Package ‘Rfssa’

September 13, 2019
Type Package

Title Functional Singular Spectrum Analysis
Version 1.0.0

Maintainer Hossein Haghbin <haghbinh@gmail.com>

URL https://github.com/haghbinh/Rfssa.git

Description Methods and tools for implementing functional singular spectrum analysis for func-
tional time series
as described in Haghbin H., Najibi, S.M., Mahmoudvand R., Trinka J., Maadoo-
liat M. (2019). Functional singular spectrum Analysis. Manuscript submitted for publication.

License GPL (>=2)

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

Imports Rcpp, fda, lattice, plotly, shiny, Rssa, markdown,
LinkingTo Rcpp, ReppArmadillo,

Suggests knitr,

Depends R (>=2.10), dplyr

NeedsCompilation yes

Author Hossein Haghbin [aut, cre],
Seyed Morteza Najibi [aut],
Jordan Trinka [aut],

Mehdi Maadooliat [aut]

Repository CRAN
Date/Publication 2019-09-12 22:40:20 UTC

R topics documented:

https://github.com/haghbinh/Rfssa.git

2 * fts
Callcenter e e e 5
70) o 6
freconstruct L e e e 7
T 8
S o e 10
fWeor . . e 11
Jambi . . . e 13
launchApp e e 14
plotfssa 14
plotfts 16
Rfssa e 18
WPIOt . . e 19
LBt e 20

Index 21

*.fts Multiplication of Functional Time Series
Description

A method that lets you multiply functional time series (fts) and perform scalar multiplication of
functional time series.

Usage

S3 method for class 'fts'
YT x Y2

Arguments

Y1
Y2

Value

an object of class fts or scalar

an object of class fts or scalar

an object of class fts

See Also

fts

+.1ts

Examples

Not run:

require(fda)

require(Rfssa)

data(Callcenter) # Read data

u=seq(0,1,length.out=240) # Define domain of functional data

d=12 # number of basis elements

basis=create.bspline.basis(rangeval = c(0,1),nbasis = d) # create basis object
smooth.calls=smooth.basis(u, matrix(nrow=240,ncol=365,Callcenter$calls), basis)
Y=fts(smooth.calls$fd) # create functional time series

plot(Y)

Ytimes=Y*Y # elementwise multiplication of the functional time series with itself
plot(Ytimes)

Ytimes2=2xY # multiply 2 with every term in the functional time series
plot(Ytimes2)

End(Not run)

+.fts Addition of Functional Time Series

Description

A method that lets you perform functional time series (fts) addition and scalar addition.

Usage
S3 method for class 'fts'
Y1 + Y2

Arguments

Y1 an object of class fts or scalar

Y2 an object of class fts or scalar

Value

an object of class fts.

See Also

fts

4 -.fts

Examples

Not run:

require(fda)

require(Rfssa)

data(Callcenter) # Read data

u=seq(0,1,length.out=240) # Define domain of functional data

d=12 # number of basis elements

basis=create.bspline.basis(rangeval = c(0,1),nbasis = d) # create basis object
smooth.calls=smooth.basis(u, matrix(nrow=240,ncol=365,Callcenter$calls), basis)
Y=fts(smooth.calls$fd) # create functional time series

plot(Y)

Yplus=Y+Y # add the functional time series to itself
plot(Yplus)

Yplus2=Y+2 # add 2 to every term in the functional time series
plot(Yplus2)

End(Not run)

-.fts Subtraction of Functional Time Series

Description

A method that lets you perform functional time series (fts) subtraction and scalar subtraction.

Usage
S3 method for class 'fts'
Y1 - Y2

Arguments

Y1 an object of class fts or scalar

Y2 an object of class fts or scalar

Value

an object of class fts.

See Also

fts

Callcenter 5

Examples

Not run:

require(fda)

require(Rfssa)

data(Callcenter) # Read data

u=seq(0,1,length.out=240) # Define domain of functional data

d=12 # number of basis elements

basis=create.bspline.basis(rangeval = c(@,1),nbasis = d) # create basis object
smooth.calls=smooth.basis(u, matrix(nrow=240,ncol=365,Callcenter$calls), basis)
Y=fts(smooth.calls$fd) # create functional time series

plot(Y)

Yminus=Y[4:8]-Y[14:18] # subtract elements of the functional time series from each other
plot(Yminus)

Yminus2=Y-2 # add 2 to every term in the functional time series

plot(Yminus2)

End(Not run)

Callcenter Number of Calls for a Bank.

