-0"
xx <- c(Zero, 1:2, Const("pi", 120), -100*pi, -.00987)
format(xx, digits = 2)
format(xx, digits = 1, showNeg0 = FALSE)# "-0" no longer shown

Output in other bases :
formatMpfr(mpfr(10^6, 40), base=32, drop0trailing=TRUE)
"ugi0"
mpfr("ugi0", base=32) #-> 1'000'000

i32 <- mpfr(1:32, precBits = 64)
format(i32, base= 2, drop0trailing=TRUE)
format(i32, base= 16, drop0trailing=TRUE)
format(1/i32, base= 2, drop0trailing=TRUE)# using scientific notation for [17..32]
format(1/i32, base= 32)
format(1/i32, base= 62, drop0trailing=TRUE)
format(mpfr(2, 64)^-(1:16), base=16, drop0trailing=TRUE)

gmp-conversions Conversion Utilities gmp <-> Rmpfr

Description

Coerce from and to big integers (bigz) and mpfr numbers.

Further, coerce from big rationals (bigq) to mpfr numbers.

Usage

.bigz2mpfr(x, precB = NULL, rnd.mode = c('N','D','U','Z','A'))

.bigq2mpfr(x, precB = NULL, rnd.mode = c('N','D','U','Z','A'))

.mpfr2bigz(x, mod = NA)

hjkMpfr 21

Arguments

x an R object of class bigz, bigq or mpfr respectively.

precB precision in bits for the result. The default, NULL, means to use the minimal
precision necessary for correct representation.

rnd.mode a 1-letter string specifying how rounding should happen at C-level conversion
to MPFR, see details of mpfr.

mod a possible modulus, see as.bigz in package gmp.

Details

Note that we also provide the natural (S4) coercions, as(x,"mpfr") for x inheriting from class
"bigz" or "bigq".

Value

a numeric vector of the same length as x, of the desired class.

See Also

mpfr(), as.bigz and as.bigq in package gmp.

Examples

S <- gmp::Stirling2(50,10)
show(S)
SS <- S * as.bigz(1:3)^128
stopifnot(all.equal(log2(SS[2]) - log2(S), 128, tolerance=1e-15),

identical(SS, .mpfr2bigz(.bigz2mpfr(SS))))

.bigz2mpfr(S) # 148 bit precision

.bigz2mpfr(S, precB=256) # 256 bit

rational --> mpfr:
sq <- SS / as.bigz(2)^100
MP <- as(sq, "mpfr")
stopifnot(identical(MP, .bigq2mpfr(sq)),

SS == MP * as(2, "mpfr")^100)

hjkMpfr Hooke-Jeeves Derivative-Free Minimization R (working for MPFR)

Description

An implementation of the Hooke-Jeeves algorithm for derivative-free optimization.

This is a slight adaption hjk() from package dfoptim

22 hjkMpfr

Usage

hjkMpfr(par, fn, control = list(), ...)

Arguments

par Starting vector of parameter values. The initial vector may lie on the boundary.
If lower[i]=upper[i] for some i, the i-th component of the solution vector
will simply be kept fixed.

fn Nonlinear objective function that is to be optimized. A scalar function that takes
a real vector as argument and returns a scalar that is the value of the function at
that point.

control list of control parameters. See Details for more information.

... Additional arguments passed to fn.

Details

Argument control is a list specifing changes to default values of algorithm control parameters.
Note that parameter names may be abbreviated as long as they are unique.

The list items are as follows:

tol Convergence tolerance. Iteration is terminated when the step length of the main loop becomes
smaller than tol. This does not imply that the optimum is found with the same accuracy.
Default is 1.e-06.

maxfeval Maximum number of objective function evaluations allowed. Default is Inf, that is no
restriction at all.

maximize A logical indicating whether the objective function is to be maximized (TRUE) or min-
imized (FALSE). Default is FALSE.

target A real number restricting the absolute function value. The procedure stops if this value is
exceeded. Default is Inf, that is no restriction.

info A logical variable indicating whether the step number, number of function calls, best function
value, and the first component of the solution vector will be printed to the console. Default is
FALSE.

If the minimization process threatens to go into an infinite loop, set either maxfeval or target.

Value

A list with the following components:

par Best estimate of the parameter vector found by the algorithm.

value value of the objective function at termination.

convergence indicates convergence (TRUE) or not (FALSE).

feval number of times the objective fn was evaluated.

niter number of iterations (“steps”) in the main loop.

hjkMpfr 23

Note

This algorithm is based on the Matlab code of Prof. C. T. Kelley, given in his book “Iterative
methods for optimization”. It has been implemented for package dfoptim with the permission of
Prof. Kelley.

This version does not (yet) implement a cache for storing function values that have already been
computed as searching the cache makes it slower.

Author(s)

Hans W Borchers <hwborchers@googlemail.com>; for Rmpfr: John Nash, June 2012. Modifica-
tions by Martin Maechler.

References

C.T. Kelley (1999), Iterative Methods for Optimization, SIAM.

Quarteroni, Sacco, and Saleri (2007), Numerical Mathematics, Springer.

See Also

Standard R’s optim; optimizeR provides one-dimensional minimization methods that work with
mpfr-class numbers.

Examples

simple smooth example:
ff <- function(x) sum((x - c(2:4))^2)
str(rr <- hjkMpfr(rep(mpfr(0,128), 3), ff, control=list(info=TRUE)))

Hooke-Jeeves solves high-dim. Rosenbrock function {but slowly!}
rosenbrock <- function(x) {

n <- length(x)
sum (100*((x1 <- x[1:(n-1)])^2 - x[2:n])^2 + (x1 - 1)^2)

}
par0 <- rep(0, 10)
str(rb.db <- hjkMpfr(rep(0, 10), rosenbrock, control=list(info=TRUE)))

rosenbrook() is quite slow with mpfr-numbers:
str(rb.M. <- hjkMpfr(mpfr(numeric(10), prec=128), rosenbrock,

control = list(tol = 1e-8, info=TRUE)))

Hooke-Jeeves does not work well on non-smooth functions
nsf <- function(x) {

f1 <- x[1]^2 + x[2]^2
f2 <- x[1]^2 + x[2]^2 + 10 * (-4*x[1] - x[2] + 4)
f3 <- x[1]^2 + x[2]^2 + 10 * (-x[1] - 2*x[2] + 6)

24 igamma

max(f1, f2, f3)
}
par0 <- c(1, 1) # true min 7.2 at (1.2, 2.4)
h.d <- hjkMpfr(par0, nsf) # fmin=8 at xmin=(2,2)

and this is not at all better (but slower!)
h.M <- hjkMpfr(mpfr(c(1,1), 128), nsf, control = list(tol = 1e-15))

--> demo(hjkMpfr) # -> Fletcher's chebyquad function m = n -- residuals

igamma Incomplete Gamma Function

Description

For MPFR version >= 3.2.0, the following MPFR library function is provided: mpfr_gamma_inc(a,x),
the R interface of which is igamma(a,x), where igamma(a,x) is the “upper” incomplete gamma
function

Γ(a, x) :=: Γ(a)− γ(a, x),

where

γ(a, x) :=

∫ x

0

ta−1e−tdt,

and hence

Γ(a, x) :=

∫ ∞
x

ta−1e−tdt,

and
Γ(a) := γ(a,∞).

As R’s pgamma(x,a) is
pgamma(x, a) := γ(a, x)/Γ(a),

we get

igamma(a,x) == gamma(a) * pgamma(x, a, lower.tail=FALSE)

Usage

igamma(a, x, rnd.mode = c("N", "D", "U", "Z", "A"))

Arguments

a, x an object of class mpfr or numeric.

rnd.mode a 1-letter string specifying how rounding should happen at C-level conversion
to MPFR, see mpfr.

integrateR 25

Value

a numeric vector of “common length”, recyling along a and x.

Author(s)

R interface: Martin Maechler

References

NIST Digital Library of Mathematical Functions, section 8.2. http://dlmf.nist.gov/8.2.i

Wikipedia (2019). Incomplete gamma function; https://en.wikipedia.org/wiki/Incomplete_
gamma_function

See Also

R’s gamma (function) and pgamma (probability distribution).

Examples

show how close pgamma() is :
x <- c(seq(0,20, by=1/4), 21:50, seq(55, 100, by=5))
if(mpfrVersion() >= "3.2.0") { print(
all.equal(igamma(Const("pi", 80), x),

pgamma(x, pi, lower.tail=FALSE) * gamma(pi),
tol=0, formatFUN = function(., ...) format(., digits = 7)) #-> 3.13e-16

)
and ensure *some* closeness:
stopifnot(exprs = {

all.equal(igamma(Const("pi", 80), x),
pgamma(x, pi, lower.tail=FALSE) * gamma(pi),
tol = 1e-15)

})
} # only if MPFR version >= 3.2.0

integrateR One-Dimensional Numerical Integration - in pure R

Description

Numerical integration of one-dimensional functions in pure R, with care so it also works for
"mpfr"-numbers.

Currently, only classical Romberg integration of order ord is available.

Usage

integrateR(f, lower, upper, ..., ord = NULL,
rel.tol = .Machine$double.eps^0.25, abs.tol = rel.tol,
max.ord = 19, verbose = FALSE)

http://dlmf.nist.gov/8.2.i
https://en.wikipedia.org/wiki/Incomplete_gamma_function
https://en.wikipedia.org/wiki/Incomplete_gamma_function

26 integrateR

Arguments

f an R function taking a numeric or "mpfr" first argument and returning a nu-
meric (or "mpfr") vector of the same length. Returning a non-finite element
will generate an error.

lower, upper the limits of integration. Currently must be finite. Do use "mpfr"-numbers to
get higher than double precision, see the examples.

... additional arguments to be passed to f.
ord integer, the order of Romberg integration to be used. If this is NULL, as per

default, and either rel.tol or abs.tol are specified, the order is increased
until convergence.

rel.tol relative accuracy requested. The default is 1.2e-4, about 4 digits only, see the
Note.

abs.tol absolute accuracy requested.
max.ord only used, when neither ord or one of rel.tol, abs.tol are specified: Stop

Romberg iterations after the order reaches max.ord; may prevent infinite loops
or memory explosion.

verbose logical or integer, indicating if and how much information should be printed
during computation.

Details

Note that arguments after ... must be matched exactly.

For convergence, both relative and absolute changes must be smaller than rel.tol and abs.tol,
respectively.

rel.tol cannot be less than max(50*.Machine$double.eps,0.5e-28) if abs.tol <= 0.

Value

A list of class "integrateR" (as from standard R’s integrate()) with a print method and com-
ponents

value the final estimate of the integral.
abs.error estimate of the modulus of the absolute error.
subdivisions for Romberg, the number of function evaluations.
message "OK" or a character string giving the error message.
call the matched call.

Note

f must accept a vector of inputs and produce a vector of function evaluations at those points. The
Vectorize function may be helpful to convert f to this form.

If you want to use higher accuracy, you must set lower or upper to "mpfr" numbers (and typically
lower the relative tolerance, rel.tol), see also the examples.

Note that the default tolerances (rel.tol, abs.tol) are not very accurate, but the same as for
integrate, which however often returns considerably more accurate results than requested. This
is typically not the case for integrateR().

integrateR 27

Note

We use practically the same print S3 method as print.integrate, provided by R, with a differ-
ence when the message component is not "Ok".

Author(s)

Martin Maechler

References

Bauer, F.L. (1961) Algorithm 60 – Romberg Integration, Communications of the ACM 4(6), p.255.

See Also

R’s standard, integrate, is much more adaptive, also allowing infinite integration boundaries, and
typically considerably faster for a given accuracy.

Examples

See more from ?integrate
this is in the region where integrate() can get problems:
integrateR(dnorm,0,2000)
integrateR(dnorm,0,2000, rel.tol=1e-15)
(Id <- integrateR(dnorm,0,2000, rel.tol=1e-15, verbose=TRUE))
Id$value == 0.5 # exactly

Demonstrating that 'subdivisions' is correct:
Exp <- function(x) { .N <<- .N+ length(x); exp(x) }
.N <- 0; str(integrateR(Exp, 0,1, rel.tol=1e-10), digits=15); .N

Using high-precision functions -----

Polynomials are very nice:
integrateR(function(x) (x-2)^4 - 3*(x-3)^2, 0, 5, verbose=TRUE)
n= 1, 2^n= 2 | I = 46.04, abs.err = 98.9583
n= 2, 2^n= 4 | I = 20, abs.err = 26.0417
n= 3, 2^n= 8 | I = 20, abs.err = 7.10543e-15
20 with absolute error < 7.1e-15
Now, using higher accuracy:
I <- integrateR(function(x) (x-2)^4 - 3*(x-3)^2, 0, mpfr(5,128),

rel.tol = 1e-20, verbose=TRUE)
I ; I$value ## all fine

with floats:
integrateR(exp, 0 , 1, rel.tol=1e-15, verbose=TRUE)
with "mpfr":
(I <- integrateR(exp, mpfr(0,200), 1, rel.tol=1e-25, verbose=TRUE))
(I.true <- exp(mpfr(1, 200)) - 1)
true absolute error:
stopifnot(print(as.numeric(I.true - I$value)) < 4e-25)

28 is.whole

Want absolute tolerance check only (=> set 'rel.tol' very high, e.g. 1):
(Ia <- integrateR(exp, mpfr(0,200), 1, abs.tol = 1e-6, rel.tol=1, verbose=TRUE))

Set 'ord' (but no '*.tol') --> Using 'ord'; no convergence checking
(I <- integrateR(exp, mpfr(0,200), 1, ord = 13, verbose=TRUE))

is.whole Whole ("Integer") Numbers

Description

Check which elements of x[] are integer valued aka “whole” numbers,including MPFR numbers
(class mpfr).

Usage

S3 method for class 'mpfr'
is.whole(x)

Arguments

x any R vector, here of class mpfr.

Value

logical vector of the same length as x, indicating where x[.] is integer valued.

Author(s)

Martin Maechler

See Also

is.integer(x) (base package) checks for the internal mode or class, not if x[i] are integer valued.

The is.whole() methods in package gmp.

Examples

is.integer(3) # FALSE, it's internally a double
is.whole(3) # TRUE
x <- c(as(2,"mpfr") ^ 100, 3, 3.2, 1000000, 2^40)
is.whole(x) # one FALSE, only

Mnumber-class 29

Mnumber-class Class "Mnumber" and "mNumber" of "mpfr" and regular numbers and
arrays from them

Description

Classes "Mnumber" "mNumber" are class unions of "mpfr" and regular numbers and arrays from
them.
Its purpose is for method dispatch, notably defining a cbind(...) method where ... contains
objects of one of the member classes of "Mnumber".

Classes "mNumber" is considerably smaller is it does not contain "matrix" and "array" since
these also extend "character" which is not really desirable for generalized numbers. It extends
the simple "numericVector" class by mpfr* classes.

Methods

%*% signature(x = "mpfrMatrix",y = "Mnumber"): ...

crossprod signature(x = "mpfr",y = "Mnumber"): ...

tcrossprod signature(x = "Mnumber",y = "mpfr"): ...

etc. These are documented with the classes mpfr and or mpfrMatrix.

See Also

the array_or_vector sub class; cbind-methods.

Examples

"Mnumber" encompasses (i.e., "extends") quite a few
"vector / array - like" classes:
showClass("Mnumber")
stopifnot(extends("mpfrMatrix", "Mnumber"),

extends("array", "Mnumber"))

Mnsub <- names(getClass("Mnumber")@subclasses)
(mNsub <- names(getClass("mNumber")@subclasses))
mNumber has *one* subclass which is not in Mnumber:
setdiff(mNsub, Mnsub)# namely "numericVector"
The following are only subclasses of "Mnumber", but not of "mNumber":
setdiff(Mnsub, mNsub)

30 mpfr

mpfr Create "mpfr" Numbers (Objects)

Description

Create multiple (i.e. typically high) precision numbers, to be used in arithmetic and mathematical
computations with R.

Usage

mpfr(x, precBits, ...)
Default S3 method:
mpfr(x, precBits, base = 10,

rnd.mode = c("N","D","U","Z","A"), scientific = NA, ...)

Const(name = c("pi", "gamma", "catalan", "log2"), prec = 120L,
rnd.mode = c("N","D","U","Z","A"))

Arguments

x a numeric, mpfr, bigz, bigq, or character vector or array.

precBits, prec a number, the maximal precision to be used, in bits; i.e. 53 corresponds to
double precision. Must be at least 2. If missing, getPrec(x) determines a
default precision.

base (only when x is character) the base with respect to which x[i] represent num-
bers; base b must fulfill 2 ≤ b ≤ 62.

rnd.mode a 1-letter string specifying how rounding should happen at C-level conversion
to MPFR, see details.

scientific (used only when x is the result of formatBin(), i.e., of class "Bcharacter":)
logical indicating that the binary representation of x is in scientific notation.
When TRUE, mpfr() will substitute 0 for _; when NA, mpfr() will guess, and use
TRUE when finding a "p" in x; see also formatBin.

name a string specifying the mpfrlib - internal constant computation. "gamma" is Eu-
ler’s gamma (γ), and "catalan" Catalan’s constant.

... potentially further arguments passed to and from methods.

Details

The "mpfr" method of mpfr() is a simple wrapper around roundMpfr().

MPFR supports the following rounding modes,

GMP_RNDN: round to nearest (roundTiesToEven in IEEE 754-2008).

GMP_RNDZ: round toward zero (roundTowardZero in IEEE 754-2008).

GMP_RNDU: round toward plus infinity (“Up”, roundTowardPositive in IEEE 754-2008).

mpfr 31

GMP_RNDD: round toward minus infinity (“Down”, roundTowardNegative in IEEE 754-2008).

GMP_RNDA: round away from zero (new since MPFR 3.0.0).

The ‘round to nearest’ ("N") mode, the default here, works as in the IEEE 754 standard: in case
the number to be rounded lies exactly in the middle of two representable numbers, it is rounded to
the one with the least significant bit set to zero. For example, the number 5/2, which is represented
by (10.1) in binary, is rounded to (10.0)=2 with a precision of two bits, and not to (11.0)=3. This
rule avoids the "drift" phenomenon mentioned by Knuth in volume 2 of The Art of Computer
Programming (Section 4.2.2).

When x is character, mpfr() will detect the precision of the input object.

Value

an object of (S4) class mpfr, or for mpfr(x) when x is an array, mpfrMatrix, or mpfrArray which
the user should just as a normal numeric vector or array.

Author(s)

Martin Maechler

References

The MPFR team. (201x). GNU MPFR – The Multiple Precision Floating-Point Reliable Library;
see http://www.mpfr.org/mpfr-current/#doc or directly http://www.mpfr.org/mpfr-current/
mpfr.pdf.

See Also

The class documentation mpfr contains more details. Use asNumeric to transform back to double
precision ("numeric").

Examples

mpfr(pi, 120) ## the double-precision pi "translated" to 120-bit precision

pi. <- Const("pi", prec = 260) # pi "computed" to correct 260-bit precision
pi. # nicely prints 80 digits [260 * log10(2) ~= 78.3 ~ 80]

Const("gamma", 128L) # 0.5772...
Const("catalan", 128L) # 0.9159...

x <- mpfr(0:7, 100)/7 # a more precise version of k/7, k=0,..,7
x
1 / x

character input :
mpfr("2.718281828459045235360287471352662497757") - exp(mpfr(1, 150))
~= -4 * 10^-40
Also works for NA, NaN, ... :
cx <- c("1234567890123456", 345, "NA", "NaN", "Inf", "-Inf")
mpfr(cx)

http://www.mpfr.org/mpfr-current/#doc
http://www.mpfr.org/mpfr-current/mpfr.pdf
http://www.mpfr.org/mpfr-current/mpfr.pdf

32 mpfr-class

with some 'base' choices :
print(mpfr("111.1111", base=2)) * 2^4

mpfr("af21.01020300a0b0c", base=16)
68 bit prec. 44833.00393694653820642

mpfr("ugi0", base = 32) == 10^6 ## TRUE

--- Large integers from package 'gmp':
Z <- as.bigz(7)^(1:200)
head(Z, 40)
mfpr(Z) by default chooses the correct *maximal* default precision:
mZ. <- mpfr(Z)
more efficiently chooses precision individually
m.Z <- mpfr(Z, precBits = frexpZ(Z)$exp)
the precBits chosen are large enough to keep full precision:
stopifnot(identical(cZ <- as.character(Z),

as(mZ.,"character")),
identical(cZ, as(m.Z,"character")))

compare mpfr-arithmetic with exact rational one:
stopifnot(all.equal(mpfr(as.bigq(355,113), 99),

mpfr(355, 99) / 113,tol = 2^-98))

look at different "rounding modes":
sapply(c("N", "D","U","Z","A"), function(RND)

mpfr(c(-1,1)/5, 20, rnd.mode = RND), simplify=FALSE)

symnum(sapply(c("N", "D","U","Z","A"),
function(RND) mpfr(0.2, prec = 5:15, rnd.mode = RND) < 0.2))

mpfr-class Class "mpfr" of Multiple Precision Floating Point Numbers

Description

"mpfr" is the class of Multiple Precision Floatingpoint numbers with Reliable arithmetic.

sFor the high-level user, "mpfr" objects should behave as standard R’s numeric vectors. They
would just print differently and use the prespecified (typically high) precision instead of the double
precision of ‘traditional’ R numbers (with class(.) == "numeric" and typeof(.) == "double").

hypot(x,y) computes the hypothenuse length z in a rectangular triangle with “leg” side lengths x
and y, i.e.,

z = hypot(x, y) =
√
x2 + y2,

in a numerically stable way.

Usage

hypot(x,y, rnd.mode = c("N","D","U","Z","A"))

mpfr-class 33

Arguments

x,y an object of class mpfr.

rnd.mode a 1-letter string specifying how rounding should happen at C-level conversion
to MPFR, see mpfr.

Objects from the Class

Objects are typically created by mpfr(<number>,precBits).

summary(<mpfr>) returns an object of class "summaryMpfr" which contains "mpfr" but has its
own print method.

Slots

Internally, "mpfr" objects just contain standard R lists where each list element is of class "mpfr1",
representing one MPFR number, in a structure with four slots, very much parallelizing the C struc
in the mpfr C library to which the Rmpfr package interfaces.

An object of class "mpfr1" has slots

prec: "integer" specifying the maxmimal precision in bits.

exp: "integer" specifying the base-2 exponent of the number.

sign: "integer", typically -1 or 1, specifying the sign (i.e. sign(.)) of the number.

d: an "integer" vector (of 32-bit “limbs”) which corresponds to the full mantissa of the number.

Methods

abs signature(x = "mpfr"): ...

atan2 signature(y = "mpfr",x = "ANY"), and

atan2 signature(x = "ANY",y = "mpfr"): compute the arc-tangent of two arguments: atan2(y,x)
returns the angle between the x-axis and the vector from the origin to (x, y), i.e., for positive
arguments atan2(y,x) == atan(y/x).

lbeta signature(a = "ANY",b = "mpfrArray"), is log(|B(a, b)|) where B(a, b) is the Beta func-
tion, beta(a,b).

beta signature(a = "mpfr",b = "ANY"),

beta signature(a = "mpfr",b = "mpfr"), . . . , etc: Compute the beta functionB(a, b), using high
precision, building on internal gamma or lgamma. See the help for R’s base function beta for
more. Currently, there, a, b ≥ 0 is required. Here, we provide (non-NaN) for all numeric a,b.
When either a, b, or a + b is a negative integer, Γ(.) has a pole there and is undefined (NaN).
However the Beta function can be defined there as “limit”, in some cases. Following other soft-
ware such as SAGE, Maple or Mathematica, we provide finite values in these cases. However,
note that these are not proper limits (two-dimensional in (a, b)), but useful for some applica-
tions. E.g., B(a, b) is defined as zero when a + b is a negative integer, but neither a nor b is.
Further, if a > b > 0 are integers,B(−a, b) = B(b,−a) can be seen as (−1)b∗B(a−b+1, b).

dim<- signature(x = "mpfr"): Setting a dimension dim on an "mpfr" object makes it into an
object of class "mpfrArray" or (more specifically) "mpfrMatrix" for a length-2 dimension,
see their help page; note that t(x) (below) is a special case of this.

34 mpfr-class

Ops signature(e1 = "mpfr",e2 = "ANY"): ...

Ops signature(e1 = "ANY",e2 = "mpfr"): ...

Arith signature(e1 = "mpfr",e2 = "missing"): ...

Arith signature(e1 = "mpfr",e2 = "mpfr"): ...

Arith signature(e1 = "mpfr",e2 = "integer"): ...

Arith signature(e1 = "mpfr",e2 = "numeric"): ...

Arith signature(e1 = "integer",e2 = "mpfr"): ...

Arith signature(e1 = "numeric",e2 = "mpfr"): ...

Compare signature(e1 = "mpfr",e2 = "mpfr"): ...

Compare signature(e1 = "mpfr",e2 = "integer"): ...

Compare signature(e1 = "mpfr",e2 = "numeric"): ...

Compare signature(e1 = "integer",e2 = "mpfr"): ...

Compare signature(e1 = "numeric",e2 = "mpfr"): ...

Logic signature(e1 = "mpfr",e2 = "mpfr"): ...

Summary signature(x = "mpfr"): The S4 Summary group functions, max, min, range, prod,
sum, any, and all are all defined for MPFR numbers. mean(x,trim) for non-0 trim works
analogously to mean.default.

median signature(x = "mpfr"): works via

quantile signature(x = "mpfr"): a simple wrapper of the quantile.default method from stats.

summary signature(object = "mpfr"): modeled after summary.default, ensuring to provide
the full "mpfr" range of numbers.

Math signature(x = "mpfr"): All the S4 Math group functions are defined, using multiple preci-
sion (MPFR) arithmetic, from getGroupMembers("Math"), these are (in alphabetical order):
abs, sign, sqrt, ceiling, floor, trunc, cummax, cummin, cumprod, cumsum, exp, expm1,
log, log10, log2, log1p, cos, cosh, sin, sinh, tan, tanh, acos, acosh, asin, asinh, atan,
atanh, gamma, lgamma, digamma, and trigamma.
Currently, trigamma is not provided by the MPFR library and hence not yet implemented.
Further, the cum*() methods are not yet implemented.

factorial signature(x = "mpfr"): this will round the result when x is integer valued. Note how-
ever that factorialMpfr(n) for integer n is slightly more efficient, using the MPFR function
‘mpfr_fac_ui’.

Math2 signature(x = "mpfr"): round(x,digits) and signif(x,digits) methods. Note that
these do not change the formal precision ('prec' slot), and you may often want to apply
roundMpfr() in addition or preference.

as.numeric signature(x = "mpfr"): ...

as.vector signature(x = "mpfrArray"): as for standard arrays, this “drops” the dim (and dimnames),
i.e., transforms x into an ‘MPFR’ number vector, i.e., class mpfr.