Description

This dataset is a small call center for an anonymous bank (Brown et al., 2005). This dataset provides
the exact time of the calls that were connected to the center from January 1 to December 31 in the
year 1999. The data are aggregated into time intervals to obtain a data matrix. More precisely, the
(i.j)’th element of the data matrix contains the call volume during the jth time interval on day i.
This dataset has been analyzed in several prior studies; e.g. Brown et al. (2005), Shen and Huang
(2005), Huang et al. (2008), and Maadooliat et al. (2015). Here, the data are aggregated into time
intervals 6 minutes.

Usage

Callcenter

Format

A dataframe with 87600 rows and 5 variables:

calls The number of calls in 6 minutes aggregated interval.
u a numeric vector to show the aggregated interval.

Date Date time when the calls counts are recorded.

Day Weekday associated with Date.

Month Month associated with Date.

6 cor.fts

Source

http://iew3.technion.ac.il/serveng/callcenterdata/index.html

References

1. Brown, L., Gans, N., Mandelbaum, A., Sakov, A., Shen, H., Zeltyn, S., & Zhao, L. (2005).
Statistical analysis of a telephone call center: A queueing-science perspective. Journal of the
American statistical association, 100(469), 36-50.

2. Shen, H., & Huang, J. Z. (2005). Analysis of call center arrival data using singular value
decomposition. Applied Stochastic Models in Business and Industry, 21(3), 251-263.

3. Huang, J. Z., Shen, H., & Buja, A. (2008). Functional principal components analysis via
penalized rank one approximation. Electronic Journal of Statistics, 2, 678-695.

4. Maadooliat, M., Huang, J. Z., & Hu, J. (2015). Integrating data transformation in principal
components analysis. Journal of Computational and Graphical Statistics, 24(1), 84-103.

See Also

fssa

cor.fts Correlation for Functional Time Series Objects

Description
This function finds the correlation between univarite or multivariate functional time series (f'ts)
objects.

Usage

cor.fts(Y1, Y2)

Arguments
Y1 an object of class fts
Y2 an object of class fts
Value

a scalar that is the correlation between fts objects

See Also

fts

http://iew3.technion.ac.il/serveng/callcenterdata/index.html

freconstruct 7

Examples

Not run:
require(fda)
require(Rfssa)
Raw image data
NDVI=Jambi$NDVI
EVI=Jambi$EVI
Kernel density estimation of pixel intensity
DO_NDVI <- matrix(NA,nrow = 512, ncol = 448)
DO_EVI <- matrix(NA,nrow =512, ncol = 448)
for(i in 1:448){
DO_NDVI[,i] <- density(NDVI[,,i],from=0,to=1)$y
DO_EVI[,i] <- density(EVI[,,i],from=0,to=1)%y

3
Define functional objects
d <- 11

basis <- create.bspline.basis(c(@,1),d)

u <- seq(@,1,length.out = 512)

y_NDVI <- smooth.basis(u,as.matrix(D@_NDVI),basis)$fd
y_EVI <- smooth.basis(u,as.matrix(DO_EVI),basis)$fd
Y_NDVI <- fts(y_NDVI)

Y_EVI <- fts(y_EVI)

cor.fts(Y_NDVI,Y_EVI)

End(Not run)

freconstruct Reconstruction Stage of Functional Singular Spectrum Analysis

Description

This is a function for reconstructing functional time series (fts) objects from functional singu-
lar spectrum analysis (fssa) objects (including Grouping and Hankelization steps). The function
performs the reconstruction step for univariate functional singular spectrum analysis (ufssa) or mul-
tivariate functional singular spectrum analysis (mfssa) depending on whether or not the input is an
fssa object from ufssa or mfssa.

Usage

freconstruct(U, group = as.list(1L:10L))

Arguments
U an object of class fssa
group a list of numeric vectors, each vector includes indices of elementary components

of a group used for reconstruction

8 fssa

Value
a named list of objects of class fts that are reconstructed as according to the specified groups and

a numeric vector of eigenvalues

Note

refer to fssa for an example on how to run this function starting from fssa objects

See Also

fssa, fts,

fssa Functional Singular Spectrum Analysis

Description

This is a function which performs the decomposition (including embedding and functional SVD
steps) stage for univariate functional singular spectrum analysis (ufssa) or multivariate functional
singular spectrum analysis (mfssa) depending on whether the supplied input is a univariate or mul-
tivariate functional time series (fts) object.