[[signature(x = "mpfr",i = "ANY"), and

[signature(x = "mpfr",i = "ANY",j = "missing",drop = "missing"): subsetting aka “index-
ing” happens as for numeric vectors.

mpfr-class 35

format signature(x = "mpfr"), further arguments digits = NULL,scientific = NA, etc: returns
character vector of same length as x; when digits is NULL, with enough digits to recreate x
accurately. For details, see formatMpfr.

is.finite signature(x = "mpfr"): ...

is.infinite signature(x = "mpfr"): ...

is.na signature(x = "mpfr"): ...

is.nan signature(x = "mpfr"): ...

log signature(x = "mpfr"): ...

show signature(object = "mpfr"): ...

sign signature(x = "mpfr"): ...

Re, Im signature(z = "mpfr"): simply return z or 0 (as "mpfr" numbers of correct precision),
as mpfr numbers are ‘real’ numbers.

Arg, Mod, Conj signature(z = "mpfr"): these are trivial for our ‘real’ mpfr numbers, but de-
fined to work correctly when used in R code that also allows complex number input.

all.equal signature(target = "mpfr",current = "mpfr"),

all.equal signature(target = "mpfr",current = "ANY"), and

all.equal signature(target = "ANY",current = "mpfr"): methods for numerical (approximate)
equality, all.equal of multiple precision numbers. Note that the default tolerance (argu-
ment) is taken to correspond to the (smaller of the two) precisions when both main arguments
are of class "mpfr", and hence can be considerably less than double precision machine epsilon
.Machine$double.eps.

coerce signature(from = "numeric",to = "mpfr"): as(.,"mpfr") coercion methods are avail-
able for character strings, numeric, integer, logical, and even raw. Note however, that
mpfr(.,precBits,base) is more flexible.

coerce signature(from = "mpfr",to = "bigz"): coerces to biginteger, see bigz in package gmp.

coerce signature(from = "mpfr",to = "numeric"): ...

coerce signature(from = "mpfr",to = "character"): ...

unique signature(x = "mpfr"), and corresponding S3 method (such that unique(<mpfr>) works
inside base functions), see unique.
Note that duplicated() works for "mpfr" objects without the need for a specific method.

t signature(x = "mpfr"): makes x into an n× 1 mpfrMatrix.

which.min signature(x = "mpfr"): gives the index of the first minimum, see which.min.

which.max signature(x = "mpfr"): gives the index of the first maximum, see which.max.

Note

Many more methods (“functions”) automagically work for "mpfr" number vectors (and matrices,
see the mpfrMatrix class doc), notably sort, order, quantile, rank.

Author(s)

Martin Maechler

36 mpfr-class

See Also

The "mpfrMatrix" class, which extends the "mpfr" one.

roundMpfr to change precision of an "mpfr" object which is typically desirable instead of or in
addition to signif() or round(); is.whole() etc.

Special mathematical functions such as some Bessel ones, e.g., jn; further, zeta(.) (= ζ(.)), Ei()
etc. Bernoulli numbers and the Pochhammer function pochMpfr.

Examples

30 digit precision
str(x <- mpfr(c(2:3, pi), prec = 30 * log2(10)))
x^2
x[1] / x[2] # 0.66666... ~ 30 digits

indexing - as with numeric vectors
stopifnot(identical(x[2], x[[2]]),

indexing "outside" gives NA (well: "mpfr-NaN" for now):
is.na(x[5]),
whereas "[[" cannot index outside:
is(try(x[[5]]), "try-error"),
and only select *one* element:
is(try(x[[2:3]]), "try-error"))

factorial() & lfactorial would work automagically via [l]gamma(),
but factorial() additionally has an "mpfr" method which rounds
f200 <- factorial(mpfr(200, prec = 1500)) # need high prec.!
f200
as.numeric(log2(f200))# 1245.38 -- need precBits >~ 1246 for full precision

##--> see factorialMpfr() for more such computations.

##--- "Underflow" **much** later -- exponents have 30(+1) bits themselves:

mpfr.min.exp2 <- - (2^30 + 1)
two <- mpfr(2, 55)
stopifnot(two ^ mpfr.min.exp2 == 0)
whereas
two ^ (mpfr.min.exp2 * (1 - 1e-15))
2.38256490488795107e-323228497 ["typically"]

##--- "Assert" that {sort}, {order}, {quantile}, {rank}, all work :

p <- mpfr(rpois(32, lambda=500), precBits=128)^10
np <- as.numeric(log(p))
(sp <- summary(p))# using the print.summaryMpfr() method
stopifnot(all(diff(sort(p)) >= 0),

identical(order(p), order(np)),
identical(rank (p), rank (np)),
all.equal(sapply(1:9, function(Typ) quantile(np, type=Typ, names=FALSE)),

sapply(lapply(1:9, function(Typ) quantile(p, type=Typ, names=FALSE)),
function(x) as.numeric(log(x))),

mpfr-distr-etc 37

tol = 1e-3),# quantiles: interpolated in orig. <--> log scale
TRUE)

m0 <- mpfr(numeric(), 99)
xy <- expand.grid(x = -2:2, y = -2:2) ; x <- xy[,"x"] ; y <- xy[,"y"]
a2. <- atan2(y,x)

stopifnot(identical(which.min(m0), integer(0)),
identical(which.max(m0), integer(0)),

all.equal(a2., atan2(as(y,"mpfr"), x)),
max(m0) == mpfr(-Inf, 53), # (53 is not a feature, but ok)
min(m0) == mpfr(+Inf, 53),
sum(m0) == 0, prod(m0) == 1)

unique(), now even base::factor() "works" on <mpfr> :
set.seed(17)
p <- rlnorm(20) * mpfr(10, 100)^-999
pp <- sample(p, 50, replace=TRUE)
str(unique(pp)) # length 18 .. (from originally 20)
Class 'mpfr' [package "Rmpfr"] of length 18 and precision 100
5.56520587824e-999 4.41636588227e-1000 ..
facp <- factor(pp)
str(facp) # the factor *levels* are a bit verbose :
Factor w/ 18 levels "new(\"mpfr1\",)" ...
At least *some* factor methods work :
stopifnot(exprs = {

is.factor(facp)
identical(unname(table(facp)),

unname(table(asNumeric(pp * mpfr(10,100)^1000))))
})

((unfortunately, the expressions are wrong; should integer "L"))
#
More useful: levels with which to *invert* factor() :
-- this is not quite ok:
simplified from 'utils' :
deparse1 <- function(x, ...) paste(deparse(x, 500L, ...), collapse = " ")
if(FALSE) {
str(pp.levs <- vapply(unclass(sort(unique(pp))), deparse1, ""))
facp2 <- factor(pp, levels = pp.levs)

}

mpfr-distr-etc Distribution Functions etc (MPFR)

Description

For some R standard (probability) density, distribution or quantile functions, we provide MPFR
versions.

38 mpfr-distr-etc

Usage

dpois (x, lambda, log = FALSE)
dbinom(x, size, prob, log = FALSE)
dnorm (x, mean = 0, sd = 1, log = FALSE)
dgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)

pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

Arguments

x,q, lambda, size,prob, mean,sd, shape,rate,scale

numeric or mpfr vectors. All of these are “recycled” to the length of the longest
one. For their meaning/definition, see the corresponding standard R (stats pack-
age) function.

log, log.p, lower.tail

logical, see pnorm, dpois, etc.

Details

pnorm() is based on erf() and erfc() which have direct MPFR counter parts and are both
reparametrizations of pnorm, erf(x) = 2*pnorm(sqrt(2)*x) and erfc(x) = 2* pnorm(sqrt(2)*x,lower=FALSE).

Value

A vector of the same length as the longest of x,q,..., of class mpfr with the high accuracy results
of the corresponding standard R function.

See Also

pnorm, dbinom, dgamma, dpois in standard package stats.

pbetaI(x,a,b) is a mpfr version of pbeta only for integer a and b.

Examples

x <- 1400+ 0:10
print(dpois(x, 1000), digits =18) ## standard R's double precision
dpois(mpfr(x, 120), 1000)## more accuracy for the same
dpois(0:5, mpfr(10000, 80)) ## very small exponents

print(dbinom(0:8, 8, pr = 4 / 5), digits=18)
dbinom(0:8, 8, pr = 4/mpfr(5, 99)) -> dB; dB

print(dnorm(-5:5), digits=18)
dnorm(mpfr(-5:5, prec=99))

mpfr-special-functions 39

mpfr-special-functions

Special Mathematical Functions (MPFR)

Description

Special Mathematical Functions, supported by the MPFR Library.

Usage

zeta(x)
Ei(x)
Li2(x)

erf(x)
erfc(x)

Arguments

x a numeric or mpfr vector.

Details

zeta(x) computes Riemann’s Zeta function ζ(x) important in analytical number theory and related
fields. The traditional definition is

ζ(x) =

∞∑
n=1

1

nx
.

Ei(x) computes the exponential integral, ∫ x

−∞

et

t
dt.

Li2(x) computes the dilogarithm, ∫ x

0

−log(1− t)
t

dt.

erf(x) and erfc(x) are the error, respectively complementary error function which are both
reparametrizations of pnorm, erf(x) = 2*pnorm(sqrt(2)*x) and erfc(x) = 2* pnorm(sqrt(2)*x,lower=FALSE),
and hence Rmpfr provides its own version of pnorm.

Value

A vector of the same length as x, of class mpfr.

40 mpfr-utils

See Also

pnorm in standard package stats; the class description mpfr mentioning the generic arithmetic and
mathematical functions (sin, log, . . . , etc) for which "mpfr" methods are available.

Note the (integer order, non modified) Bessel functions j0(), yn(), etc, named j0,yn etc, and Airy
function Ai() in Bessel_mpfr.

Examples

curve(Ei, 0, 5, n=2001)

As we now require (mpfrVersion() >= "2.4.0"):
curve(Li2, 0, 5, n=2001)
curve(Li2, -2, 13, n=2000); abline(h=0,v=0, lty=3)
curve(Li2, -200,400, n=2000); abline(h=0,v=0, lty=3)

curve(erf, -3,3, col = "red", ylim = c(-1,2))
curve(erfc, add = TRUE, col = "blue")
abline(h=0, v=0, lty=3)
legend(-3,1, c("erf(x)", "erfc(x)"), col = c("red","blue"), lty=1)

mpfr-utils Rmpfr – Utilities for Precision Setting, Printing, etc

Description

This page documents utilities from package Rmpfr which are typically not called by the user, but
may come handy in some situations.

Notably, the (base-2) maximal (and minimal) precision and the “erange”, the range of possible
(base-2) exponents of mpfr-numbers can be queried and partly extended.

Usage

getPrec(x, base = 10, doNumeric = TRUE, is.mpfr = NA, bigq. = 128L)
.getPrec(x)
getD(x)
mpfr_default_prec(prec)
S3 method for class 'mpfrArray'
print(x, digits = NULL, drop0trailing = FALSE,

right = TRUE,
max.digits = getOption("Rmpfr.print.max.digits", 999L),
exponent.plus = getOption("Rmpfr.print.exponent.plus", TRUE),
...)

S3 method for class 'mpfr'
print(x, digits = NULL, drop0trailing = TRUE,

right = TRUE,
max.digits = getOption("Rmpfr.print.max.digits", 999L),
exponent.plus = getOption("Rmpfr.print.exponent.plus", TRUE),

mpfr-utils 41

...)
toNum(from, rnd.mode = c('N','D','U','Z','A'))
mpfr2array(x, dim, dimnames = NULL, check = FALSE)

.mpfr2list(x, names = FALSE)

mpfrXport(x, names = FALSE)
mpfrImport(mxp)

.mpfr_formatinfo(x)

.mpfr2exp(x)

.mpfr_erange(kind = c("Emin", "Emax"), names = TRUE)

.mpfr_erange_set(kind = c("Emin", "Emax"), value)

.mpfr_erange_kinds

.mpfr_erange_is_int()

.mpfr_maxPrec()

.mpfr_minPrec()

Arguments

x, from typically, an R object of class "mpfr", or "mpfrArray", respectively. For getPrec(),
any number-like R object, or NULL.

base (only when x is character) the base with respect to which x[i] represent num-
bers; base b must fulfill 2 ≤ b ≤ 62.

doNumeric logical indicating integer or double typed x should be accepted and a default
precision be returned. Should typically be kept at default TRUE.

is.mpfr logical indicating if class(x) is already known to be "mpfr"; typically should
be kept at default, NA.

bigq. for getPrec(), the precision to use for a big rational (class "bigq"); if not
specified gives warning when used.

prec a positive integer, or missing.

drop0trailing logical indicating if trailing "0"s should be omitted.

right logical indicating print()ing should right justify the strings; see print.default()
to which it is passed.

digits, ... further arguments to print methods.

max.digits a number (possibly Inf) to limit the number of (mantissa) digits to be printed,
simply passed to formatMpfr(). The default is finite to protect from printing
very long strings which is often undesirable, notably in interactive use.

exponent.plus logical, simply passed to formatMpfr(). Was FALSE hardwired in Rmpfr ver-
sions before 0.8-0, and hence is allowed to be tweaked by an options() setting.

rnd.mode a 1-letter string specifying how rounding should happen at C-level conversion
to MPFR, see details of mpfr.

dim, dimnames for "mpfrArray" construction.

42 mpfr-utils

check logical indicating if the mpfrArray construction should happen with internal
safety check. Previously, the implicit default used to be true.

names (for .mpfr2list()) logical or character vector, indicating if the list returned
should have names. If character, it specifies the names; if true, the names are set
to format(x).

mxp an "mpfrXport" object, as resulting from mpfrXport().

kind a character string or vector, specifying the kind of “erange” value; must be
an element of .mpfr_erange_kinds, i.e., one of "Emin", "Emax", "min.emin",
"max.emin", "min.emax", "max.emax".

value numeric, for .mpfr_erange_set() one number per kind. Must be in range
specified by the *."emin" and *."emax" erange values.

Details

The print method is currently built on the format method for class mpfr. This, currently does not
format columns jointly which leads to suboptimally looking output. There are plans to change this.

Note that formatMpfr() which is called by print() (or show() or R’s implicit printing) uses
max.digits = Inf, differing from our print()’s default on purpose. If you do want to see the full
accuracy even in cases it is large, use options(Rmpfr.print.max.digits = Inf) or (.. = 1e7),
say.

The .mpfr_erange* functions (and variable) allow to query and set the allowed range of values for
the base-2 exponents of "mpfr" numbers. See the examples below and GNU MPFR library docu-
mentation on the C functions mpfr_get_emin(), mpfr_set_emin(.), mpfr_get_emin_min(), and
mpfr_get_emin_max(), (and those four with ‘_emin’ replaced by ‘_emax’ above).

Value

getPrec(x) returns a integer vector of length one or the same length as x when that is positive,
whereas getPrec(NULL) returns mpfr_default_prec(), see below.

If you need to change the precision of x, i.e., need something like “setPrec”, use roundMpfr().

.getPrec(x) is a simplified version of getPrec() which only works for "mpfr" objects x.

getD(x) is intended to be a fast version of x@.Data, and should not be used outside of lower level
functions.

mpfr_default_prec() returns the current MPFR default precision, an integer. This is currently
not made use of much in package Rmpfr, where functions have their own default precision where
needed, and otherwise we’d rather not be dependent of such a global setting.
mpfr_default_prec(prec) sets the current MPFR default precision and returns the previous one;
see above.

.mpfr_maxPrec() and (less interestingly) .mpfr_minPrec() give the maximal and minimal base-2
precision allowed in the current version of the MPFR library linked to by R package Rmpfr. The
maximal precision is typically 263, i.e.,

all.equal(.mpfr_maxPrec(), 2^63)

mpfr-utils 43

is typically true.

toNum(m) returns a numeric array or matrix, when m is of class "mpfrArray" or "mpfrMatrix",
respectively. It should be equivalent to as(m,"array") or ... "matrix". Note that the slightly
more general asNumeric() is preferred now.

mpfr2array() a slightly more flexible alternative to dim(.) <-dd.

.mpfr2exp(x) returns the base-2 (integer valued) exponents of x, i.e., it is the R interface to
MPFR C’s mpfr_get_exp(). The result is integer iff .mpfr_erange_is_int() is true, other-
wise double. Note that the MPFR (4.0.1) manual says about mpfr_get_exp(): The behavior for
NaN, infinity or zero is undefined.

.mpfr_erange_is_int() returns TRUE iff the .mpfr_erange(c("Emin","Emax")) range lies in-
side the range of R’s integer limits, i.e., has absolute values not larger than .Machine$integer.max
(= 231 − 1).

.mpfr_formatinfo(x) returns conceptually a subset of .mpfr2str()’s result, a list with three
components

exp the base-2 exponents of x, identical to .mpfr2exp(x).

finite logical identical to is.finite(x).

is.0 logical indicating if the corresponding x[i] is zero; identical to mpfrIs0(x).

(Note that .mpfr2str(x,..,base)$exp is wrt base and is not undefined but

Note

mpfrXport() and mpfrImport() are experimental and used to explore reported platform incom-
patibilities of save()d and load()ed "mpfr" objects between Windows and non-Windows plat-
forms.

In other words, the format of the result of mpfrXport() and hence the mxp argument to mpfrImport()
are considered internal, not part of the API and subject to change.

See Also

Start using mpfr(..), and compute with these numbers.

mpfrArray(x) is for numeric (“non-mpfr”) x, whereas mpfr2array(x) is for "mpfr" classed x,
only.

Examples

getPrec(as(c(1,pi), "mpfr")) # 128 for both

(opr <- mpfr_default_prec()) ## typically 53, the MPFR system default
stopifnot(opr == (oprec <- mpfr_default_prec(70)),

70 == mpfr_default_prec())
and reset it:
mpfr_default_prec(opr)

Explore behavior of rounding modes 'rnd.mode':
x <- mpfr(10,99)^512 # too large for regular (double prec. / numeric):
sapply(c("N", "D", "U", "Z", "A"), function(RM)

44 mpfr.utils

sapply(list(-x,x), function(.) toNum(., RM)))
N D U Z A
-Inf -Inf -1.797693e+308 -1.797693e+308 -Inf
Inf 1.797693e+308 Inf 1.797693e+308 Inf

Printing of "MPFR" matrices is less nice than R's usual matrix printing:
m <- outer(c(1, 3.14, -1024.5678), c(1, 1e-3, 10,100))
m[3,3] <- round(m[3,3])
m
mpfr(m, 50)

B6 <- mpfr2array(Bernoulli(1:6, 60), c(2,3),
dimnames = list(LETTERS[1:2], letters[1:3]))

B6

Ranges of (base 2) exponents of MPFR numbers:
.mpfr_erange() # the currently active range of possible base 2 exponents:

A factory fresh setting fulfills
.mpfr_erange(c("Emin","Emax")) == c(-1,1) * (2^30 - 1)

There are more 'kind's, the latter 4 showing how you could change the first two :
.mpfr_erange_kinds
.mpfr_erange(.mpfr_erange_kinds)
eLimits <- .mpfr_erange(c("min.emin", "max.emin", "min.emax", "max.emax"))
Typically true in "current" MPFR versions:
eLimits == c(-1,1, -1,1) * (2^62 - 1)

Looking at internal representation [for power users only!]:

i8 <- mpfr(-2:5, 32)
x4 <- mpfr(c(NA, NaN, -Inf, Inf), 32)
The output of the following depends on the GMP "numb" size
(32 bit vs. 64 bit), and may be even more platform specifics:
str(.mpfr2list(i8))
str(.mpfr2list(x4, names = TRUE))

str(xp4 <- mpfrXport(x4, names = TRUE))
stopifnot(identical(x4, mpfrImport(mpfrXport(x4))),

identical(i8, mpfrImport(mpfrXport(i8))))
if(FALSE) ## FIXME: not yet working:

stopifnot(identical(B6, mpfrImport(mpfrXport(B6))))

mpfr.utils MPFR Number Utilities

Description

mpfrVersion() returns the version of the MPFR library which Rmpfr is currently linked to.

mpfr.utils 45

c(x,y,...) can be used to combine MPFR numbers in the same way as regular numbers IFF the
first argument x is of class mpfr.

mpfrIs0(.) uses the MPFR library in the documented way to check if (a vector of) MPFR numbers
are zero. It was called mpfr.is.0 which is strongly deprecated now.

.mpfr.is.whole(x) uses the MPFR library in the documented way to check if (a vector of) MPFR
numbers is integer valued. This is equivalent to x == round(x), but not at all to is.integer(as(x,"numeric")).
You should typically rather use (the "mpfr" method of the generic function) is.whole(x) instead.
The former name mpfr.is.integer is deprecated now.

Usage

mpfrVersion()
mpfrIs0(x)

S3 method for class 'mpfr'
c(...)
S3 method for class 'mpfr'
diff(x, lag = 1L, differences = 1L, ...)

Arguments

x an object of class mpfr.

... for diff, further mpfr class objects or simple numbers (numeric vectors) which
are coerced to mpfr with default precision of 128 bits.

lag, differences

for diff(): exact same meaning as in diff()’s default method, diff.default.

Value

mpfrIs0 returns a logical vector of length length(x) with values TRUE iff the corresponding x[i]
is an MPFR representation of zero (0).
Similarly, .mpfr.is.whole and is.whole return a logical vector of length length(x).

mpfrVersion returns an object of S3 class "numeric_version", so it can be used in comparisons.

The other functions return MPFR number (vectors), i.e., extending class mpfr.

See Also

str.mpfr for the str method. erf for special mathematical functions on MPFR.

The class description mpfr page mentions many generic arithmetic and mathematical functions for
which "mpfr" methods are available.

Examples

mpfrVersion()

(x <- c(Const("pi", 64), mpfr(-2:2, 64)))
mpfrIs0(x) # one of them is
x[mpfrIs0(x)] # but it may not have been obvious..

46 mpfrArray

str(x)

x <- rep(-2:2, 5)
stopifnot(is.whole(mpfr(2, 500) ^ (1:200)),

all.equal(diff(x), diff(as.numeric(x))))

mpfrArray Construct "mpfrArray" almost as by ’array()’

Description

Utility to construct an R object of class mpfrArray, very analogously to the numeric array function.

Usage

mpfrArray(x, precBits, dim = length(x), dimnames = NULL,
rnd.mode = c("N","D","U","Z","A"))

Arguments

x numeric(like) vector, typically of length prod(dim) or shorter in which case it
is recycled.

precBits a number, the maximal precision to be used, in bits; i.e., 53 corresponds to
double precision. Must be at least 2.

dim the dimension of the array to be created, that is a vector of length one or more
giving the maximal indices in each dimension.

dimnames either NULL or the names for the dimensions. This is a list with one component
for each dimension, either NULL or a character vector of the length given by dim
for that dimension.

rnd.mode a 1-letter string specifying how rounding should happen at C-level conversion
to MPFR, see details of mpfr.

Value

an object of class "mpfrArray", specifically "mpfrMatrix" when length(dim) == 2.

See Also

mpfr, array; asNumeric() as “inverse” of mpfrArray(), to get back a numeric array.

mpfr2array(x) is for "mpfr" classed x, only, whereas mpfrArray(x) is for numeric (“non-mpfr”)
x.

mpfrMatrix 47

Examples

preallocating is possible here too
ma <- mpfrArray(NA, prec = 80, dim = 2:4)
validObject(A2 <- mpfrArray(1:24, prec = 64, dim = 2:4))

recycles, gives an "mpfrMatrix" and dimnames :
mat <- mpfrArray(1:5, 64, dim = c(5,3), dimnames=list(NULL, letters[1:3]))
mat
asNumeric(mat)
stopifnot(identical(asNumeric(mat),

matrix(1:5 +0, 5,3, dimnames=dimnames(mat))))

Testing the apply() method :
apply(mat, 2, range)
apply(A2, 1:2, range)
apply(A2, 2:3, max)
(fA2 <- apply(A2, 2, fivenum))
a2 <- as(A2, "array")
stopifnot(as(apply(A2, 2, range), "matrix") ==

apply(a2, 2, range)
, all.equal(fA2, apply(a2, 2, fivenum))
, all.equal(apply(A2, 2, quantile),

apply(a2, 2, quantile))
, all.equal(A2, apply(A2, 2:3, identity) -> aA2, check.attributes=FALSE)
, dim(A2) == dim(aA2)

)

mpfrMatrix Classes "mpfrMatrix" and "mpfrArray"

Description

The classes "mpfrMatrix" and "mpfrArray" are, analogously to the base matrix and array func-
tions and classes simply “numbers” of class mpfr with an additional Dim and Dimnames slot.

Objects from the Class

Objects should typically be created by mpfrArray(), but can also be created by new("mpfrMatrix",...)
or new("mpfrArray",...), or also by t(x), dim(x) <-dd, or mpfr2array(x,dim=dd) where x is
a an mpfr “number vector”.

A (slightly more flexible) alternative to dim(x) <-dd is mpfr2array(x,dd,dimnames).

Slots

.Data: as for the mpfr class, a "list" of mpfr1 numbers.
Dim: of class "integer", specifying the array dimension.
Dimnames: of class "list" and the same length as Dim, each list component either NULL or a

character vector of length Dim[j].

48 mpfrMatrix

Extends

Class "mpfrMatrix" extends "mpfrArray", directly.

Class "mpfrArray" extends class "mpfr", by class "mpfrArray", distance 2; class "list", by class
"mpfrArray", distance 3; class "vector", by class "mpfrArray", distance 4.

Methods

Arith signature(e1 = "mpfr",e2 = "mpfrArray"): ...

Arith signature(e1 = "numeric",e2 = "mpfrArray"): ...

Arith signature(e1 = "mpfrArray",e2 = "mpfrArray"): ...

Arith signature(e1 = "mpfrArray",e2 = "mpfr"): ...

Arith signature(e1 = "mpfrArray",e2 = "numeric"): ...

as.vector signature(x = "mpfrArray",mode = "missing"): drops the dimension ‘attribute’, i.e.,
transforms x into a simple mpfr vector. This is an inverse of t(.) or dim(.) <-* on such a
vector.

atan2 signature(y = "ANY",x = "mpfrArray"): ...

atan2 signature(y = "mpfrArray",x = "mpfrArray"): ...

atan2 signature(y = "mpfrArray",x = "ANY"): ...

[<- signature(x = "mpfrArray",i = "ANY",j = "ANY",value = "ANY"): ...

[signature(x = "mpfrArray",i = "ANY",j = "ANY",drop = "ANY"): ...

[signature(x = "mpfrArray",i = "ANY",j = "missing",drop = "missing"): "mpfrArray"s can
be subset (“indexed”) as regular R arrays.