Usage

fssa(Y, L = NA, type = "fssa")

Arguments

Y an object of class fts

L window length

type type of FSSA with options of type = "ufssa” or type = "mfssa”
Value

An object of class fssa, which is a list of multivariate functional objects and the following compo-

nents:

values a numeric vector of eigenvalues

L window length

N length of the functional time series

Y the original functional time series

fssa 9

Examples

Not run:

Univariate FSSA Example on Callcenter data
data("Callcenter”)

require(fda)

require(Rfssa)

Define functional objects

D <- matrix(sqrt(Callcenter$calls),nrow = 240)

N <- ncol(D)

time <- seq(ISOdate(1999,1,1), ISOdate(1999,12,31), by="day")
K <- nrow(D)

u <- seq(9,K,length.out =K)

d <- 22 #Optimal Number of basis elements

basis <- create.bspline.basis(c(min(u),max(u)),d)

Ysmooth <- smooth.basis(u,D,basis)

Define functional time series

Y <- fts(Ysmooth$fd,time = time)

plot(Y,ylab = "Sqgrt of Callcenter”, xlab = "Intraday intervals")

Univariate functional singular spectrum analysis
L <- 28

U <- fssa(Y,L)

plot(U,d=13)

plot(U,d=9, type="1lheats")

plot(U,d=9, type="1lcurves")
plot(U,d=9, type="vectors")
plot(U,d=10, type="periodogram")
plot(U,d=10, type="paired")
plot(U,d=10, type="wcor")

gr <- list(1,2:3,4:5,6:7,8:20)

Q <- freconstruct(U, gr)
plot(Y,main="Call Numbers(Observed)")

plot(QLL1]1],main="1st Component”,ylab = " ", xlab = "Intraday intervals")
plot(QLL[2]1],main="2nd Component”,ylab = " ", xlab = "Intraday intervals")
plot(QLL3]1],main="3rd Component”,ylab = " ", xlab = "Intraday intervals")
plot(QLL4]1]1,main="4th Component”,ylab = " ", xlab = "Intraday intervals")
plot(QLL5]11,main="5th Component(Noise)”,ylab = " ", xlab = "Intraday intervals"”)

Other visiualisation types for object of class "fts":

plot(QLL1]1], type="3Dsurface”, main="1st Component”,ylab =" ", xlab = "Intraday intervals")
plot(QLL2]11[1:60], type="heatmap”, main="2nd Component”,ylab =" ", xlab = "Intraday intervals"”)
plot(QLL3]][1:60], type = "3Dline"”, main="3rd Component”,ylab =" ", xlab = "Intraday intervals")

Multivariate FSSA Example on Bivariate Satelite Image Data
require(fda)

require(Rfssa)

Raw image data

NDVI=Jambi$NDVI

EVI=Jambi$EVI

time <- Jambi$Date

10 fts

Kernel density estimation of pixel intensity
DO_NDVI <- matrix(NA,nrow = 512, ncol = 448)
DO_EVI <- matrix(NA,nrow =512, ncol = 448)
for(i in 1:448){
DO_NDVI[,i] <- density(NDVI[,,i],from=0,to=1)%y
DO_EVI[,i] <- density(EVI[,,i],from=0,to=1)3%y

3
Define functional objects
d<- 11

basis <- create.bspline.basis(c(0,1),d)

u <- seq(0,1,length.out = 512)

y_NDVI <- smooth.basis(u,as.matrix(D@_NDVI),6basis)$fd

y_EVI <- smooth.basis(u,as.matrix(DO_EVI),basis)$fd

y=list(y_NDVI,y_EVI)

Define functional time series

Y <- fts(y,time=time)

plot(Y[1:100],ylab = c("NDVI","EVI"),main = "Probability Kernel Density")

plot(Y, type = '3Dsurface', var=1,ylab = c(”"NDVI"),main = "Probability Kernel Density")
plot(Y, type = '3Dline', var=2,ylab = c("EVI"),main = "Probability Kernel Density")
plot(Y, type = 'heatmap',ylab = c(”NDVI","EVI"),main = "Probability Kernel Density")
L=45

Multivariate functional singular spectrum analysis

U=fssa(Y,L)

plot(U,d=10, type="'values"')

plot(U,d=10, type="paired')

plot(U,d=10, type="'1lheats', var = 1)

plot(U,d=10, type="1lcurves',var = 1)

plot(U,d=10, type="'1lheats', var = 2)

plot(U,d=10, type="'1lcurves',var = 2)

plot(U,d=10, type="wcor")

plot(U,d=10, type="'periodogram')

plot(U,d=10, type="'vectors"')

recon <- freconstruct(U = U, group = list(c(1),c(2,3),c(4)))

plot(recon[[1]],type = '3Dsurface',var=1, ylab = "NDVI")

plot(recon[[2]],type = '3Dsurface',var=1, ylab = "NDVI")

plot(recon[[3]1],type = '3Dsurface',var=1, ylab = "NDVI")

plot(recon[[1]],type = '3Dsurface',var=2, ylab = "EVI")

plot(recon[[2]],type = '3Dsurface',var=2, ylab = "EVI")

plot(recon[[3]1],type = '3Dsurface',var=2, ylab = "EVI")

End(Not run)

fts Functional Time Series Class

Description

This function is used to create functional time series objects from functional data (fd) objects.

fwcor 11

Usage

fts(Y, time = NULL)

Arguments
Y an object of class fd or a list of objects of class fd
time the vector of times at which a time series was sampled
Note

refer to fssa for an example on how to run this function starting from fd objects

See Also

fssa

fwcor Weighted Correlation Matrix

Description
This function returns the weighted correlation (w-correlation) matrix for functional time series (fts)
objects that were reconstructed from functional singular spectrum analysis (fssa) objects.

Usage

fwcor (U, group)

Arguments
U an object of class fssa
group a list or vector of indices which determines the grouping used for the reconstruc-
tion in pairwise w-correlations matrix
Value

a square matrix of w-correlation values for the reconstructed fts objects that were built from fssa
components

See Also

fssa, freconstruct, fts, wplot

12 fwcor

Examples

Not run:

Univariate W-Correlation Example on Callcenter data
data("Callcenter”)

require(fda)

require(Rfssa)

Define functional objects

D <- matrix(sqrt(Callcenter$calls),nrow = 240)

N <- ncol(D)
time <- 1:N
K <- nrow(D)

u <- seq(9,K,length.out =K)

d <- 22 #0ptimal Number of basis elements

basis <- create.bspline.basis(c(min(u),max(u)),d)
Ysmooth <- smooth.basis(u,D,basis)

Define functional time series

Y <- fts(Ysmooth$fd)

Decomposition stage of univariate functional singular spectrum analysis
L <- 28

U <- fssa(Y,L)

ufwcor=fwcor(U = U,group = list(1,2,3))

wplot (W=ufwcor)

Multivariate W-Correlation Example on Bivariate Satelite Image Data
require(fda)
require(Rfssa)
Raw image data
NDVI=Jambi$NDVI
EVI=Jambi$EVI
Kernel density estimation of pixel intensity
DO_NDVI <- matrix(NA,nrow = 512, ncol = 448)
DO_EVI <- matrix(NA,nrow =512, ncol = 448)
for(i in 1:448){
DO_NDVI[,i] <- density(NDVI[,,i],from=0,to=1)%y
DO_EVI[,i] <- density(EVI[,,i],from=0,to=1)3%y

3
Define functional objects
d<- 11

basis <- create.bspline.basis(c(0,1),d)

u <- seq(@,1,length.out = 512)

y_NDVI <- smooth.basis(u,as.matrix(D@_NDVI),basis)$fd
y_EVI <- smooth.basis(u,as.matrix(DO_EVI),basis)$fd
y=1list(y_NDVI,y_EVI)

Define functional time series

Y=fts(y)

plot(Y)

L=45

Decomposition stage of multivariate functional singular spectrum analysis
U=fssa(Y,L)

mfwcor=fwcor(U = U,group = list(1,2,3,4))

Jambi 13

wplot (W=mfwcor)

End(Not run)