%*% signature(x = "mpfr",y = "mpfrMatrix"): Compute the matrix/vector product xy when
the dimensions (dim) of x and y match. If x is not a matrix, it is treated as a 1-row or 1-column
matrix (aka “row vector” or “column vector”) depending on which one makes sense, see the
documentation of the base function %*%.

%*% signature(x = "mpfr",y = "Mnumber"): method definition for cases with one mpfr and
any “number-like” argument are to use MPFR arithmetic as well.

%*% signature(x = "mpfrMatrix",y = "mpfrMatrix"),

%*% signature(x = "mpfrMatrix",y = "mpfr"), etc. Further method definitions with identical
semantic.

crossprod signature(x = "mpfr",y = "missing"): Computes x′x, i.e., t(x) %*% x, typically more
efficiently.

crossprod signature(x = "mpfr",y = "mpfrMatrix"): Computes x′y, i.e., t(x) %*% y, typically
more efficiently.

crossprod signature(x = "mpfrMatrix",y = "mpfrMatrix"): ...

crossprod signature(x = "mpfrMatrix",y = "mpfr"): ...

tcrossprod signature(x = "mpfr",y = "missing"): Computes xx′, i.e., x %*% t(x), typically
more efficiently.

tcrossprod signature(x = "mpfrMatrix",y = "mpfrMatrix"): Computes xy′, i.e., x %*% t(y),
typically more efficiently.

mpfrMatrix 49

tcrossprod signature(x = "mpfrMatrix",y = "mpfr"): ...

tcrossprod signature(x = "mpfr",y = "mpfrMatrix"): ...

coerce signature(from = "mpfrArray",to = "array"): coerces from to a numeric array of the
same dimension.

coerce signature(from = "mpfrArray",to = "vector"): as for standard arrays, this “drops”
the dim (and dimnames), i.e., returns an mpfr vector.

Compare signature(e1 = "mpfr",e2 = "mpfrArray"): ...

Compare signature(e1 = "numeric",e2 = "mpfrArray"): ...

Compare signature(e1 = "mpfrArray",e2 = "mpfr"): ...

Compare signature(e1 = "mpfrArray",e2 = "numeric"): ...

dim signature(x = "mpfrArray"): ...

dimnames<- signature(x = "mpfrArray"): ...

dimnames signature(x = "mpfrArray"): ...

show signature(object = "mpfrArray"): ...

sign signature(x = "mpfrArray"): ...

norm signature(x = "mpfrMatrix",type = "character"): computes the matrix norm of x, see
norm or the one in package Matrix.

t signature(x = "mpfrMatrix"): tranpose the mpfrMatrix.

aperm signature(a = "mpfrArray"): aperm(a,perm) is a generalization of t(.) to permute the
dimensions of an mpfrArray; it has the same semantics as the standard aperm() method for
simple R arrays.

Author(s)

Martin Maechler

See Also

mpfrArray, also for more examples.

Examples

showClass("mpfrMatrix")

validObject(mm <- new("mpfrMatrix"))
validObject(aa <- new("mpfrArray"))

v6 <- mpfr(1:6, 128)
m6 <- new("mpfrMatrix", v6, Dim = c(2L, 3L))
validObject(m6)
m6
which(m6 == 3, arr.ind = TRUE) # |--> (1, 2)
Coercion back to "vector": Both of these work:
stopifnot(identical(as(m6, "mpfr"), v6),

identical(as.vector(m6), v6)) # < but this is a "coincidence"

50 mpfrMatrix-utils

S2 <- m6[,-3] # 2 x 2
S3 <- rbind(m6, c(1:2,10)) ; s3 <- asNumeric(S3)
det(S2)
str(determinant(S2))
det(S3)
stopifnot(all.equal(det(S2), det(asNumeric(S2)), tol=1e-15),

all.equal(det(S3), det(s3), tol=1e-15))

2-column matrix indexing and replacement:
(sS <- S3[i2 <- cbind(1:2, 2:3)])
stopifnot(identical(asNumeric(sS), s3[i2]))
C3 <- S3; c3 <- s3
C3[i2] <- 10:11
c3[i2] <- 10:11
stopifnot(identical(asNumeric(C3), c3))

AA <- new("mpfrArray", as.vector(cbind(S3, -S3)), Dim=c(3L,3:2))
stopifnot(identical(AA[,,1] , S3), identical(AA[,,2] , -S3))
aa <- asNumeric(AA)

i3 <- cbind(3:1, 1:3, c(2L, 1:2))
ii3 <- Rmpfr:::.mat2ind(i3, dim(AA), dimnames(AA))
stopifnot(aa[i3] == new("mpfr", getD(AA)[ii3]))
stopifnot(identical(aa[i3], asNumeric(AA[i3])))
CA <- AA; ca <- aa
ca[i3] <- ca[i3] ^ 3
CA[i3] <- CA[i3] ^ 3

scale():
S2. <- scale(S2)
stopifnot(all.equal(abs(as.vector(S2.)), rep(sqrt(1/mpfr(2, 128)), 4),

tol = 1e-30))

norm() :
norm(S2)
stopifnot(identical(norm(S2), norm(S2, "1")),

norm(S2, "I") == 6,
norm(S2, "M") == 4,
abs(norm(S2, "F") - 5.477225575051661) < 1e-15)

mpfrMatrix-utils Functions for mpfrMatrix Objects

Description

determinant(x,..) computes the determinant of the mpfr square matrix x. May work via co-
ercion to "numeric", i.e., compute determinant(asNumeric(x),logarithm), if asNumeric is
true, by default, if the dimension is larger than three. Otherwise, use precision precBits for the
“accumulator” of the result, and use the recursive mathematical definition of the determinant (with
computational complexity n!, where n is the matrix dimension, i.e., very inefficient for all but small
matrices!)

mpfrMatrix-utils 51

Usage

S3 method for class 'mpfrMatrix'
determinant(x, logarithm = TRUE,

asNumeric = (d[1] > 3), precBits = max(.getPrec(x)), ...)

Arguments

x an mpfrMatrix object of square dimension.

logarithm logical indicating if the log of the absolute determinant should be returned.

asNumeric logical if rather determinant(asNumeric(x),...) should be computed.

precBits the number of binary digits for the result (and the intermediate accumulations).

... unused (potentially further arguments passed to methods).

Value

as determinant(), an object of S3 class "det", a list with components

modulus the (logarithm of) the absolute value (abs) of the determinant of x.

sign the sign of the determinant.

Author(s)

Martin Maechler

See Also

determinant in base R, which relies on a fast LU decomposition. mpfrMatrix

Examples

m6 <- mpfrArray(1:6, prec=128, dim = c(2L, 3L))
m6
S2 <- m6[,-3] # 2 x 2
S3 <- rbind(m6, c(1:2,10))
det(S2)
str(determinant(S2))
det(S3)
stopifnot(all.equal(det(S2), det(asNumeric(S2)), tolerance=1e-15),

all.equal(det(S3), det(asNumeric(S3)), tolerance=1e-15))

52 optimizeR

optimizeR High Precision One-Dimensional Optimization

Description

optimizeR searches the interval from lower to upper for a minimum of the function f with respect
to its first argument.

Usage

optimizeR(f, lower, upper, ..., tol = 1e-20,
method = c("Brent", "GoldenRatio"),
maximum = FALSE,
precFactor = 2.0, precBits = -log2(tol) * precFactor,
maxiter = 1000, trace = FALSE)

Arguments

f the function to be optimized. f(x) must work “in Rmpfr arithmetic” for optimizer()
to make sense. The function is either minimized or maximized over its first ar-
gument depending on the value of maximum.

... additional named or unnamed arguments to be passed to f.

lower the lower end point of the interval to be searched.

upper the upper end point of the interval to be searched.

tol the desired accuracy, typically higher than double precision, i.e., tol < 2e-16.

method character string specifying the optimization method.

maximum logical indicating if f() should be maximized or minimized (the default).

precFactor only for default precBits construction: a factor to multiply with the number of
bits directly needed for tol.

precBits number of bits to be used for mpfr numbers used internally.

maxiter maximal number of iterations to be used.

trace integer or logical indicating if and how iterations should be monitored; if an
integer k, print every k-th iteration.

Details

"Brent": Brent(1973)’s simple and robust algorithm is a hybrid, using a combination of the golden
ratio and local quadratic (“parabolic”) interpolation. This is the same algorithm as standard
R’s optimize(), adapted to high precision numbers.
In smooth cases, the convergence is considerably faster than the golden section or Fibonacci
ratio algorithms.

"GoldenRatio": The golden ratio method, aka ‘golden-section search’ works as follows: from a
given interval containing the solution, it constructs the next point in the golden ratio between
the interval boundaries.

optimizeR 53

Value

A list with components minimum (or maximum) and objective which give the location of the
minimum (or maximum) and the value of the function at that point; iter specifiying the number of
iterations, the logical convergence indicating if the iterations converged and estim.prec which is
an estimate or an upper bound of the final precision (in x). method the string of the method used.

Author(s)

"GoldenRatio" is based on Hans W Borchert’s golden_ratio; modifications and "Brent" by
Martin Maechler.

See Also

R’s standard optimize; Rmpfr’s unirootR.

Examples

The minimum of the Gamma (and lgamma) function (for x > 0):
Gmin <- optimizeR(gamma, .1, 3, tol = 1e-50)
str(Gmin, digits = 8)
high precision chosen for "objective"; minimum has "estim.prec" = 1.79e-50
Gmin[c("minimum","objective")]
it is however more accurate to 59 digits:
asNumeric(optimizeR(gamma, 1, 2, tol = 1e-100)$minimum - Gmin$minimum)

iG5 <- function(x) -exp(-(x-5)^2/2)
curve(iG5, 0, 10, 200)
o.dp <- optimize (iG5, c(0, 10)) #-> 5 of course
oM.gs <- optimizeR(iG5, 0, 10, method="Golden")
oM.Br <- optimizeR(iG5, 0, 10, method="Brent", trace=TRUE)
oM.gs$min ; oM.gs$iter
oM.Br$min ; oM.Br$iter
(doExtras <- Rmpfr:::doExtras())
if(doExtras) {## more accuracy {takes a few seconds}
oM.gs <- optimizeR(iG5, 0, 10, method="Golden", tol = 1e-70)
oM.Br <- optimizeR(iG5, 0, 10, tol = 1e-70)
}
rbind(Golden = c(err = as.numeric(oM.gs$min -5), iter = oM.gs$iter),

Brent = c(err = as.numeric(oM.Br$min -5), iter = oM.Br$iter))

==> Brent is orders of magnitude more efficient !

Testing on the sine curve with 40 correct digits:
sol <- optimizeR(sin, 2, 6, tol = 1e-40)
str(sol)
sol <- optimizeR(sin, 2, 6, tol = 1e-50,

precFactor = 3.0, trace = TRUE)
pi.. <- 2*sol$min/3
print(pi.., digits=51)
stopifnot(all.equal(pi.., Const("pi", 256), tolerance = 10*1e-50))

54 pbetaI

if(doExtras) { # considerably more expensive

a harder one:
f.sq <- function(x) sin(x-2)^4 + sqrt(pmax(0,(x-1)*(x-4)))*(x-2)^2
curve(f.sq, 0, 4.5, n=1000)
msq <- optimizeR(f.sq, 0, 5, tol = 1e-50, trace=5)
str(msq) # ok
stopifnot(abs(msq$minimum - 2) < 1e-49)

find the other local minimum: -- non-smooth ==> Golden ratio -section is used
msq2 <- optimizeR(f.sq, 3.5, 5, tol = 1e-50, trace=10)
stopifnot(abs(msq2$minimum - 4) < 1e-49)

and a local maximum:
msq3 <- optimizeR(f.sq, 3, 4, maximum=TRUE, trace=2)
stopifnot(abs(msq3$maximum - 3.57) < 1e-2)

}#end {doExtras}

##----- "impossible" one to get precisely ------------------------

ff <- function(x) exp(-1/(x-8)^2)
curve(exp(-1/(x-8)^2), -3, 13, n=1001)
(opt. <- optimizeR(function(x) exp(-1/(x-8)^2), -3, 13, trace = 5))
-> close to 8 {but not very close!}
ff(opt.$minimum) # gives 0
if(doExtras) {
try harder ... in vain ..
str(opt1 <- optimizeR(ff, -3,13, tol = 1e-60, precFactor = 4))
print(opt1$minimum, digits=20)
still just 7.99998038 or 8.000036655 {depending on method}

}

pbetaI Accurate Incomplete Beta / Beta Probabilities For Integer Shapes

Description

For integers a, b, Ix(a, b) aka pbeta(x,a,b) is a polynomial in x with rational coefficients, and
hence arbitarily accurately computable.

Usage

pbetaI(q, shape1, shape2, ncp = 0, lower.tail = TRUE, log.p = FALSE,
precBits = NULL, rnd.mode = c("N","D","U","Z","A"))

pbetaI 55

Arguments

q called x, above; vector of quantiles, in [0, 1].

shape1, shape2 the positive Beta “shape” parameters, called a, b, above. Must be integer valued
for this function.

ncp unused, only for compatibility with pbeta, must be kept at its default, 0.

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

log.p logical; if TRUE, probabilities p are given as log(p).

precBits the precision (in number of bits) to be used in sumBinomMpfr().

rnd.mode a 1-letter string specifying how rounding should happen at C-level conversion
to MPFR, see mpfr.

Value

an "mpfr" vector of the same length as q.

Note

For upper tail probabilities, i.e., when lower.tail=FALSE, we may need large precBits, because
the implicit or explicit 1− P computation suffers from severe cancellation.

Author(s)

Martin Maechler

See Also

pbeta, sumBinomMpfr chooseZ.

Examples

x <- (0:12)/16 # not all the way up ..
a <- 7; b <- 788

p. <- pbetaI(x, a, b) ## still slow: %% TOO slow -- FIXME
pp <- pbetaI(x, a, b, precBits = 2048)
Currently, the lower.tail=FALSE are computed "badly":
lp <- log(pp) ## = pbetaI(x, a, b, log.p=TRUE)
lIp <- log1p(-pp) ## = pbetaI(x, a, b, lower.tail=FALSE, log.p=TRUE)
Ip <- 1 - pp ## = pbetaI(x, a, b, lower.tail=FALSE)

if(Rmpfr:::doExtras()) { ## somewhat slow
stopifnot(

all.equal(lp, pbetaI(x, a, b, precBits = 2048, log.p=TRUE)),
all.equal(lIp, pbetaI(x, a, b, precBits = 2048, lower.tail=FALSE, log.p=TRUE),

tol = 1e-230),
all.equal(Ip, pbetaI(x, a, b, precBits = 2048, lower.tail=FALSE))

)
}

56 pmax

rErr <- function(approx, true, eps = 1e-200) {
true <- as.numeric(true) # for "mpfr"
ifelse(Mod(true) >= eps,

relative error, catching '-Inf' etc :
ifelse(true == approx, 0, 1 - approx / true),

else: absolute error (e.g. when true=0)
true - approx)

}

rErr(pbeta(x, a, b), pp)
rErr(pbeta(x, a, b, lower=FALSE), Ip)
rErr(pbeta(x, a, b, log = TRUE), lp)
rErr(pbeta(x, a, b, lower=FALSE, log = TRUE), lIp)

a.EQ <- function(..., tol=1e-15) all.equal(..., tolerance=tol)
stopifnot(

a.EQ(pp, pbeta(x, a, b)),
a.EQ(lp, pbeta(x, a, b, log.p=TRUE)),
a.EQ(lIp, pbeta(x, a, b, lower.tail=FALSE, log.p=TRUE)),
a.EQ(Ip, pbeta(x, a, b, lower.tail=FALSE))
)

pmax Parallel Maxima and Minima

Description

Returns the parallel maxima and minima of the input values.

The functions pmin and pmax have been made S4 generics, and this page documents the “...
method for class "mNumber"”, i.e., for arguments that are numeric or from class "mpfr".

Usage

pmax(..., na.rm = FALSE)
pmin(..., na.rm = FALSE)

Arguments

... numeric or arbitrary precision numbers (class mpfr).

na.rm a logical indicating whether missing values should be removed.

Details

See pmax, the documentation of the base functions, i.e., default methods.

Value

vector-like, of length the longest of the input vectors; typically of class mpfr, for the methods here.

Rmpfr-workarounds 57

Methods

... = "ANY" the default method, really just base::pmin or base::pmax, respectively.

... = "mNumber" the method for mpfr arguments, mixed with numbers; designed to follow the
same semantic as the default method.

See Also

The documentation of the base functions, pmin and pmax; also min and max; further,

range (both min and max).

Examples

(pm <- pmin(1.35, mpfr(0:10, 77)))
stopifnot(pm == pmin(1.35, 0:10))

Rmpfr-workarounds Base Functions etc, as an Rmpfr version

Description

Functions from base etc which need a copy in the Rmpfr namespace so they correctly dispatch.

Usage

outer(X, Y, FUN = "*", ...)

Arguments

X, Y, FUN, ... See base package help: outer.

See Also

outer.

Examples

outer(1/mpfr(1:10, 70), 0:2)

58 sapplyMpfr

roundMpfr Rounding to Binary bits, "mpfr-internally"

Description

Rounding to binary bits, not decimal digits. Closer to the number representation, this also allows to
increase or decrease a number’s precBits. In other words, it acts as setPrec(), see getPrec().

Usage

roundMpfr(x, precBits, rnd.mode = c("N","D","U","Z","A"))

Arguments

x an mpfr number (vector)

precBits integer specifying the desired precision in bits.

rnd.mode a 1-letter string specifying how rounding should happen at C-level conversion
to MPFR, see mpfr.

Value

an mpfr number as x but with the new ’precBits’ precision

See Also

The mpfr class group method Math2 implements a method for round(x,digits) which rounds to
decimal digits.

Examples

(p1 <- Const("pi", 100)) # 100 bit prec
roundMpfr(p1, 120) # 20 bits more, but "random noise"
Const("pi", 120) # same "precision", but really precise

sapplyMpfr Apply a Function over a "mpfr" Vector

Description

Users may be disappointed to note that sapply() or vapply() typically do not work with "mpfr"
numbers.

This is a simple (but strong) approach to work around the problem, based on lapply().

Note that this is not yet as flexible as sapply() for atomic vectors.

seqMpfr 59

Usage

sapplyMpfr(X, FUN, ...)

Arguments

X a vector, possibly of class "mpfr".

FUN a function returning an "mpfr" number. (TODO: A function returning a vector
of mpfr numbers or even "mpfrArray").

... further arguments passed to lapply, typically further arguments to FUN.

Value

an "mpfr" vector, typically of the same length as X.

Note

Another workaround could be to use

res <- lapply(....)
sapply(res, asNumeric)

Author(s)

Martin Maechler

Examples

The function is simply defined as
function (X, FUN, ...)

new("mpfr", unlist(lapply(X, FUN, ...), recursive = FALSE))

if(require("Bessel")) # here X, is simple
bImp <- sapplyMpfr(0:4, function(k)

besselI.nuAsym(mpfr(1.31e9, 128), 10, expon.scaled=TRUE, k.max=k))

seqMpfr "mpfr" Sequence Generation

Description

Generate ‘regular’, i.e., arithmetic sequences. This is in lieu of methods for seq (dispatching on all
three of from, to, and by.

Usage

seqMpfr(from = 1, to = 1, by = ((to - from)/(length.out - 1)),
length.out = NULL, along.with = NULL, ...)

60 str.mpfr

Arguments

from, to the starting and (maximal) end value (numeric or "mpfr") of the sequence.

by number (numeric or "mpfr"): increment of the sequence.

length.out desired length of the sequence. A non-negative number, which will be rounded
up if fractional.

along.with take the length from the length of this argument.

... arguments passed to or from methods.

Details

see seq (default method in package base), whose semantic we want to replicate (almost).

Value

a ‘vector’ of class "mpfr", when one of the first three arguments was.

Author(s)

Martin Maechler

See Also

The documentation of the base function seq; mpfr

Examples

seqMpfr(0, 1, by = mpfr(0.25, prec=88))

seqMpfr(7, 3) # -> default prec.

str.mpfr Compactly Show STRucture of Rmpfr Number Object

Description

The str method for objects of class mpfr produces a bit more useful output than the default method
str.default.

Usage

S3 method for class 'mpfr'
str(object, nest.lev, internal = FALSE,

give.head = TRUE, digits.d = 12, vec.len = NULL, drop0trailing=TRUE,
width = getOption("width"), ...)

sumBinomMpfr 61

Arguments

object an object of class mpfr.

nest.lev for str(), typically only used when called by a higher level str().

internal logical indicating if the low-level internal structure should be shown; if true (not
by default), uses str(object@.Data).

give.head logical indicating if the “header” should be printed.

digits.d the number of digits to be used, will be passed formatMpfr() and hence NULL
will use “as many as needed”, i.e. often too many. If this is a number, as
per default, less digits will be used in case the precision (getPrec(object))
is smaller.

vec.len the number of elements that will be shown. The default depends on the precision
of object and width (since Rmpfr 0.6-0, it was 3 previously).

drop0trailing logical, passed to formatMpfr() (with a different default here).

width the (approximately) desired width of output, see options(width = .).

... further arguments, passed to formatMpfr().

See Also

.mpfr2list() puts the internal structure into a list, and its help page documents many more (low
level) utilities.

Examples

(x <- c(Const("pi", 64), mpfr(-2:2, 64)))
str(x)
str(list(pi = pi, x.mpfr = x))
str(x ^ 1000)
str(x ^ -1e4, digits=NULL) # full precision

str(x, internal = TRUE) # internal low-level (for experts)

uu <- Const("pi", 16)# unaccurate
str(uu) # very similar to just 'uu'

sumBinomMpfr (Alternating) Binomial Sums via Rmpfr

Description

Compute (alternating) binomial sums via high-precision arithmetic. If sBn(f, n) :=sumBinomMpfr(n,f),
(default alternating is true, and n0 = 0),

sBn(f, n) =

n∑
k=n0

(−1)(n− k)

(
n

k

)
· f(k) = ∆nf,

62 sumBinomMpfr

see Details for the n-th forward difference operator ∆nf . If alternating is false, the (−1)(n− k)
factor is dropped (or replaced by 1) above.

Such sums appear in different contexts and are typically challenging, i.e., currently impossible, to
evaluate reliably as soon as n is larger than around 50−−70.

Usage

sumBinomMpfr(n, f, n0 = 0, alternating = TRUE, precBits = 256,
f.k = f(mpfr(k, precBits=precBits)))

Arguments

n upper summation index (integer).

f function to be evaluated at k for k in n0:n (and which must return one value
per k).

n0 lower summation index, typically 0 (= default) or 1.

alternating logical indicating if the sum is alternating, see below.

precBits the number of bits for MPFR precision, see mpfr.

f.k can be specified instead of f and precBits, and must contain the equivalent of
its default, f(mpfr(k,precBits=precBits)).

Details

The alternating binomial sum sB(f, n) := sumBinom(n, f, n0 = 0) is equal to the n-th forward
difference operator ∆nf ,

sB(f, n) = ∆nf,

where

∆nf =

n∑
k=0

(−1)n−k
(
n

k

)
· f(k),

is the n-fold iterated forward difference ∆f(x) = f(x+ 1)− f(x) (for x = 0).

The current implementation might be improved in the future, notably for the case where sB(f, n) =sumBinomMpfr(n,f,*)
is to be computed for a whole sequence n = 1, . . . , N .

Value

an mpfr number of precision precBits. s. If alternating is true (as per default),

s =

n∑
k=n0

(−1)k
(
n

k

)
· f(k),

if alternating is false, the (−1)k factor is dropped (or replaced by 1) above.

Author(s)

Martin Maechler, after conversations with Christophe Dutang.

unirootR 63

References

Wikipedia (2012) The N\"orlund-Rice integral, https://en.wikipedia.org/wiki/Rice_integral

Flajolet, P. and Sedgewick, R. (1995) Mellin Transforms and Asymptotics: Finite Differences and
Rice’s Integrals, Theoretical Computer Science 144, 101–124.

See Also

chooseMpfr, chooseZ from package gmp.

Examples

"naive" R implementation:
sumBinom <- function(n, f, n0=0, ...) {

k <- n0:n
sum(choose(n, k) * (-1)^(n-k) * f(k, ...))

}

compute sumBinomMpfr(.) for a whole set of 'n' values:
sumBin.all <- function(n, f, n0=0, precBits = 256, ...)
{

N <- length(n)
precBits <- rep(precBits, length = N)
ll <- lapply(seq_len(N), function(i)

sumBinomMpfr(n[i], f, n0=n0, precBits=precBits[i], ...))
sapply(ll, as, "double")

}
sumBin.all.R <- function(n, f, n0=0, ...)

sapply(n, sumBinom, f=f, n0=n0, ...)

n.set <- 5:80
system.time(res.R <- sumBin.all.R(n.set, f = sqrt)) ## instantaneous..
system.time(resMpfr <- sumBin.all (n.set, f = sqrt)) ## ~ 0.6 seconds

matplot(n.set, cbind(res.R, resMpfr), type = "l", lty=1,
ylim = extendrange(resMpfr, f = 0.25), xlab = "n",
main = "sumBinomMpfr(n, f = sqrt) vs. R double precision")

legend("topleft", leg=c("double prec.", "mpfr"), lty=1, col=1:2, bty = "n")

unirootR One Dimensional Root (Zero) Finding – in pure R

Description

The function unirootR searches the interval from lower to upper for a root (i.e., zero) of the
function f with respect to its first argument.

unirootR() is “clone” of uniroot(), written entirely in R, in a way that it works with mpfr-
numbers as well.

https://en.wikipedia.org/wiki/Rice_integral

64 unirootR

Usage

unirootR(f, interval, ...,
lower = min(interval), upper = max(interval),
f.lower = f(lower, ...), f.upper = f(upper, ...),
verbose = FALSE,
tol = .Machine$double.eps^0.25, maxiter = 1000,
warn.no.convergence = TRUE,
epsC = NULL)

Arguments

f the function for which the root is sought.

interval a vector containing the end-points of the interval to be searched for the root.

... additional named or unnamed arguments to be passed to f

lower, upper the lower and upper end points of the interval to be searched.
f.lower, f.upper

the same as f(upper) and f(lower), respectively. Passing these values from the
caller where they are often known is more economical as soon as f() contains
non-trivial computations.

verbose logical (or integer) indicating if (and how much) verbose output should be pro-
duced during the iterations.

tol the desired accuracy (convergence tolerance).

maxiter the maximum number of iterations.
warn.no.convergence

if set to FALSE there’s no warning about non-convergence. Useful to just run a
few iterations.

epsC positive number or NULL in which case a smart default is sought. This should
specify the “achievable machine precision” for the given numbers and their
arithmetic.
The default will set this to .Machine$double.eps for double precision num-
bers, and will basically use 2 ^ -min(getPrec(f.lower),getPrec(f.upper))
when that works (as, e.g., for mpfr-numbers) otherwise.
This is factually a lower bound for the achievable lower bound, and hence, set-
ting tol smaller than epsC is typically non-sensical sense and produces a warn-
ing.