Jambi Jambi MODIS Data

Description

This data set contains the normalized difference vegetation index (NDVI) and enhanced vegetation
index (EVI) image data from NASA’s MODerate-resolution Imaging Spectroradiometer (MODIS)
with global coverage at 250 m”2. The goal of the study is to collect raw image data of the Jambi
Province, Indonesia. Indonesia manages various forested land utilizations such as natural forest and
plantations which, in the past, have been exploited throughout the country. Greater criticisms on
forest exploitation lead to a moratorium which needs to be monitored frequently. Assessment of
woody vegetation could be taken using field surveys or remote sensing. It was found that season
is probably the most intriguing factor in vegetative land cover, especially in long-term land cover
changes (Lambin, 1999). The data was gathered starting in 2000-02-18 and ending in 2019-07-28
every 16 days.

Usage

Jambi

Format

A list which contains two 33 by 33 by 448 arrays where one array is for NDVI image data and the
other is for EVI image data. The list also contains a date vector of length 448 which specifies upon
which date was each image 33 by 33 image taken.

Days 1 - 448 Pixel intensity with values between zero and one
@references

1. Lambin, E., Geist, H., Lepers, E. (1999). Dynamics of Land-Use and Land-Cover Change in
Tropical Regions Annual Review of Environment and Resources, 205-244.

Source

https://1lpdaac.usgs.gov/products/mod13q1ve06/

See Also

fssa

https://lpdaac.usgs.gov/products/mod13q1v006/

14 plot.fssa

launchApp Launch the Shiny Application Demonstration

Description

This function launches an app that can be used to help an individual better understand univariate or
multivariate functional singular spectrum analysis (fssa). The app allows the user to run univariate
or multivariate functional singular spectrum analysis (depending on the entered type of parameter)
on a variety of data types including simulated and real data available through the server. The app
also has functionality that allows the user to upload their own data. The app allows the user to
compare different methods simultaneously such as multivariate singular spectrum analysis versus
univariate functional singular spectrum analysis. It also allows the user to choose the number and
types of basis elements used to estimate functional time series (fts) objects. The app supports fts
plots and f'ssa plots.

Usage
launchApp(type = "ufssa")

Arguments

type type of FSSA with options of type = "ufssa” or type = "mfssa”

Value

a shiny application object

Examples

Not run:

launchApp()

End(Not run)

plot.fssa Plot Functional Singular Spectrum Analysis Objects

Description

This is a plotting method for objects of class functional singular spectrum analysis (fssa). The
method is designed to help the user make decisions on how to do the grouping stage of univariate
or multivariate functional singular spectrum analysis.

plot.fssa 15

Usage

S3 method for class 'fssa'

plot(x, d = length(x$values), idx = 1:d, idy = idx +
1, contrib = TRUE, groups = as.list(1:d), type = "values”,
var = 1L, ylab = NA, ...)

Arguments

X an object of class fssa

d an integer which is the number of elementary components in the plot
idx a vector of indices of eigen elements to plot

idy a second vector of indices of eigen elements to plot (for type="paired")

contrib a logical where if the value is "TRUE’ (the default), the contribution of the com-
ponent to the total variance is displayed

groups a list or vector of indices determines grouping used for the decomposition(for
type="wcor")

type the type of plot to be displayed where possible types are:

* "values" plot the square-root of singular values (default)

* "paired” plot the pairs of eigenfunction’s coefficients (useful for the de-
tection of periodic components)

* "wcor” plot the W-correlation matrix for the reconstructed objects

* "vectors" plot the eigenfunction’s coefficients (useful for the detection of
period length)

* "lcurves” plot of the eigenfunctions (useful for the detection of period
length)

* "lheats" heatmap plot the eigenfunctions (useful for the detection of mean-
ingful patterns)

* "periodogram” periodogram plot (useful for the detecting the frequencies
of oscillations in functional data)

var an integer specifying the variable number
ylab the character vector of name of variables

arguments to be passed to methods, such as graphical parameters

Note

for a multivariate example, see the examples in fssa

See Also

fssa, plot.fts

16 plot.fts

Examples

Not run:

Simulated Data Example

require(Rfssa)

require(fda)

n <- 50 # Number of points in each function.
d<-9

N <- 60

sigma <- 0.5

set.seed(110)

E <- matrix(rnorm(Nxd,@,sigma/sqrt(d)),ncol = N, nrow = d)
basis <- create.fourier.basis(c(@, 1), d)
Eps <- fd(E,basis)

oml <- 1/10

om2 <- 1/4

f@ <- function(tau, t) 2*exp(-tauxt/10)

f1 <- function(tau, t) 0.2xexp(-tau”3) * cos(2 * pi * t * oml)
f2 <- function(tau, t) -0.2*xexp(-tau*2) * cos(2 * pi * t *x om2)
tau <- seq(@, 1, length = n)

t <- 1:N

fo_mat <- outer(tau, t, FUN = f0)

fo_fd <- smooth.basis(tau, f@_mat, basis)$fd
f1_mat <- outer(tau, t, FUN = f1)

f1_fd <- smooth.basis(tau, f1_mat, basis)$fd
f2_mat <- outer(tau, t, FUN = f2)

f2_fd <- smooth.basis(tau, f2_mat, basis)$fd
Y_fd <- fo_fd+f1_fd+f2_fd

L <-10

U <- fssa(Y_fd,L)

plot(U)

plot(U,d=4,type="1curves")

plot(U,d=4, type="vectors")

plot(U,d=5, type="paired")

plot(U,d=5, type="wcor")

plot(U,d=5, type="1heats")

plot(U,d=5, type="periodogram"”)

End(Not run)

plot.fts Functional Time Series Visualization Tools Using Plotly

Description

This is a plotting method for univariate or multivariate functional time series (fts). This method is
designed to help the user visualize fts data using a variety of techniques that use plotly.

plot.fts 17

Usage

S3 method for class 'fts'
plot(x, npts = 100, type = "line"”, main = NULL,

ylab = NULL, xlab = NULL, tlab = NULL, var = NULL, ...)
Arguments
X an object of class fts
npts number of points to evaluate functional object at
type the type of plot to be displayed where possible types are:

e "line” plot the fts elements in a line plot (default)

* "heatmap” plot the fts elements in a heat map

* "3Dsurface” plot the fts elements as a surface

* "3Dline” plot the fts elements in a three-dimensional line plot

main the main title

ylab the y-axis label

xlab the x-axis label

tlab the time-axis label

var an integer specifying the variable number to plot if type="3Dsurface” or type="3Dline"

arguments to be passed to methods, such as graphical parameters.

Note

for a multivariate example, see the examples in fssa

Examples

Not run:

require(fda)

require(Rfssa)

data(Callcenter) # Read data

u=seq(@,1,length.out=240) # Define domain of functional data

d=12 # number of basis elements

basis=create.bspline.basis(rangeval = c(0,1),nbasis = d) # create basis object
smooth.calls=smooth.basis(u, matrix(nrow=240,ncol=365,Callcenter$calls), basis)
Y=fts(smooth.calls$fd) # create functional time series

plot(Y,type = "heatmap"”)

plot(Y,type = "line",var = 1)

plot(Y,type = "3Dsurface”,var = 1)

plot(Y,type = "3Dline",var = 1)

End(Not run)

18 Rfssa

Rfssa Rfssa: A Package for Functional Singular Spectrum Analysis.

Description

The Rfssa package provides the collection of necessary functions to implement functional singular
spectrum analysis (FSSA) for analysing functional time series (FTS) data. FSSA is a novel non-
parametric method to perform decomposition and reconstruction of FTS.

Details

The use of the package starts with the decomposition of functional time series (fts) objects using
fssa. Then a suitable grouping of the principal compomnents is required for reconstruction which
can be done heuristically by looking at the plots of the decomposition (plot). Alternatively, one can
examine the weighted correlation (w-correlation) matrix (fwcor). The final step is the reconstruc-
tion of the principal components into additive fts objects whose sum approximates the original
univariate or multivariate functional time series (freconstruct).

This version of the Rfssa package includes updates to existing functions including fssa, plot,
wplot, and freconstruct. Multivariate functional singular spectrum analysis (mfssa) was added
to the package in fssa to allow the user to perform embedding and decomposition of a multivari-
ate FTS. The reconstruction stage in freconstruct was also updated to allow for reconstruction
(including Hankelization) of multivariate FTS objects using multivariate FSSA objects that come
from mfssa. Plotting options for FSSA objects in plot were also updated so that the user can now
plot left singular functions, right singular vectors, left singular function heat diagrams, and peri-
odograms. FSSA plotting options also allow the user to specify which particular components they
want to plot. For example, a user can specify that they want to see a paired-plot of only the third and
fourth component. The *meanvectors’ and *meanpaired’ options were removed as these are satisfied
with ’paired’ and ’vectors’ options. The ’efunctions’ and ’efunctions2’ options were also removed
in lieu of the addition of the left singular function heat map option. The user can also specify the
“cuts’ parameter in wplot to make visualization of the w-correlation matrix easier.