Details

Note that arguments after ... must be matched exactly.

Either interval or both lower and upper must be specified: the upper endpoint must be strictly
larger than the lower endpoint. The function values at the endpoints must be of opposite signs (or
zero).

The function only uses R code with basic arithmetic, such that it should also work with “general-
ized” numbers (such as mpfr-numbers) as long the necessary Ops methods are defined for those.

unirootR 65

The underlying algorithm assumes a continuous function (which then is known to have at least one
root in the interval).

Convergence is declared either if f(x) == 0 or the change in x for one step of the algorithm is less
than tol (plus an allowance for representation error in x).

If the algorithm does not converge in maxiter steps, a warning is printed and the current approxi-
mation is returned.

f will be called as f(x,...) for a (generalized) numeric value of x .

Value

A list with four components: root and f.root give the location of the root and the value of the
function evaluated at that point. iter and estim.prec give the number of iterations used and an
approximate estimated precision for root. (If the root occurs at one of the endpoints, the estimated
precision is NA.)

Source

Based on zeroin() (in package rootoned) by John Nash who manually translated the C code in
R’s zeroin.c and on uniroot() in R’s sources.

References

Brent, R. (1973), see uniroot.

See Also

polyroot for all complex roots of a polynomial; optimize, nlm.

Examples

require(utils) # for str

some platforms hit zero exactly on the first step:
if so the estimated precision is 2/3.
f <- function (x,a) x - a
str(xmin <- unirootR(f, c(0, 1), tol = 0.0001, a = 1/3))

handheld calculator example: fixpoint of cos(.):
rc <- unirootR(function(x) cos(x) - x, lower=-pi, upper=pi, tol = 1e-9)
rc$root

the same with much higher precision:
rcM <- unirootR(function(x) cos(x) - x,

interval= mpfr(c(-3,3), 300), tol = 1e-40)
rcM
x0 <- rcM$root
stopifnot(all.equal(cos(x0), x0,

tol = 1e-40))## 40 digits accurate!

str(unirootR(function(x) x*(x^2-1) + .5, lower = -2, upper = 2,

66 unirootR

tol = 0.0001), digits.d = 10)
str(unirootR(function(x) x*(x^2-1) + .5, lower = -2, upper = 2,

tol = 1e-10), digits.d = 10)

A sign change of f(.), but not a zero but rather a "pole":
tan. <- function(x) tan(x * (Const("pi",200)/180))# == tan(<angle>)
(rtan <- unirootR(tan., interval = mpfr(c(80,100), 200), tol = 1e-40))
finds 90 {"ok"}, and now gives a warning

Find the smallest value x for which exp(x) > 0 (numerically):
r <- unirootR(function(x) 1e80*exp(x)-1e-300, c(-1000,0), tol = 1e-15)
str(r, digits.d = 15) ##> around -745, depending on the platform.

exp(r$root) # = 0, but not for r$root * 0.999...
minexp <- r$root * (1 - 10*.Machine$double.eps)
exp(minexp) # typically denormalized

--- using mpfr-numbers :

Find the smallest value x for which exp(x) > 0 ("numerically");
Note that mpfr-numbers underflow *MUCH* later than doubles:
one of the smallest mpfr-numbers {see also ?mpfr-class } :
(ep.M <- mpfr(2, 55) ^ - ((2^30 + 1) * (1 - 1e-15)))
r <- unirootR(function(x) 1e99* exp(x) - ep.M, mpfr(c(-1e20, 0), 200))
r # 97 iterations; f.root is very similar to ep.M

Index

∗Topic arith
Bernoulli, 8
chooseMpfr, 12
factorialMpfr, 14
formatHex, 15
gmp-conversions, 20
mpfr.utils, 44
pbetaI, 54
pmax, 56
roundMpfr, 58
sumBinomMpfr, 61

∗Topic array
mpfrArray, 46
mpfrMatrix-utils, 50

∗Topic character
formatMpfr, 18

∗Topic classes
array_or_vector-class, 6
atomicVector-class, 8
Mnumber-class, 29
mpfr, 30
mpfr-class, 32
mpfrMatrix, 47

∗Topic distribution
mpfr-distr-etc, 37
pbetaI, 54

∗Topic manip
sapplyMpfr, 58
seqMpfr, 59

∗Topic math
Bessel_mpfr, 10
igamma, 24
integrateR, 25
is.whole, 28
mpfr-special-functions, 39

∗Topic methods
asNumeric-methods, 7
bind-methods, 11
pmax, 56

∗Topic misc
Rmpfr-workarounds, 57

∗Topic optimize
hjkMpfr, 21
optimizeR, 52
unirootR, 63

∗Topic package
Rmpfr-package, 3

∗Topic print
formatMpfr, 18

∗Topic univar
pmax, 56

∗Topic utilities
integrateR, 25
mpfr-utils, 40
str.mpfr, 60

.Machine, 35, 43, 64

.bigq2mpfr (gmp-conversions), 20

.bigz2mpfr (gmp-conversions), 20

.getPrec (mpfr-utils), 40

.mpfr.is.whole (mpfr.utils), 44

.mpfr2bigz (gmp-conversions), 20

.mpfr2exp, 19

.mpfr2exp (mpfr-utils), 40

.mpfr2list, 61

.mpfr2list (mpfr-utils), 40

.mpfr2str, 18, 43

.mpfr2str (formatMpfr), 18

.mpfr_erange (mpfr-utils), 40

.mpfr_erange_is_int (mpfr-utils), 40

.mpfr_erange_kinds (mpfr-utils), 40

.mpfr_erange_set (mpfr-utils), 40

.mpfr_formatinfo, 19

.mpfr_formatinfo (mpfr-utils), 40

.mpfr_maxPrec (mpfr-utils), 40

.mpfr_minPrec (mpfr-utils), 40
[,mpfr,ANY,missing,missing-method

(mpfr-class), 32
[,mpfrArray,ANY,ANY,ANY-method

67

68 INDEX

(mpfrMatrix), 47
[,mpfrArray,ANY,missing,missing-method

(mpfrMatrix), 47
[,mpfrArray,matrix,missing,missing-method

(mpfrMatrix), 47
[<-,mpfr,ANY,missing,ANY-method

(mpfr-class), 32
[<-,mpfr,ANY,missing,mpfr-method

(mpfr-class), 32
[<-,mpfr,missing,missing,ANY-method

(mpfr-class), 32
[<-,mpfrArray,ANY,ANY,ANY-method

(mpfrMatrix), 47
[<-,mpfrArray,ANY,ANY,mpfr-method

(mpfrMatrix), 47
[<-,mpfrArray,ANY,missing,ANY-method

(mpfrMatrix), 47
[<-,mpfrArray,ANY,missing,mpfr-method

(mpfrMatrix), 47
[<-,mpfrArray,matrix,missing,ANY-method

(mpfrMatrix), 47
[<-,mpfrArray,matrix,missing,mpfr-method

(mpfrMatrix), 47
[<-,mpfrArray,missing,ANY,ANY-method

(mpfrMatrix), 47
[<-,mpfrArray,missing,ANY,mpfr-method

(mpfrMatrix), 47
[<-,mpfrArray,missing,missing,ANY-method

(mpfrMatrix), 47
[<-,mpfrArray,missing,missing,mpfr-method

(mpfrMatrix), 47
[[,mpfr-method (mpfr-class), 32
%*%,Mnumber,mpfr-method (mpfrMatrix), 47
%*%,array_or_vector,mpfr-method

(mpfr-class), 32
%*%,mpfr,Mnumber-method (mpfrMatrix), 47
%*%,mpfr,array_or_vector-method

(mpfr-class), 32
%*%,mpfr,mpfr-method (mpfrMatrix), 47
%*%,mpfr,mpfrMatrix-method

(mpfrMatrix), 47
%*%,mpfrMatrix,mpfr-method

(mpfrMatrix), 47
%*%,mpfrMatrix,mpfrMatrix-method

(mpfrMatrix), 47
%*%, 48

abs, 34, 51
abs,mpfr-method (mpfr-class), 32

acos, 34
acosh, 34
Ai (Bessel_mpfr), 10
all, 34
all.equal, 35
all.equal,ANY,mpfr-method (mpfr-class),

32
all.equal,mpfr,ANY-method (mpfr-class),

32
all.equal,mpfr,mpfr-method

(mpfr-class), 32
any, 34
aperm, 49
aperm,mpfrArray-method (mpfrMatrix), 47
apply,mpfrArray-method (mpfrMatrix), 47
Arg,mpfr-method (mpfr-class), 32
Arith,array,mpfr-method (mpfr-class), 32
Arith,integer,mpfr-method (mpfr-class),

32
Arith,mpfr,array-method (mpfr-class), 32
Arith,mpfr,integer-method (mpfr-class),

32
Arith,mpfr,missing-method (mpfr-class),

32
Arith,mpfr,mpfr-method (mpfr-class), 32
Arith,mpfr,mpfrArray-method

(mpfrMatrix), 47
Arith,mpfr,numeric-method (mpfr-class),

32
Arith,mpfrArray,mpfr-method

(mpfrMatrix), 47
Arith,mpfrArray,mpfrArray-method

(mpfrMatrix), 47
Arith,mpfrArray,numeric-method

(mpfrMatrix), 47
Arith,numeric,mpfr-method (mpfr-class),

32
Arith,numeric,mpfrArray-method

(mpfrMatrix), 47
array, 5, 7, 19, 30, 34, 43, 46–49
array_or_vector, 29
array_or_vector-class, 6
as, 35
as.bigq, 21
as.bigz, 21
as.integer,mpfr-method (mpfr-class), 32
as.numeric, 7
as.numeric,mpfr-method (mpfr-class), 32

INDEX 69

as.vector,mpfrArray,missing-method
(mpfrMatrix), 47

as.vector,mpfrArray-method
(mpfr-class), 32

asin, 34
asinh, 34
asNumeric, 7, 31, 43, 46, 50, 51
asNumeric,mpfr-method

(asNumeric-methods), 7
asNumeric,mpfrArray-method

(asNumeric-methods), 7
asNumeric-methods, 7
atan, 33, 34
atan2,ANY,mpfr-method (mpfr-class), 32
atan2,ANY,mpfrArray-method

(mpfr-class), 32
atan2,mpfr,ANY-method (mpfr-class), 32
atan2,mpfr,mpfr-method (mpfr-class), 32
atan2,mpfr,numeric-method (mpfr-class),

32
atan2,mpfrArray,ANY-method

(mpfr-class), 32
atan2,mpfrArray,mpfrArray-method

(mpfr-class), 32
atan2,numeric,mpfr-method (mpfr-class),

32
atanh, 34
atomicVector-class, 8

base::pmin, 57
Bernoulli, 5, 8, 36
Bessel_mpfr, 5, 10, 40
besselJ, 10
besselY, 10
beta, 33
beta,ANY,mpfr-method (mpfr-class), 32
beta,ANY,mpfrArray-method (mpfr-class),

32
beta,mpfr,ANY-method (mpfr-class), 32
beta,mpfr,mpfr-method (mpfr-class), 32
beta,mpfr,numeric-method (mpfr-class),

32
beta,mpfrArray,ANY-method (mpfr-class),

32
beta,mpfrArray,mpfrArray-method

(mpfr-class), 32
beta,numeric,mpfr-method (mpfr-class),

32
bigq, 20, 30

bigrational, 6
bigz, 20, 30, 35
bind-methods, 11

c, 45
c.mpfr, 5
c.mpfr (mpfr.utils), 44
cbind, 5, 11, 12
cbind (bind-methods), 11
cbind,ANY-method (bind-methods), 11
cbind,Mnumber-method (bind-methods), 11
cbind-methods (bind-methods), 11
cbind2, 12
ceiling, 34
character, 30, 31, 35, 41, 42, 47, 52
choose, 12, 13
chooseMpfr, 5, 12, 63
chooseZ, 12, 13, 55, 63
class, 8, 11, 16, 28, 32, 41, 56
coerce,array,mpfr-method (mpfr-class),

32
coerce,bigq,mpfr-method

(gmp-conversions), 20
coerce,bigz,mpfr-method

(gmp-conversions), 20
coerce,character,mpfr-method

(mpfr-class), 32
coerce,integer,mpfr-method

(mpfr-class), 32
coerce,logical,mpfr-method

(mpfr-class), 32
coerce,mpfr,bigz-method (mpfr-class), 32
coerce,mpfr,character-method

(mpfr-class), 32
coerce,mpfr,integer-method

(mpfr-class), 32
coerce,mpfr,mpfr1-method (mpfr-class),

32
coerce,mpfr,numeric-method

(mpfr-class), 32
coerce,mpfr1,mpfr-method (mpfr-class),

32
coerce,mpfr1,numeric-method

(mpfr-class), 32
coerce,mpfrArray,array-method

(mpfrMatrix), 47
coerce,mpfrArray,matrix-method

(mpfrMatrix), 47

70 INDEX

coerce,mpfrArray,vector-method
(mpfrMatrix), 47

coerce,mpfrMatrix,matrix-method
(mpfrMatrix), 47

coerce,numeric,mpfr-method
(mpfr-class), 32

coerce,numeric,mpfr1-method
(mpfr-class), 32

coerce,raw,mpfr-method (mpfr-class), 32
coerce<-,mpfrArray,vector-method

(mpfrMatrix), 47
colMeans,mpfrArray-method (mpfrMatrix),

47
colSums,mpfrArray-method (mpfrMatrix),

47
Compare,array,mpfr-method (mpfr-class),

32
Compare,integer,mpfr-method

(mpfr-class), 32
Compare,mpfr,array-method (mpfr-class),

32
Compare,mpfr,integer-method

(mpfr-class), 32
Compare,mpfr,mpfr-method (mpfr-class),

32
Compare,mpfr,mpfrArray-method

(mpfrMatrix), 47
Compare,mpfr,numeric-method

(mpfr-class), 32
Compare,mpfrArray,mpfr-method

(mpfrMatrix), 47
Compare,mpfrArray,numeric-method

(mpfrMatrix), 47
Compare,numeric,mpfr-method

(mpfr-class), 32
Compare,numeric,mpfrArray-method

(mpfrMatrix), 47
complex, 8
Conj,mpfr-method (mpfr-class), 32
Const (mpfr), 30
cos, 34
cosh, 34
crossprod,array_or_vector,mpfr-method