This version of the Rfssa package also includes new functions for converting functional data (FD)
objects to FTS objects, arithmetic, indexing, correlation, and plotting of FTS data. The user is able
to convert an FD object to an FTS object using fts. The user can also perform addition, subtraction,
and multiplication of FTS objects with other FTS objects or FTS objects with scalars by using *+’,
’-’,and **’ respectively. The package also allows for indexing of FTS objects by using ’[’. The user
can also measure the unweighted correlation between FTS objects by using cor. fts. The plotting
of FTS objects can be performed using plot which uses the plotly package for visualization.

The package update also includes a new shiny app (1aunchApp) that can be used for demonstrations
of univariate or multivariate FSSA depending on the type that is specified. The app allows the user to
explore FSSA with simulated data, data that is provided on the server, or data that the user provides.
It allows the user to change parameters as they please, gives visual results of the methods, and also
allows the user to compare FSSA results to other spectrum analysis methods such as multivariate
singular spectrum analysis. The tool is easy to use and can act as a nice starting point for a user that
wishes to perform FSSA as a part of their data analysis.

wplot 19

References

Haghbin H., Najibi, S.M., Mahmoudvand R., Trinka J., Maadooliat M. (2019). Functional singular
spectrum Analysis. Manuscript submitted for publication.

See Also

fssa, freconstruct, fwcor, wplot, fts, plot.fts, plot.fssa, cor.fts, launchApp

wplot Weighted-Correlations Plot

Description

This function displays a plot of the weighted-correlation (w-correlation) matrix of functional time
series (f'ts) objects that were reconstructed from functional singular spectrum analysis (fssa) ob-
jects.

Usage

wplot(W, cuts = 20)

Arguments
W a w-correlation matrix
cuts an integer that is the number of levels the range of w-correlation values will be
divided into
Note

refer to fwcor for an example on how to run this function starting from a w-correlation matrix

See Also

fssa, freconstruct, fts, fwcor

20

[.fts

[.fts Indexing into Functional Time Series

Description

A method that lets you index into a functional time series (fts).

Usage

S3 method for class 'fts'
Y[i = "index"]

Arguments
Y an object of class fts
i index

Value

an object of class fts

Note

can use ’:’ as an operator to specify a range of indices

See Also
fts

Examples

Not run:

require(fda)

require(Rfssa)
data(Callcenter) # Read data

u=seq(0,1,length.out=240) # Define domain of functional data

d=12 # number of basis elements

basis=create.bspline.basis(rangeval = c(@,1),nbasis = d) # create basis object
smooth.calls=smooth.basis(u, matrix(nrow=240,ncol=365,Callcenter$calls), basis)

Y=fts(smooth.calls$fd) # create functional time series
Yind=Y[4:8] # take only the 4th through 8th functions
plot(Yind)

Yminus=Y[4:8]-Y[14:18] # subtract functions from each other

plot(Yminus)

End(Not run)

Index

+Topic datasets
Callcenter, 5
Jambi, 13

*.fts, 2

+.fts, 3

-.fts, 4

[.fts, 20

Callcenter, 5
cor.fts, 6,18, 19

freconstruct, 7, 11, 18, 19
fssa, 6-8,8, 11, 13-15, 17-19
fts, 2-4,6-8, 10, 11, 14, 16-20
fwcor, 11, 18, 19

Jambi, 13
launchApp, 14, 18, 19

plot, I8
plot.fssa, 14, 19
plot.fts, 15,16, 19

Rfssa, 18
Rfssa-package (Rfssa), 18

wplot, 11, 18, 19, 19

21

	*.fts
	+.fts
	-.fts
	Callcenter
	cor.fts
	freconstruct
	fssa
	fts
	fwcor
	Jambi
	launchApp
	plot.fssa
	plot.fts
	Rfssa
	wplot
	[.fts
	Index