(mpfr-class), 32
crossprod,Mnumber,mpfr-method

(mpfrMatrix), 47
crossprod,mpfr,array_or_vector-method

(mpfr-class), 32

crossprod,mpfr,missing-method
(mpfrMatrix), 47

crossprod,mpfr,Mnumber-method
(mpfrMatrix), 47

crossprod,mpfr,mpfr-method
(mpfrMatrix), 47

crossprod,mpfr,mpfrMatrix-method
(mpfrMatrix), 47

crossprod,mpfrMatrix,mpfr-method
(mpfrMatrix), 47

crossprod,mpfrMatrix,mpfrMatrix-method
(mpfrMatrix), 47

cummax, 34
cummin, 34
cumprod, 34
cumsum, 34

dbinom, 38
dbinom (mpfr-distr-etc), 37
determinant, 51
determinant.mpfrMatrix

(mpfrMatrix-utils), 50
dgamma, 38
dgamma (mpfr-distr-etc), 37
diag,mpfrMatrix-method (mpfrMatrix), 47
diag<-,mpfrMatrix-method (mpfrMatrix),

47
diff, 45
diff.default, 45
diff.mpfr (mpfr.utils), 44
digamma, 5, 34
dim, 7, 19, 33, 48
dim,mpfrArray-method (mpfrMatrix), 47
dim<-,mpfr-method (mpfr-class), 32
dimnames, 19
dimnames,mpfrArray-method (mpfrMatrix),

47
dimnames<-,mpfrArray-method

(mpfrMatrix), 47
dnorm (mpfr-distr-etc), 37
dotsMethods, 11
double, 41, 43
dpois, 38
dpois (mpfr-distr-etc), 37
duplicated, 35

Ei (mpfr-special-functions), 39
erf, 38, 45
erf (mpfr-special-functions), 39

INDEX 71

erfc (mpfr-special-functions), 39
exp, 34
expm1, 34

factorial, 13, 14
factorial,mpfr-method (mpfr-class), 32
factorialMpfr, 5, 13, 14, 34
factorialZ, 14
floor, 34
format, 16, 18, 19, 42
format,mpfr-method (mpfr-class), 32
formatBin, 30
formatBin (formatHex), 15
formatDec (formatHex), 15
formatHex, 15
formatMpfr, 5, 16, 18, 35, 41, 42, 61
formatN, 19
formatN.mpfr (formatMpfr), 18
function, 62

gamma, 5, 13, 14, 25, 33, 34
getD (mpfr-utils), 40
getGroupMembers, 34
getPrec, 5, 15, 30, 58, 61
getPrec (mpfr-utils), 40
gmp, 6
gmp-conversions, 20
golden_ratio, 53

hjk, 21
hjkMpfr, 5, 21
hypot (mpfr-class), 32

igamma, 24
Im,mpfr-method (mpfr-class), 32
integer, 8, 12, 35, 41–43
integrate, 26, 27
integrateR, 5, 25
interactive, 41
is.atomic, 8
is.finite, 43
is.finite,mpfr-method (mpfr-class), 32
is.finite,mpfrArray-method

(mpfr-class), 32
is.infinite,mpfr-method (mpfr-class), 32
is.infinite,mpfrArray-method

(mpfr-class), 32
is.integer, 28
is.na,mpfr-method (mpfr-class), 32

is.na,mpfrArray-method (mpfr-class), 32
is.nan,mpfr-method (mpfr-class), 32
is.nan,mpfrArray-method (mpfr-class), 32
is.whole, 28, 28, 36, 45

j0, 40
j0 (Bessel_mpfr), 10
j1 (Bessel_mpfr), 10
jn, 36
jn (Bessel_mpfr), 10

lapply, 58, 59
lbeta,ANY,mpfr-method (mpfr-class), 32
lbeta,ANY,mpfrArray-method

(mpfr-class), 32
lbeta,mpfr,ANY-method (mpfr-class), 32
lbeta,mpfr,mpfr-method (mpfr-class), 32
lbeta,mpfr,numeric-method (mpfr-class),

32
lbeta,mpfrArray,ANY-method

(mpfr-class), 32
lbeta,mpfrArray,mpfrArray-method

(mpfr-class), 32
lbeta,numeric,mpfr-method (mpfr-class),

32
lgamma, 33, 34
Li2 (mpfr-special-functions), 39
list, 22, 33, 48, 51, 53, 61
load, 43
log, 34, 51
log,mpfr-method (mpfr-class), 32
log10, 34
log1p, 34
log2, 34
Logic,mpfr,mpfr-method (mpfr-class), 32
Logic,mpfr,numeric-method (mpfr-class),

32
Logic,numeric,mpfr-method (mpfr-class),

32
logical, 15, 18, 19, 35, 42, 43

Math, 34
Math,mpfr-method (mpfr-class), 32
Math2,mpfr-method (mpfr-class), 32
matrix, 7, 43, 47
max, 34
mean, 34
mean,mpfr-method (mpfr-class), 32
mean.default, 34

72 INDEX

median,mpfr-method (mpfr-class), 32
min, 34, 57
missing, 30
Mnumber, 11
Mnumber-class, 29
mNumber-class (Mnumber-class), 29
Mod,mpfr-method (mpfr-class), 32
mpfr, 5, 7, 9–16, 18–21, 23, 24, 26, 28–30, 30,

31, 33–35, 38–43, 45–49, 52, 55–64
mpfr-class, 5, 32
mpfr-distr (mpfr-distr-etc), 37
mpfr-distr-etc, 37
mpfr-special-functions, 39
mpfr-utils, 40
mpfr.is.0 (mpfr.utils), 44
mpfr.is.integer (mpfr.utils), 44
mpfr.utils, 44
mpfr1, 47
mpfr1-class (mpfr-class), 32
mpfr2array, 46, 47
mpfr2array (mpfr-utils), 40
mpfr_default_prec (mpfr-utils), 40
mpfrArray, 5, 7, 19, 31, 33, 41, 43, 46, 46, 47,

49, 59
mpfrArray-class (mpfrMatrix), 47
mpfrImport (mpfr-utils), 40
mpfrIs0, 43
mpfrIs0 (mpfr.utils), 44
mpfrMatrix, 7, 11, 29, 31, 35, 36, 43, 46, 47,

51
mpfrMatrix-class, 5
mpfrMatrix-class (mpfrMatrix), 47
mpfrMatrix-utils, 50
mpfrVersion (mpfr.utils), 44
mpfrXport (mpfr-utils), 40

names, 42
NaN, 33
nlm, 65
norm, 49
norm,ANY,missing-method (mpfrMatrix), 47
norm,mpfrMatrix,character-method

(mpfrMatrix), 47
NULL, 41, 47
numeric, 8, 10, 24, 30–32, 35, 38, 39, 42, 45
numeric_version, 45
numericVector-class (Mnumber-class), 29

Ops, 64

Ops,ANY,mpfr-method (mpfr-class), 32
Ops,array,mpfr-method (mpfr-class), 32
Ops,bigq,mpfr-method (mpfr-class), 32
Ops,bigz,mpfr-method (mpfr-class), 32
Ops,mpfr,ANY-method (mpfr-class), 32
Ops,mpfr,array-method (mpfr-class), 32
Ops,mpfr,bigq-method (mpfr-class), 32
Ops,mpfr,bigz-method (mpfr-class), 32
Ops,mpfr,vector-method (mpfr-class), 32
Ops,vector,mpfr-method (mpfr-class), 32
optim, 23
optimize, 52, 53, 65
optimizeR, 5, 23, 52
options, 18, 41, 42, 61
order, 35
outer, 57
outer (Rmpfr-workarounds), 57

pbeta, 38, 55
pbetaI, 38, 54
pgamma, 24, 25
pmax, 56, 56
pmax,ANY-method (pmax), 56
pmax,mNumber-method (pmax), 56
pmax-methods (pmax), 56
pmin, 57
pmin (pmax), 56
pmin,ANY-method (pmax), 56
pmin,mNumber-method (pmax), 56
pmin-methods (pmax), 56
pnorm, 5, 38–40
pnorm (mpfr-distr-etc), 37
pochMpfr, 14, 36
pochMpfr (chooseMpfr), 12
polyroot, 65
prettyNum, 19
print, 16, 18, 26, 33
print.default, 41
print.integrate, 27
print.integrateR (integrateR), 25
print.mpfr (mpfr-utils), 40
print.mpfr1 (mpfr-class), 32
print.mpfrArray (mpfr-utils), 40
print.Ncharacter (formatHex), 15
print.summaryMpfr (mpfr-class), 32
prod, 34

quantile, 35
quantile,mpfr-method (mpfr-class), 32

INDEX 73

range, 34, 57
rank, 35
raw, 35
rbind, 11
rbind (bind-methods), 11
rbind,ANY-method (bind-methods), 11
rbind,Mnumber-method (bind-methods), 11
rbind-methods (bind-methods), 11
Re,mpfr-method (mpfr-class), 32
Rmpfr (Rmpfr-package), 3
Rmpfr-package, 3
Rmpfr-workarounds, 57
round, 34, 58
roundMpfr, 5, 30, 34, 36, 42, 58
rowMeans,mpfrArray-method (mpfrMatrix),

47
rowSums,mpfrArray-method (mpfrMatrix),

47

sapply, 58
sapplyMpfr, 58
save, 43
seq, 59, 60
seqMpfr, 5, 59
setPrec (roundMpfr), 58
show,integrateR-method (integrateR), 25
show,mpfr-method (mpfr-class), 32
show,mpfr1-method (mpfr-class), 32
show,mpfrArray-method (mpfrMatrix), 47
show,summaryMpfr-method (mpfr-class), 32
sign, 33, 34
sign,mpfr-method (mpfr-class), 32
sign,mpfrArray-method (mpfrMatrix), 47
signif, 34
sin, 34
sinh, 34
sort, 35
sprintf, 15, 16, 19
sqrt, 34
str, 45, 60, 61
str.default, 60
str.mpfr, 45, 60
sum, 34
sumBinomMpfr, 5, 13, 55, 61
Summary, 34
Summary,mpfr-method (mpfr-class), 32
summary,mpfr-method (mpfr-class), 32
summary.default, 34
summaryMpfr-class (mpfr-class), 32

t,mpfr-method (mpfr-class), 32
t,mpfrMatrix-method (mpfrMatrix), 47
tan, 34
tanh, 34
tcrossprod,array_or_vector,mpfr-method

(mpfr-class), 32
tcrossprod,Mnumber,mpfr-method

(mpfrMatrix), 47
tcrossprod,mpfr,array_or_vector-method

(mpfr-class), 32
tcrossprod,mpfr,missing-method

(mpfrMatrix), 47
tcrossprod,mpfr,Mnumber-method

(mpfrMatrix), 47
tcrossprod,mpfr,mpfr-method

(mpfrMatrix), 47
tcrossprod,mpfr,mpfrMatrix-method

(mpfrMatrix), 47
tcrossprod,mpfrMatrix,mpfr-method

(mpfrMatrix), 47
tcrossprod,mpfrMatrix,mpfrMatrix-method

(mpfrMatrix), 47
toNum, 7
toNum (mpfr-utils), 40
trigamma, 5, 34
trunc, 34
typeof, 7, 32

unique, 35
unique,mpfr,ANY-method (mpfr-class), 32
unique,mpfr-method (mpfr-class), 32
unique.mpfr (mpfr-class), 32
uniroot, 63, 65
unirootR, 5, 53, 63

vapply, 58
vector, 48
Vectorize, 26

which.max, 35
which.max,mpfr-method (mpfr-class), 32
which.min, 35
which.min,mpfr-method (mpfr-class), 32

y0 (Bessel_mpfr), 10
y1 (Bessel_mpfr), 10
yn, 40
yn (Bessel_mpfr), 10

zeta, 5, 8, 9, 36

74 INDEX

zeta (mpfr-special-functions), 39

	Rmpfr-package
	array_or_vector-class
	asNumeric-methods
	atomicVector-class
	Bernoulli
	Bessel_mpfr
	bind-methods
	chooseMpfr
	factorialMpfr
	formatHex
	formatMpfr
	gmp-conversions
	hjkMpfr
	igamma
	integrateR
	is.whole
	Mnumber-class
	mpfr
	mpfr-class
	mpfr-distr-etc
	mpfr-special-functions
	mpfr-utils
	mpfr.utils
	mpfrArray
	mpfrMatrix
	mpfrMatrix-utils
	optimizeR
	pbetaI
	pmax
	Rmpfr-workarounds
	roundMpfr
	sapplyMpfr
	seqMpfr
	str.mpfr
	sumBinomMpfr
	unirootR
	Index

